]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/i386/kernel/smpboot.c
[PATCH] i386: Convert PDA into the percpu section
[mirror_ubuntu-hirsute-kernel.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
48 #include <linux/nmi.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
55 #include <asm/nmi.h>
56
57 #include <mach_apic.h>
58 #include <mach_wakecpu.h>
59 #include <smpboot_hooks.h>
60 #include <asm/vmi.h>
61
62 /* Set if we find a B stepping CPU */
63 static int __devinitdata smp_b_stepping;
64
65 /* Number of siblings per CPU package */
66 int smp_num_siblings = 1;
67 EXPORT_SYMBOL(smp_num_siblings);
68
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
75
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
79
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
83
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
90
91 /* Per CPU bogomips and other parameters */
92 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
93 EXPORT_SYMBOL(cpu_data);
94
95 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
96 { [0 ... NR_CPUS-1] = 0xff };
97 EXPORT_SYMBOL(x86_cpu_to_apicid);
98
99 u8 apicid_2_node[MAX_APICID];
100
101 DEFINE_PER_CPU(unsigned long, this_cpu_off);
102 EXPORT_PER_CPU_SYMBOL(this_cpu_off);
103
104 /*
105 * Trampoline 80x86 program as an array.
106 */
107
108 extern unsigned char trampoline_data [];
109 extern unsigned char trampoline_end [];
110 static unsigned char *trampoline_base;
111 static int trampoline_exec;
112
113 static void map_cpu_to_logical_apicid(void);
114
115 /* State of each CPU. */
116 DEFINE_PER_CPU(int, cpu_state) = { 0 };
117
118 /*
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
122 */
123
124 static unsigned long __devinit setup_trampoline(void)
125 {
126 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
127 return virt_to_phys(trampoline_base);
128 }
129
130 /*
131 * We are called very early to get the low memory for the
132 * SMP bootup trampoline page.
133 */
134 void __init smp_alloc_memory(void)
135 {
136 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
137 /*
138 * Has to be in very low memory so we can execute
139 * real-mode AP code.
140 */
141 if (__pa(trampoline_base) >= 0x9F000)
142 BUG();
143 /*
144 * Make the SMP trampoline executable:
145 */
146 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
147 }
148
149 /*
150 * The bootstrap kernel entry code has set these up. Save them for
151 * a given CPU
152 */
153
154 static void __cpuinit smp_store_cpu_info(int id)
155 {
156 struct cpuinfo_x86 *c = cpu_data + id;
157
158 *c = boot_cpu_data;
159 if (id!=0)
160 identify_secondary_cpu(c);
161 /*
162 * Mask B, Pentium, but not Pentium MMX
163 */
164 if (c->x86_vendor == X86_VENDOR_INTEL &&
165 c->x86 == 5 &&
166 c->x86_mask >= 1 && c->x86_mask <= 4 &&
167 c->x86_model <= 3)
168 /*
169 * Remember we have B step Pentia with bugs
170 */
171 smp_b_stepping = 1;
172
173 /*
174 * Certain Athlons might work (for various values of 'work') in SMP
175 * but they are not certified as MP capable.
176 */
177 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
178
179 if (num_possible_cpus() == 1)
180 goto valid_k7;
181
182 /* Athlon 660/661 is valid. */
183 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
184 goto valid_k7;
185
186 /* Duron 670 is valid */
187 if ((c->x86_model==7) && (c->x86_mask==0))
188 goto valid_k7;
189
190 /*
191 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
192 * It's worth noting that the A5 stepping (662) of some Athlon XP's
193 * have the MP bit set.
194 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
195 */
196 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
197 ((c->x86_model==7) && (c->x86_mask>=1)) ||
198 (c->x86_model> 7))
199 if (cpu_has_mp)
200 goto valid_k7;
201
202 /* If we get here, it's not a certified SMP capable AMD system. */
203 add_taint(TAINT_UNSAFE_SMP);
204 }
205
206 valid_k7:
207 ;
208 }
209
210 extern void calibrate_delay(void);
211
212 static atomic_t init_deasserted;
213
214 static void __cpuinit smp_callin(void)
215 {
216 int cpuid, phys_id;
217 unsigned long timeout;
218
219 /*
220 * If waken up by an INIT in an 82489DX configuration
221 * we may get here before an INIT-deassert IPI reaches
222 * our local APIC. We have to wait for the IPI or we'll
223 * lock up on an APIC access.
224 */
225 wait_for_init_deassert(&init_deasserted);
226
227 /*
228 * (This works even if the APIC is not enabled.)
229 */
230 phys_id = GET_APIC_ID(apic_read(APIC_ID));
231 cpuid = smp_processor_id();
232 if (cpu_isset(cpuid, cpu_callin_map)) {
233 printk("huh, phys CPU#%d, CPU#%d already present??\n",
234 phys_id, cpuid);
235 BUG();
236 }
237 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
238
239 /*
240 * STARTUP IPIs are fragile beasts as they might sometimes
241 * trigger some glue motherboard logic. Complete APIC bus
242 * silence for 1 second, this overestimates the time the
243 * boot CPU is spending to send the up to 2 STARTUP IPIs
244 * by a factor of two. This should be enough.
245 */
246
247 /*
248 * Waiting 2s total for startup (udelay is not yet working)
249 */
250 timeout = jiffies + 2*HZ;
251 while (time_before(jiffies, timeout)) {
252 /*
253 * Has the boot CPU finished it's STARTUP sequence?
254 */
255 if (cpu_isset(cpuid, cpu_callout_map))
256 break;
257 rep_nop();
258 }
259
260 if (!time_before(jiffies, timeout)) {
261 printk("BUG: CPU%d started up but did not get a callout!\n",
262 cpuid);
263 BUG();
264 }
265
266 /*
267 * the boot CPU has finished the init stage and is spinning
268 * on callin_map until we finish. We are free to set up this
269 * CPU, first the APIC. (this is probably redundant on most
270 * boards)
271 */
272
273 Dprintk("CALLIN, before setup_local_APIC().\n");
274 smp_callin_clear_local_apic();
275 setup_local_APIC();
276 map_cpu_to_logical_apicid();
277
278 /*
279 * Get our bogomips.
280 */
281 calibrate_delay();
282 Dprintk("Stack at about %p\n",&cpuid);
283
284 /*
285 * Save our processor parameters
286 */
287 smp_store_cpu_info(cpuid);
288
289 /*
290 * Allow the master to continue.
291 */
292 cpu_set(cpuid, cpu_callin_map);
293 }
294
295 static int cpucount;
296
297 /* maps the cpu to the sched domain representing multi-core */
298 cpumask_t cpu_coregroup_map(int cpu)
299 {
300 struct cpuinfo_x86 *c = cpu_data + cpu;
301 /*
302 * For perf, we return last level cache shared map.
303 * And for power savings, we return cpu_core_map
304 */
305 if (sched_mc_power_savings || sched_smt_power_savings)
306 return cpu_core_map[cpu];
307 else
308 return c->llc_shared_map;
309 }
310
311 /* representing cpus for which sibling maps can be computed */
312 static cpumask_t cpu_sibling_setup_map;
313
314 static inline void
315 set_cpu_sibling_map(int cpu)
316 {
317 int i;
318 struct cpuinfo_x86 *c = cpu_data;
319
320 cpu_set(cpu, cpu_sibling_setup_map);
321
322 if (smp_num_siblings > 1) {
323 for_each_cpu_mask(i, cpu_sibling_setup_map) {
324 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
325 c[cpu].cpu_core_id == c[i].cpu_core_id) {
326 cpu_set(i, cpu_sibling_map[cpu]);
327 cpu_set(cpu, cpu_sibling_map[i]);
328 cpu_set(i, cpu_core_map[cpu]);
329 cpu_set(cpu, cpu_core_map[i]);
330 cpu_set(i, c[cpu].llc_shared_map);
331 cpu_set(cpu, c[i].llc_shared_map);
332 }
333 }
334 } else {
335 cpu_set(cpu, cpu_sibling_map[cpu]);
336 }
337
338 cpu_set(cpu, c[cpu].llc_shared_map);
339
340 if (current_cpu_data.x86_max_cores == 1) {
341 cpu_core_map[cpu] = cpu_sibling_map[cpu];
342 c[cpu].booted_cores = 1;
343 return;
344 }
345
346 for_each_cpu_mask(i, cpu_sibling_setup_map) {
347 if (cpu_llc_id[cpu] != BAD_APICID &&
348 cpu_llc_id[cpu] == cpu_llc_id[i]) {
349 cpu_set(i, c[cpu].llc_shared_map);
350 cpu_set(cpu, c[i].llc_shared_map);
351 }
352 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
353 cpu_set(i, cpu_core_map[cpu]);
354 cpu_set(cpu, cpu_core_map[i]);
355 /*
356 * Does this new cpu bringup a new core?
357 */
358 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
359 /*
360 * for each core in package, increment
361 * the booted_cores for this new cpu
362 */
363 if (first_cpu(cpu_sibling_map[i]) == i)
364 c[cpu].booted_cores++;
365 /*
366 * increment the core count for all
367 * the other cpus in this package
368 */
369 if (i != cpu)
370 c[i].booted_cores++;
371 } else if (i != cpu && !c[cpu].booted_cores)
372 c[cpu].booted_cores = c[i].booted_cores;
373 }
374 }
375 }
376
377 /*
378 * Activate a secondary processor.
379 */
380 static void __cpuinit start_secondary(void *unused)
381 {
382 /*
383 * Don't put *anything* before cpu_init(), SMP booting is too
384 * fragile that we want to limit the things done here to the
385 * most necessary things.
386 */
387 #ifdef CONFIG_VMI
388 vmi_bringup();
389 #endif
390 cpu_init();
391 preempt_disable();
392 smp_callin();
393 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
394 rep_nop();
395 /*
396 * Check TSC synchronization with the BP:
397 */
398 check_tsc_sync_target();
399
400 setup_secondary_clock();
401 if (nmi_watchdog == NMI_IO_APIC) {
402 disable_8259A_irq(0);
403 enable_NMI_through_LVT0(NULL);
404 enable_8259A_irq(0);
405 }
406 /*
407 * low-memory mappings have been cleared, flush them from
408 * the local TLBs too.
409 */
410 local_flush_tlb();
411
412 /* This must be done before setting cpu_online_map */
413 set_cpu_sibling_map(raw_smp_processor_id());
414 wmb();
415
416 /*
417 * We need to hold call_lock, so there is no inconsistency
418 * between the time smp_call_function() determines number of
419 * IPI receipients, and the time when the determination is made
420 * for which cpus receive the IPI. Holding this
421 * lock helps us to not include this cpu in a currently in progress
422 * smp_call_function().
423 */
424 lock_ipi_call_lock();
425 cpu_set(smp_processor_id(), cpu_online_map);
426 unlock_ipi_call_lock();
427 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
428
429 /* We can take interrupts now: we're officially "up". */
430 local_irq_enable();
431
432 wmb();
433 cpu_idle();
434 }
435
436 /*
437 * Everything has been set up for the secondary
438 * CPUs - they just need to reload everything
439 * from the task structure
440 * This function must not return.
441 */
442 void __devinit initialize_secondary(void)
443 {
444 /*
445 * We don't actually need to load the full TSS,
446 * basically just the stack pointer and the eip.
447 */
448
449 asm volatile(
450 "movl %0,%%esp\n\t"
451 "jmp *%1"
452 :
453 :"m" (current->thread.esp),"m" (current->thread.eip));
454 }
455
456 /* Static state in head.S used to set up a CPU */
457 extern struct {
458 void * esp;
459 unsigned short ss;
460 } stack_start;
461
462 #ifdef CONFIG_NUMA
463
464 /* which logical CPUs are on which nodes */
465 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
466 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
467 EXPORT_SYMBOL(node_2_cpu_mask);
468 /* which node each logical CPU is on */
469 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
470 EXPORT_SYMBOL(cpu_2_node);
471
472 /* set up a mapping between cpu and node. */
473 static inline void map_cpu_to_node(int cpu, int node)
474 {
475 printk("Mapping cpu %d to node %d\n", cpu, node);
476 cpu_set(cpu, node_2_cpu_mask[node]);
477 cpu_2_node[cpu] = node;
478 }
479
480 /* undo a mapping between cpu and node. */
481 static inline void unmap_cpu_to_node(int cpu)
482 {
483 int node;
484
485 printk("Unmapping cpu %d from all nodes\n", cpu);
486 for (node = 0; node < MAX_NUMNODES; node ++)
487 cpu_clear(cpu, node_2_cpu_mask[node]);
488 cpu_2_node[cpu] = 0;
489 }
490 #else /* !CONFIG_NUMA */
491
492 #define map_cpu_to_node(cpu, node) ({})
493 #define unmap_cpu_to_node(cpu) ({})
494
495 #endif /* CONFIG_NUMA */
496
497 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
498
499 static void map_cpu_to_logical_apicid(void)
500 {
501 int cpu = smp_processor_id();
502 int apicid = logical_smp_processor_id();
503 int node = apicid_to_node(apicid);
504
505 if (!node_online(node))
506 node = first_online_node;
507
508 cpu_2_logical_apicid[cpu] = apicid;
509 map_cpu_to_node(cpu, node);
510 }
511
512 static void unmap_cpu_to_logical_apicid(int cpu)
513 {
514 cpu_2_logical_apicid[cpu] = BAD_APICID;
515 unmap_cpu_to_node(cpu);
516 }
517
518 #if APIC_DEBUG
519 static inline void __inquire_remote_apic(int apicid)
520 {
521 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
522 char *names[] = { "ID", "VERSION", "SPIV" };
523 int timeout, status;
524
525 printk("Inquiring remote APIC #%d...\n", apicid);
526
527 for (i = 0; i < ARRAY_SIZE(regs); i++) {
528 printk("... APIC #%d %s: ", apicid, names[i]);
529
530 /*
531 * Wait for idle.
532 */
533 apic_wait_icr_idle();
534
535 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
536 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
537
538 timeout = 0;
539 do {
540 udelay(100);
541 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
542 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
543
544 switch (status) {
545 case APIC_ICR_RR_VALID:
546 status = apic_read(APIC_RRR);
547 printk("%08x\n", status);
548 break;
549 default:
550 printk("failed\n");
551 }
552 }
553 }
554 #endif
555
556 #ifdef WAKE_SECONDARY_VIA_NMI
557 /*
558 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
559 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
560 * won't ... remember to clear down the APIC, etc later.
561 */
562 static int __devinit
563 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
564 {
565 unsigned long send_status = 0, accept_status = 0;
566 int timeout, maxlvt;
567
568 /* Target chip */
569 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
570
571 /* Boot on the stack */
572 /* Kick the second */
573 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
574
575 Dprintk("Waiting for send to finish...\n");
576 timeout = 0;
577 do {
578 Dprintk("+");
579 udelay(100);
580 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
581 } while (send_status && (timeout++ < 1000));
582
583 /*
584 * Give the other CPU some time to accept the IPI.
585 */
586 udelay(200);
587 /*
588 * Due to the Pentium erratum 3AP.
589 */
590 maxlvt = lapic_get_maxlvt();
591 if (maxlvt > 3) {
592 apic_read_around(APIC_SPIV);
593 apic_write(APIC_ESR, 0);
594 }
595 accept_status = (apic_read(APIC_ESR) & 0xEF);
596 Dprintk("NMI sent.\n");
597
598 if (send_status)
599 printk("APIC never delivered???\n");
600 if (accept_status)
601 printk("APIC delivery error (%lx).\n", accept_status);
602
603 return (send_status | accept_status);
604 }
605 #endif /* WAKE_SECONDARY_VIA_NMI */
606
607 #ifdef WAKE_SECONDARY_VIA_INIT
608 static int __devinit
609 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
610 {
611 unsigned long send_status = 0, accept_status = 0;
612 int maxlvt, timeout, num_starts, j;
613
614 /*
615 * Be paranoid about clearing APIC errors.
616 */
617 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
618 apic_read_around(APIC_SPIV);
619 apic_write(APIC_ESR, 0);
620 apic_read(APIC_ESR);
621 }
622
623 Dprintk("Asserting INIT.\n");
624
625 /*
626 * Turn INIT on target chip
627 */
628 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
629
630 /*
631 * Send IPI
632 */
633 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
634 | APIC_DM_INIT);
635
636 Dprintk("Waiting for send to finish...\n");
637 timeout = 0;
638 do {
639 Dprintk("+");
640 udelay(100);
641 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
642 } while (send_status && (timeout++ < 1000));
643
644 mdelay(10);
645
646 Dprintk("Deasserting INIT.\n");
647
648 /* Target chip */
649 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
650
651 /* Send IPI */
652 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
653
654 Dprintk("Waiting for send to finish...\n");
655 timeout = 0;
656 do {
657 Dprintk("+");
658 udelay(100);
659 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
660 } while (send_status && (timeout++ < 1000));
661
662 atomic_set(&init_deasserted, 1);
663
664 /*
665 * Should we send STARTUP IPIs ?
666 *
667 * Determine this based on the APIC version.
668 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
669 */
670 if (APIC_INTEGRATED(apic_version[phys_apicid]))
671 num_starts = 2;
672 else
673 num_starts = 0;
674
675 /*
676 * Paravirt / VMI wants a startup IPI hook here to set up the
677 * target processor state.
678 */
679 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
680 (unsigned long) stack_start.esp);
681
682 /*
683 * Run STARTUP IPI loop.
684 */
685 Dprintk("#startup loops: %d.\n", num_starts);
686
687 maxlvt = lapic_get_maxlvt();
688
689 for (j = 1; j <= num_starts; j++) {
690 Dprintk("Sending STARTUP #%d.\n",j);
691 apic_read_around(APIC_SPIV);
692 apic_write(APIC_ESR, 0);
693 apic_read(APIC_ESR);
694 Dprintk("After apic_write.\n");
695
696 /*
697 * STARTUP IPI
698 */
699
700 /* Target chip */
701 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
702
703 /* Boot on the stack */
704 /* Kick the second */
705 apic_write_around(APIC_ICR, APIC_DM_STARTUP
706 | (start_eip >> 12));
707
708 /*
709 * Give the other CPU some time to accept the IPI.
710 */
711 udelay(300);
712
713 Dprintk("Startup point 1.\n");
714
715 Dprintk("Waiting for send to finish...\n");
716 timeout = 0;
717 do {
718 Dprintk("+");
719 udelay(100);
720 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
721 } while (send_status && (timeout++ < 1000));
722
723 /*
724 * Give the other CPU some time to accept the IPI.
725 */
726 udelay(200);
727 /*
728 * Due to the Pentium erratum 3AP.
729 */
730 if (maxlvt > 3) {
731 apic_read_around(APIC_SPIV);
732 apic_write(APIC_ESR, 0);
733 }
734 accept_status = (apic_read(APIC_ESR) & 0xEF);
735 if (send_status || accept_status)
736 break;
737 }
738 Dprintk("After Startup.\n");
739
740 if (send_status)
741 printk("APIC never delivered???\n");
742 if (accept_status)
743 printk("APIC delivery error (%lx).\n", accept_status);
744
745 return (send_status | accept_status);
746 }
747 #endif /* WAKE_SECONDARY_VIA_INIT */
748
749 extern cpumask_t cpu_initialized;
750 static inline int alloc_cpu_id(void)
751 {
752 cpumask_t tmp_map;
753 int cpu;
754 cpus_complement(tmp_map, cpu_present_map);
755 cpu = first_cpu(tmp_map);
756 if (cpu >= NR_CPUS)
757 return -ENODEV;
758 return cpu;
759 }
760
761 #ifdef CONFIG_HOTPLUG_CPU
762 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
763 static inline struct task_struct * alloc_idle_task(int cpu)
764 {
765 struct task_struct *idle;
766
767 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
768 /* initialize thread_struct. we really want to avoid destroy
769 * idle tread
770 */
771 idle->thread.esp = (unsigned long)task_pt_regs(idle);
772 init_idle(idle, cpu);
773 return idle;
774 }
775 idle = fork_idle(cpu);
776
777 if (!IS_ERR(idle))
778 cpu_idle_tasks[cpu] = idle;
779 return idle;
780 }
781 #else
782 #define alloc_idle_task(cpu) fork_idle(cpu)
783 #endif
784
785 /* Initialize the CPU's GDT. This is either the boot CPU doing itself
786 (still using the master per-cpu area), or a CPU doing it for a
787 secondary which will soon come up. */
788 static __cpuinit void init_gdt(int cpu)
789 {
790 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
791
792 pack_descriptor((u32 *)&gdt[GDT_ENTRY_PERCPU].a,
793 (u32 *)&gdt[GDT_ENTRY_PERCPU].b,
794 __per_cpu_offset[cpu], 0xFFFFF,
795 0x80 | DESCTYPE_S | 0x2, 0x8);
796
797 per_cpu(this_cpu_off, cpu) = __per_cpu_offset[cpu];
798 per_cpu(cpu_number, cpu) = cpu;
799 }
800
801 /* Defined in head.S */
802 extern struct Xgt_desc_struct early_gdt_descr;
803
804 static int __cpuinit do_boot_cpu(int apicid, int cpu)
805 /*
806 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
807 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
808 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
809 */
810 {
811 struct task_struct *idle;
812 unsigned long boot_error;
813 int timeout;
814 unsigned long start_eip;
815 unsigned short nmi_high = 0, nmi_low = 0;
816
817 /*
818 * We can't use kernel_thread since we must avoid to
819 * reschedule the child.
820 */
821 idle = alloc_idle_task(cpu);
822 if (IS_ERR(idle))
823 panic("failed fork for CPU %d", cpu);
824
825 init_gdt(cpu);
826 per_cpu(current_task, cpu) = idle;
827 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
828
829 idle->thread.eip = (unsigned long) start_secondary;
830 /* start_eip had better be page-aligned! */
831 start_eip = setup_trampoline();
832
833 ++cpucount;
834 alternatives_smp_switch(1);
835
836 /* So we see what's up */
837 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
838 /* Stack for startup_32 can be just as for start_secondary onwards */
839 stack_start.esp = (void *) idle->thread.esp;
840
841 irq_ctx_init(cpu);
842
843 x86_cpu_to_apicid[cpu] = apicid;
844 /*
845 * This grunge runs the startup process for
846 * the targeted processor.
847 */
848
849 atomic_set(&init_deasserted, 0);
850
851 Dprintk("Setting warm reset code and vector.\n");
852
853 store_NMI_vector(&nmi_high, &nmi_low);
854
855 smpboot_setup_warm_reset_vector(start_eip);
856
857 /*
858 * Starting actual IPI sequence...
859 */
860 boot_error = wakeup_secondary_cpu(apicid, start_eip);
861
862 if (!boot_error) {
863 /*
864 * allow APs to start initializing.
865 */
866 Dprintk("Before Callout %d.\n", cpu);
867 cpu_set(cpu, cpu_callout_map);
868 Dprintk("After Callout %d.\n", cpu);
869
870 /*
871 * Wait 5s total for a response
872 */
873 for (timeout = 0; timeout < 50000; timeout++) {
874 if (cpu_isset(cpu, cpu_callin_map))
875 break; /* It has booted */
876 udelay(100);
877 }
878
879 if (cpu_isset(cpu, cpu_callin_map)) {
880 /* number CPUs logically, starting from 1 (BSP is 0) */
881 Dprintk("OK.\n");
882 printk("CPU%d: ", cpu);
883 print_cpu_info(&cpu_data[cpu]);
884 Dprintk("CPU has booted.\n");
885 } else {
886 boot_error= 1;
887 if (*((volatile unsigned char *)trampoline_base)
888 == 0xA5)
889 /* trampoline started but...? */
890 printk("Stuck ??\n");
891 else
892 /* trampoline code not run */
893 printk("Not responding.\n");
894 inquire_remote_apic(apicid);
895 }
896 }
897
898 if (boot_error) {
899 /* Try to put things back the way they were before ... */
900 unmap_cpu_to_logical_apicid(cpu);
901 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
902 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
903 cpucount--;
904 } else {
905 x86_cpu_to_apicid[cpu] = apicid;
906 cpu_set(cpu, cpu_present_map);
907 }
908
909 /* mark "stuck" area as not stuck */
910 *((volatile unsigned long *)trampoline_base) = 0;
911
912 return boot_error;
913 }
914
915 #ifdef CONFIG_HOTPLUG_CPU
916 void cpu_exit_clear(void)
917 {
918 int cpu = raw_smp_processor_id();
919
920 idle_task_exit();
921
922 cpucount --;
923 cpu_uninit();
924 irq_ctx_exit(cpu);
925
926 cpu_clear(cpu, cpu_callout_map);
927 cpu_clear(cpu, cpu_callin_map);
928
929 cpu_clear(cpu, smp_commenced_mask);
930 unmap_cpu_to_logical_apicid(cpu);
931 }
932
933 struct warm_boot_cpu_info {
934 struct completion *complete;
935 struct work_struct task;
936 int apicid;
937 int cpu;
938 };
939
940 static void __cpuinit do_warm_boot_cpu(struct work_struct *work)
941 {
942 struct warm_boot_cpu_info *info =
943 container_of(work, struct warm_boot_cpu_info, task);
944 do_boot_cpu(info->apicid, info->cpu);
945 complete(info->complete);
946 }
947
948 static int __cpuinit __smp_prepare_cpu(int cpu)
949 {
950 DECLARE_COMPLETION_ONSTACK(done);
951 struct warm_boot_cpu_info info;
952 int apicid, ret;
953
954 apicid = x86_cpu_to_apicid[cpu];
955 if (apicid == BAD_APICID) {
956 ret = -ENODEV;
957 goto exit;
958 }
959
960 info.complete = &done;
961 info.apicid = apicid;
962 info.cpu = cpu;
963 INIT_WORK(&info.task, do_warm_boot_cpu);
964
965 /* init low mem mapping */
966 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
967 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
968 flush_tlb_all();
969 schedule_work(&info.task);
970 wait_for_completion(&done);
971
972 zap_low_mappings();
973 ret = 0;
974 exit:
975 return ret;
976 }
977 #endif
978
979 static void smp_tune_scheduling(void)
980 {
981 unsigned long cachesize; /* kB */
982
983 if (cpu_khz) {
984 cachesize = boot_cpu_data.x86_cache_size;
985
986 if (cachesize > 0)
987 max_cache_size = cachesize * 1024;
988 }
989 }
990
991 /*
992 * Cycle through the processors sending APIC IPIs to boot each.
993 */
994
995 static int boot_cpu_logical_apicid;
996 /* Where the IO area was mapped on multiquad, always 0 otherwise */
997 void *xquad_portio;
998 #ifdef CONFIG_X86_NUMAQ
999 EXPORT_SYMBOL(xquad_portio);
1000 #endif
1001
1002 static void __init smp_boot_cpus(unsigned int max_cpus)
1003 {
1004 int apicid, cpu, bit, kicked;
1005 unsigned long bogosum = 0;
1006
1007 /*
1008 * Setup boot CPU information
1009 */
1010 smp_store_cpu_info(0); /* Final full version of the data */
1011 printk("CPU%d: ", 0);
1012 print_cpu_info(&cpu_data[0]);
1013
1014 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1015 boot_cpu_logical_apicid = logical_smp_processor_id();
1016 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1017
1018 current_thread_info()->cpu = 0;
1019 smp_tune_scheduling();
1020
1021 set_cpu_sibling_map(0);
1022
1023 /*
1024 * If we couldn't find an SMP configuration at boot time,
1025 * get out of here now!
1026 */
1027 if (!smp_found_config && !acpi_lapic) {
1028 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1029 smpboot_clear_io_apic_irqs();
1030 phys_cpu_present_map = physid_mask_of_physid(0);
1031 if (APIC_init_uniprocessor())
1032 printk(KERN_NOTICE "Local APIC not detected."
1033 " Using dummy APIC emulation.\n");
1034 map_cpu_to_logical_apicid();
1035 cpu_set(0, cpu_sibling_map[0]);
1036 cpu_set(0, cpu_core_map[0]);
1037 return;
1038 }
1039
1040 /*
1041 * Should not be necessary because the MP table should list the boot
1042 * CPU too, but we do it for the sake of robustness anyway.
1043 * Makes no sense to do this check in clustered apic mode, so skip it
1044 */
1045 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1046 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1047 boot_cpu_physical_apicid);
1048 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1049 }
1050
1051 /*
1052 * If we couldn't find a local APIC, then get out of here now!
1053 */
1054 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1055 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1056 boot_cpu_physical_apicid);
1057 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1058 smpboot_clear_io_apic_irqs();
1059 phys_cpu_present_map = physid_mask_of_physid(0);
1060 cpu_set(0, cpu_sibling_map[0]);
1061 cpu_set(0, cpu_core_map[0]);
1062 return;
1063 }
1064
1065 verify_local_APIC();
1066
1067 /*
1068 * If SMP should be disabled, then really disable it!
1069 */
1070 if (!max_cpus) {
1071 smp_found_config = 0;
1072 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1073 smpboot_clear_io_apic_irqs();
1074 phys_cpu_present_map = physid_mask_of_physid(0);
1075 cpu_set(0, cpu_sibling_map[0]);
1076 cpu_set(0, cpu_core_map[0]);
1077 return;
1078 }
1079
1080 connect_bsp_APIC();
1081 setup_local_APIC();
1082 map_cpu_to_logical_apicid();
1083
1084
1085 setup_portio_remap();
1086
1087 /*
1088 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1089 *
1090 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1091 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1092 * clustered apic ID.
1093 */
1094 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1095
1096 kicked = 1;
1097 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1098 apicid = cpu_present_to_apicid(bit);
1099 /*
1100 * Don't even attempt to start the boot CPU!
1101 */
1102 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1103 continue;
1104
1105 if (!check_apicid_present(bit))
1106 continue;
1107 if (max_cpus <= cpucount+1)
1108 continue;
1109
1110 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1111 printk("CPU #%d not responding - cannot use it.\n",
1112 apicid);
1113 else
1114 ++kicked;
1115 }
1116
1117 /*
1118 * Cleanup possible dangling ends...
1119 */
1120 smpboot_restore_warm_reset_vector();
1121
1122 /*
1123 * Allow the user to impress friends.
1124 */
1125 Dprintk("Before bogomips.\n");
1126 for (cpu = 0; cpu < NR_CPUS; cpu++)
1127 if (cpu_isset(cpu, cpu_callout_map))
1128 bogosum += cpu_data[cpu].loops_per_jiffy;
1129 printk(KERN_INFO
1130 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1131 cpucount+1,
1132 bogosum/(500000/HZ),
1133 (bogosum/(5000/HZ))%100);
1134
1135 Dprintk("Before bogocount - setting activated=1.\n");
1136
1137 if (smp_b_stepping)
1138 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1139
1140 /*
1141 * Don't taint if we are running SMP kernel on a single non-MP
1142 * approved Athlon
1143 */
1144 if (tainted & TAINT_UNSAFE_SMP) {
1145 if (cpucount)
1146 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1147 else
1148 tainted &= ~TAINT_UNSAFE_SMP;
1149 }
1150
1151 Dprintk("Boot done.\n");
1152
1153 /*
1154 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1155 * efficiently.
1156 */
1157 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1158 cpus_clear(cpu_sibling_map[cpu]);
1159 cpus_clear(cpu_core_map[cpu]);
1160 }
1161
1162 cpu_set(0, cpu_sibling_map[0]);
1163 cpu_set(0, cpu_core_map[0]);
1164
1165 smpboot_setup_io_apic();
1166
1167 setup_boot_clock();
1168 }
1169
1170 /* These are wrappers to interface to the new boot process. Someone
1171 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1172 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1173 {
1174 smp_commenced_mask = cpumask_of_cpu(0);
1175 cpu_callin_map = cpumask_of_cpu(0);
1176 mb();
1177 smp_boot_cpus(max_cpus);
1178 }
1179
1180 /* Current gdt points %fs at the "master" per-cpu area: after this,
1181 * it's on the real one. */
1182 static inline void switch_to_new_gdt(void)
1183 {
1184 struct Xgt_desc_struct gdt_descr;
1185
1186 gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
1187 gdt_descr.size = GDT_SIZE - 1;
1188 load_gdt(&gdt_descr);
1189 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
1190 }
1191
1192 void __init native_smp_prepare_boot_cpu(void)
1193 {
1194 unsigned int cpu = smp_processor_id();
1195
1196 init_gdt(cpu);
1197 switch_to_new_gdt();
1198
1199 cpu_set(cpu, cpu_online_map);
1200 cpu_set(cpu, cpu_callout_map);
1201 cpu_set(cpu, cpu_present_map);
1202 cpu_set(cpu, cpu_possible_map);
1203 __get_cpu_var(cpu_state) = CPU_ONLINE;
1204 }
1205
1206 #ifdef CONFIG_HOTPLUG_CPU
1207 static void
1208 remove_siblinginfo(int cpu)
1209 {
1210 int sibling;
1211 struct cpuinfo_x86 *c = cpu_data;
1212
1213 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1214 cpu_clear(cpu, cpu_core_map[sibling]);
1215 /*
1216 * last thread sibling in this cpu core going down
1217 */
1218 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1219 c[sibling].booted_cores--;
1220 }
1221
1222 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1223 cpu_clear(cpu, cpu_sibling_map[sibling]);
1224 cpus_clear(cpu_sibling_map[cpu]);
1225 cpus_clear(cpu_core_map[cpu]);
1226 c[cpu].phys_proc_id = 0;
1227 c[cpu].cpu_core_id = 0;
1228 cpu_clear(cpu, cpu_sibling_setup_map);
1229 }
1230
1231 int __cpu_disable(void)
1232 {
1233 cpumask_t map = cpu_online_map;
1234 int cpu = smp_processor_id();
1235
1236 /*
1237 * Perhaps use cpufreq to drop frequency, but that could go
1238 * into generic code.
1239 *
1240 * We won't take down the boot processor on i386 due to some
1241 * interrupts only being able to be serviced by the BSP.
1242 * Especially so if we're not using an IOAPIC -zwane
1243 */
1244 if (cpu == 0)
1245 return -EBUSY;
1246 if (nmi_watchdog == NMI_LOCAL_APIC)
1247 stop_apic_nmi_watchdog(NULL);
1248 clear_local_APIC();
1249 /* Allow any queued timer interrupts to get serviced */
1250 local_irq_enable();
1251 mdelay(1);
1252 local_irq_disable();
1253
1254 remove_siblinginfo(cpu);
1255
1256 cpu_clear(cpu, map);
1257 fixup_irqs(map);
1258 /* It's now safe to remove this processor from the online map */
1259 cpu_clear(cpu, cpu_online_map);
1260 return 0;
1261 }
1262
1263 void __cpu_die(unsigned int cpu)
1264 {
1265 /* We don't do anything here: idle task is faking death itself. */
1266 unsigned int i;
1267
1268 for (i = 0; i < 10; i++) {
1269 /* They ack this in play_dead by setting CPU_DEAD */
1270 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1271 printk ("CPU %d is now offline\n", cpu);
1272 if (1 == num_online_cpus())
1273 alternatives_smp_switch(0);
1274 return;
1275 }
1276 msleep(100);
1277 }
1278 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1279 }
1280 #else /* ... !CONFIG_HOTPLUG_CPU */
1281 int __cpu_disable(void)
1282 {
1283 return -ENOSYS;
1284 }
1285
1286 void __cpu_die(unsigned int cpu)
1287 {
1288 /* We said "no" in __cpu_disable */
1289 BUG();
1290 }
1291 #endif /* CONFIG_HOTPLUG_CPU */
1292
1293 int __cpuinit native_cpu_up(unsigned int cpu)
1294 {
1295 unsigned long flags;
1296 #ifdef CONFIG_HOTPLUG_CPU
1297 int ret = 0;
1298
1299 /*
1300 * We do warm boot only on cpus that had booted earlier
1301 * Otherwise cold boot is all handled from smp_boot_cpus().
1302 * cpu_callin_map is set during AP kickstart process. Its reset
1303 * when a cpu is taken offline from cpu_exit_clear().
1304 */
1305 if (!cpu_isset(cpu, cpu_callin_map))
1306 ret = __smp_prepare_cpu(cpu);
1307
1308 if (ret)
1309 return -EIO;
1310 #endif
1311
1312 /* In case one didn't come up */
1313 if (!cpu_isset(cpu, cpu_callin_map)) {
1314 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1315 return -EIO;
1316 }
1317
1318 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1319 /* Unleash the CPU! */
1320 cpu_set(cpu, smp_commenced_mask);
1321
1322 /*
1323 * Check TSC synchronization with the AP (keep irqs disabled
1324 * while doing so):
1325 */
1326 local_irq_save(flags);
1327 check_tsc_sync_source(cpu);
1328 local_irq_restore(flags);
1329
1330 while (!cpu_isset(cpu, cpu_online_map)) {
1331 cpu_relax();
1332 touch_nmi_watchdog();
1333 }
1334
1335 return 0;
1336 }
1337
1338 void __init native_smp_cpus_done(unsigned int max_cpus)
1339 {
1340 #ifdef CONFIG_X86_IO_APIC
1341 setup_ioapic_dest();
1342 #endif
1343 zap_low_mappings();
1344 #ifndef CONFIG_HOTPLUG_CPU
1345 /*
1346 * Disable executability of the SMP trampoline:
1347 */
1348 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1349 #endif
1350 }
1351
1352 void __init smp_intr_init(void)
1353 {
1354 /*
1355 * IRQ0 must be given a fixed assignment and initialized,
1356 * because it's used before the IO-APIC is set up.
1357 */
1358 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1359
1360 /*
1361 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1362 * IPI, driven by wakeup.
1363 */
1364 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1365
1366 /* IPI for invalidation */
1367 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1368
1369 /* IPI for generic function call */
1370 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1371 }
1372
1373 /*
1374 * If the BIOS enumerates physical processors before logical,
1375 * maxcpus=N at enumeration-time can be used to disable HT.
1376 */
1377 static int __init parse_maxcpus(char *arg)
1378 {
1379 extern unsigned int maxcpus;
1380
1381 maxcpus = simple_strtoul(arg, NULL, 0);
1382 return 0;
1383 }
1384 early_param("maxcpus", parse_maxcpus);