]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/i386/kernel/smpboot.c
[IPV6]: Do not ignore IPV6_MTU socket option.
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/bootmem.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/percpu.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Package ID of each logical CPU */
70 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* Core ID of each logical CPU */
73 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
74
75 /* representing HT siblings of each logical CPU */
76 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
77 EXPORT_SYMBOL(cpu_sibling_map);
78
79 /* representing HT and core siblings of each logical CPU */
80 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
81 EXPORT_SYMBOL(cpu_core_map);
82
83 /* bitmap of online cpus */
84 cpumask_t cpu_online_map __read_mostly;
85 EXPORT_SYMBOL(cpu_online_map);
86
87 cpumask_t cpu_callin_map;
88 cpumask_t cpu_callout_map;
89 EXPORT_SYMBOL(cpu_callout_map);
90 cpumask_t cpu_possible_map;
91 EXPORT_SYMBOL(cpu_possible_map);
92 static cpumask_t smp_commenced_mask;
93
94 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
95 * is no way to resync one AP against BP. TBD: for prescott and above, we
96 * should use IA64's algorithm
97 */
98 static int __devinitdata tsc_sync_disabled;
99
100 /* Per CPU bogomips and other parameters */
101 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
102 EXPORT_SYMBOL(cpu_data);
103
104 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
105 { [0 ... NR_CPUS-1] = 0xff };
106 EXPORT_SYMBOL(x86_cpu_to_apicid);
107
108 /*
109 * Trampoline 80x86 program as an array.
110 */
111
112 extern unsigned char trampoline_data [];
113 extern unsigned char trampoline_end [];
114 static unsigned char *trampoline_base;
115 static int trampoline_exec;
116
117 static void map_cpu_to_logical_apicid(void);
118
119 /* State of each CPU. */
120 DEFINE_PER_CPU(int, cpu_state) = { 0 };
121
122 /*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
128 static unsigned long __devinit setup_trampoline(void)
129 {
130 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
131 return virt_to_phys(trampoline_base);
132 }
133
134 /*
135 * We are called very early to get the low memory for the
136 * SMP bootup trampoline page.
137 */
138 void __init smp_alloc_memory(void)
139 {
140 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
141 /*
142 * Has to be in very low memory so we can execute
143 * real-mode AP code.
144 */
145 if (__pa(trampoline_base) >= 0x9F000)
146 BUG();
147 /*
148 * Make the SMP trampoline executable:
149 */
150 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
151 }
152
153 /*
154 * The bootstrap kernel entry code has set these up. Save them for
155 * a given CPU
156 */
157
158 static void __devinit smp_store_cpu_info(int id)
159 {
160 struct cpuinfo_x86 *c = cpu_data + id;
161
162 *c = boot_cpu_data;
163 if (id!=0)
164 identify_cpu(c);
165 /*
166 * Mask B, Pentium, but not Pentium MMX
167 */
168 if (c->x86_vendor == X86_VENDOR_INTEL &&
169 c->x86 == 5 &&
170 c->x86_mask >= 1 && c->x86_mask <= 4 &&
171 c->x86_model <= 3)
172 /*
173 * Remember we have B step Pentia with bugs
174 */
175 smp_b_stepping = 1;
176
177 /*
178 * Certain Athlons might work (for various values of 'work') in SMP
179 * but they are not certified as MP capable.
180 */
181 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
182
183 /* Athlon 660/661 is valid. */
184 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
185 goto valid_k7;
186
187 /* Duron 670 is valid */
188 if ((c->x86_model==7) && (c->x86_mask==0))
189 goto valid_k7;
190
191 /*
192 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
193 * It's worth noting that the A5 stepping (662) of some Athlon XP's
194 * have the MP bit set.
195 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
196 */
197 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
198 ((c->x86_model==7) && (c->x86_mask>=1)) ||
199 (c->x86_model> 7))
200 if (cpu_has_mp)
201 goto valid_k7;
202
203 /* If we get here, it's not a certified SMP capable AMD system. */
204 add_taint(TAINT_UNSAFE_SMP);
205 }
206
207 valid_k7:
208 ;
209 }
210
211 /*
212 * TSC synchronization.
213 *
214 * We first check whether all CPUs have their TSC's synchronized,
215 * then we print a warning if not, and always resync.
216 */
217
218 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
219 static atomic_t tsc_count_start = ATOMIC_INIT(0);
220 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
221 static unsigned long long tsc_values[NR_CPUS];
222
223 #define NR_LOOPS 5
224
225 static void __init synchronize_tsc_bp (void)
226 {
227 int i;
228 unsigned long long t0;
229 unsigned long long sum, avg;
230 long long delta;
231 unsigned int one_usec;
232 int buggy = 0;
233
234 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
235
236 /* convert from kcyc/sec to cyc/usec */
237 one_usec = cpu_khz / 1000;
238
239 atomic_set(&tsc_start_flag, 1);
240 wmb();
241
242 /*
243 * We loop a few times to get a primed instruction cache,
244 * then the last pass is more or less synchronized and
245 * the BP and APs set their cycle counters to zero all at
246 * once. This reduces the chance of having random offsets
247 * between the processors, and guarantees that the maximum
248 * delay between the cycle counters is never bigger than
249 * the latency of information-passing (cachelines) between
250 * two CPUs.
251 */
252 for (i = 0; i < NR_LOOPS; i++) {
253 /*
254 * all APs synchronize but they loop on '== num_cpus'
255 */
256 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
257 mb();
258 atomic_set(&tsc_count_stop, 0);
259 wmb();
260 /*
261 * this lets the APs save their current TSC:
262 */
263 atomic_inc(&tsc_count_start);
264
265 rdtscll(tsc_values[smp_processor_id()]);
266 /*
267 * We clear the TSC in the last loop:
268 */
269 if (i == NR_LOOPS-1)
270 write_tsc(0, 0);
271
272 /*
273 * Wait for all APs to leave the synchronization point:
274 */
275 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
276 mb();
277 atomic_set(&tsc_count_start, 0);
278 wmb();
279 atomic_inc(&tsc_count_stop);
280 }
281
282 sum = 0;
283 for (i = 0; i < NR_CPUS; i++) {
284 if (cpu_isset(i, cpu_callout_map)) {
285 t0 = tsc_values[i];
286 sum += t0;
287 }
288 }
289 avg = sum;
290 do_div(avg, num_booting_cpus());
291
292 sum = 0;
293 for (i = 0; i < NR_CPUS; i++) {
294 if (!cpu_isset(i, cpu_callout_map))
295 continue;
296 delta = tsc_values[i] - avg;
297 if (delta < 0)
298 delta = -delta;
299 /*
300 * We report bigger than 2 microseconds clock differences.
301 */
302 if (delta > 2*one_usec) {
303 long realdelta;
304 if (!buggy) {
305 buggy = 1;
306 printk("\n");
307 }
308 realdelta = delta;
309 do_div(realdelta, one_usec);
310 if (tsc_values[i] < avg)
311 realdelta = -realdelta;
312
313 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
314 }
315
316 sum += delta;
317 }
318 if (!buggy)
319 printk("passed.\n");
320 }
321
322 static void __init synchronize_tsc_ap (void)
323 {
324 int i;
325
326 /*
327 * Not every cpu is online at the time
328 * this gets called, so we first wait for the BP to
329 * finish SMP initialization:
330 */
331 while (!atomic_read(&tsc_start_flag)) mb();
332
333 for (i = 0; i < NR_LOOPS; i++) {
334 atomic_inc(&tsc_count_start);
335 while (atomic_read(&tsc_count_start) != num_booting_cpus())
336 mb();
337
338 rdtscll(tsc_values[smp_processor_id()]);
339 if (i == NR_LOOPS-1)
340 write_tsc(0, 0);
341
342 atomic_inc(&tsc_count_stop);
343 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
344 }
345 }
346 #undef NR_LOOPS
347
348 extern void calibrate_delay(void);
349
350 static atomic_t init_deasserted;
351
352 static void __devinit smp_callin(void)
353 {
354 int cpuid, phys_id;
355 unsigned long timeout;
356
357 /*
358 * If waken up by an INIT in an 82489DX configuration
359 * we may get here before an INIT-deassert IPI reaches
360 * our local APIC. We have to wait for the IPI or we'll
361 * lock up on an APIC access.
362 */
363 wait_for_init_deassert(&init_deasserted);
364
365 /*
366 * (This works even if the APIC is not enabled.)
367 */
368 phys_id = GET_APIC_ID(apic_read(APIC_ID));
369 cpuid = smp_processor_id();
370 if (cpu_isset(cpuid, cpu_callin_map)) {
371 printk("huh, phys CPU#%d, CPU#%d already present??\n",
372 phys_id, cpuid);
373 BUG();
374 }
375 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
376
377 /*
378 * STARTUP IPIs are fragile beasts as they might sometimes
379 * trigger some glue motherboard logic. Complete APIC bus
380 * silence for 1 second, this overestimates the time the
381 * boot CPU is spending to send the up to 2 STARTUP IPIs
382 * by a factor of two. This should be enough.
383 */
384
385 /*
386 * Waiting 2s total for startup (udelay is not yet working)
387 */
388 timeout = jiffies + 2*HZ;
389 while (time_before(jiffies, timeout)) {
390 /*
391 * Has the boot CPU finished it's STARTUP sequence?
392 */
393 if (cpu_isset(cpuid, cpu_callout_map))
394 break;
395 rep_nop();
396 }
397
398 if (!time_before(jiffies, timeout)) {
399 printk("BUG: CPU%d started up but did not get a callout!\n",
400 cpuid);
401 BUG();
402 }
403
404 /*
405 * the boot CPU has finished the init stage and is spinning
406 * on callin_map until we finish. We are free to set up this
407 * CPU, first the APIC. (this is probably redundant on most
408 * boards)
409 */
410
411 Dprintk("CALLIN, before setup_local_APIC().\n");
412 smp_callin_clear_local_apic();
413 setup_local_APIC();
414 map_cpu_to_logical_apicid();
415
416 /*
417 * Get our bogomips.
418 */
419 calibrate_delay();
420 Dprintk("Stack at about %p\n",&cpuid);
421
422 /*
423 * Save our processor parameters
424 */
425 smp_store_cpu_info(cpuid);
426
427 disable_APIC_timer();
428
429 /*
430 * Allow the master to continue.
431 */
432 cpu_set(cpuid, cpu_callin_map);
433
434 /*
435 * Synchronize the TSC with the BP
436 */
437 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
438 synchronize_tsc_ap();
439 }
440
441 static int cpucount;
442
443 /* representing cpus for which sibling maps can be computed */
444 static cpumask_t cpu_sibling_setup_map;
445
446 static inline void
447 set_cpu_sibling_map(int cpu)
448 {
449 int i;
450 struct cpuinfo_x86 *c = cpu_data;
451
452 cpu_set(cpu, cpu_sibling_setup_map);
453
454 if (smp_num_siblings > 1) {
455 for_each_cpu_mask(i, cpu_sibling_setup_map) {
456 if (phys_proc_id[cpu] == phys_proc_id[i] &&
457 cpu_core_id[cpu] == cpu_core_id[i]) {
458 cpu_set(i, cpu_sibling_map[cpu]);
459 cpu_set(cpu, cpu_sibling_map[i]);
460 cpu_set(i, cpu_core_map[cpu]);
461 cpu_set(cpu, cpu_core_map[i]);
462 }
463 }
464 } else {
465 cpu_set(cpu, cpu_sibling_map[cpu]);
466 }
467
468 if (current_cpu_data.x86_max_cores == 1) {
469 cpu_core_map[cpu] = cpu_sibling_map[cpu];
470 c[cpu].booted_cores = 1;
471 return;
472 }
473
474 for_each_cpu_mask(i, cpu_sibling_setup_map) {
475 if (phys_proc_id[cpu] == phys_proc_id[i]) {
476 cpu_set(i, cpu_core_map[cpu]);
477 cpu_set(cpu, cpu_core_map[i]);
478 /*
479 * Does this new cpu bringup a new core?
480 */
481 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
482 /*
483 * for each core in package, increment
484 * the booted_cores for this new cpu
485 */
486 if (first_cpu(cpu_sibling_map[i]) == i)
487 c[cpu].booted_cores++;
488 /*
489 * increment the core count for all
490 * the other cpus in this package
491 */
492 if (i != cpu)
493 c[i].booted_cores++;
494 } else if (i != cpu && !c[cpu].booted_cores)
495 c[cpu].booted_cores = c[i].booted_cores;
496 }
497 }
498 }
499
500 /*
501 * Activate a secondary processor.
502 */
503 static void __devinit start_secondary(void *unused)
504 {
505 /*
506 * Dont put anything before smp_callin(), SMP
507 * booting is too fragile that we want to limit the
508 * things done here to the most necessary things.
509 */
510 cpu_init();
511 preempt_disable();
512 smp_callin();
513 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
514 rep_nop();
515 setup_secondary_APIC_clock();
516 if (nmi_watchdog == NMI_IO_APIC) {
517 disable_8259A_irq(0);
518 enable_NMI_through_LVT0(NULL);
519 enable_8259A_irq(0);
520 }
521 enable_APIC_timer();
522 /*
523 * low-memory mappings have been cleared, flush them from
524 * the local TLBs too.
525 */
526 local_flush_tlb();
527
528 /* This must be done before setting cpu_online_map */
529 set_cpu_sibling_map(raw_smp_processor_id());
530 wmb();
531
532 /*
533 * We need to hold call_lock, so there is no inconsistency
534 * between the time smp_call_function() determines number of
535 * IPI receipients, and the time when the determination is made
536 * for which cpus receive the IPI. Holding this
537 * lock helps us to not include this cpu in a currently in progress
538 * smp_call_function().
539 */
540 lock_ipi_call_lock();
541 cpu_set(smp_processor_id(), cpu_online_map);
542 unlock_ipi_call_lock();
543 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
544
545 /* We can take interrupts now: we're officially "up". */
546 local_irq_enable();
547
548 wmb();
549 cpu_idle();
550 }
551
552 /*
553 * Everything has been set up for the secondary
554 * CPUs - they just need to reload everything
555 * from the task structure
556 * This function must not return.
557 */
558 void __devinit initialize_secondary(void)
559 {
560 /*
561 * We don't actually need to load the full TSS,
562 * basically just the stack pointer and the eip.
563 */
564
565 asm volatile(
566 "movl %0,%%esp\n\t"
567 "jmp *%1"
568 :
569 :"r" (current->thread.esp),"r" (current->thread.eip));
570 }
571
572 extern struct {
573 void * esp;
574 unsigned short ss;
575 } stack_start;
576
577 #ifdef CONFIG_NUMA
578
579 /* which logical CPUs are on which nodes */
580 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
581 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
582 /* which node each logical CPU is on */
583 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
584 EXPORT_SYMBOL(cpu_2_node);
585
586 /* set up a mapping between cpu and node. */
587 static inline void map_cpu_to_node(int cpu, int node)
588 {
589 printk("Mapping cpu %d to node %d\n", cpu, node);
590 cpu_set(cpu, node_2_cpu_mask[node]);
591 cpu_2_node[cpu] = node;
592 }
593
594 /* undo a mapping between cpu and node. */
595 static inline void unmap_cpu_to_node(int cpu)
596 {
597 int node;
598
599 printk("Unmapping cpu %d from all nodes\n", cpu);
600 for (node = 0; node < MAX_NUMNODES; node ++)
601 cpu_clear(cpu, node_2_cpu_mask[node]);
602 cpu_2_node[cpu] = 0;
603 }
604 #else /* !CONFIG_NUMA */
605
606 #define map_cpu_to_node(cpu, node) ({})
607 #define unmap_cpu_to_node(cpu) ({})
608
609 #endif /* CONFIG_NUMA */
610
611 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
612
613 static void map_cpu_to_logical_apicid(void)
614 {
615 int cpu = smp_processor_id();
616 int apicid = logical_smp_processor_id();
617
618 cpu_2_logical_apicid[cpu] = apicid;
619 map_cpu_to_node(cpu, apicid_to_node(apicid));
620 }
621
622 static void unmap_cpu_to_logical_apicid(int cpu)
623 {
624 cpu_2_logical_apicid[cpu] = BAD_APICID;
625 unmap_cpu_to_node(cpu);
626 }
627
628 #if APIC_DEBUG
629 static inline void __inquire_remote_apic(int apicid)
630 {
631 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
632 char *names[] = { "ID", "VERSION", "SPIV" };
633 int timeout, status;
634
635 printk("Inquiring remote APIC #%d...\n", apicid);
636
637 for (i = 0; i < ARRAY_SIZE(regs); i++) {
638 printk("... APIC #%d %s: ", apicid, names[i]);
639
640 /*
641 * Wait for idle.
642 */
643 apic_wait_icr_idle();
644
645 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
646 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
647
648 timeout = 0;
649 do {
650 udelay(100);
651 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
652 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
653
654 switch (status) {
655 case APIC_ICR_RR_VALID:
656 status = apic_read(APIC_RRR);
657 printk("%08x\n", status);
658 break;
659 default:
660 printk("failed\n");
661 }
662 }
663 }
664 #endif
665
666 #ifdef WAKE_SECONDARY_VIA_NMI
667 /*
668 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
669 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
670 * won't ... remember to clear down the APIC, etc later.
671 */
672 static int __devinit
673 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
674 {
675 unsigned long send_status = 0, accept_status = 0;
676 int timeout, maxlvt;
677
678 /* Target chip */
679 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
680
681 /* Boot on the stack */
682 /* Kick the second */
683 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
684
685 Dprintk("Waiting for send to finish...\n");
686 timeout = 0;
687 do {
688 Dprintk("+");
689 udelay(100);
690 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
691 } while (send_status && (timeout++ < 1000));
692
693 /*
694 * Give the other CPU some time to accept the IPI.
695 */
696 udelay(200);
697 /*
698 * Due to the Pentium erratum 3AP.
699 */
700 maxlvt = get_maxlvt();
701 if (maxlvt > 3) {
702 apic_read_around(APIC_SPIV);
703 apic_write(APIC_ESR, 0);
704 }
705 accept_status = (apic_read(APIC_ESR) & 0xEF);
706 Dprintk("NMI sent.\n");
707
708 if (send_status)
709 printk("APIC never delivered???\n");
710 if (accept_status)
711 printk("APIC delivery error (%lx).\n", accept_status);
712
713 return (send_status | accept_status);
714 }
715 #endif /* WAKE_SECONDARY_VIA_NMI */
716
717 #ifdef WAKE_SECONDARY_VIA_INIT
718 static int __devinit
719 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
720 {
721 unsigned long send_status = 0, accept_status = 0;
722 int maxlvt, timeout, num_starts, j;
723
724 /*
725 * Be paranoid about clearing APIC errors.
726 */
727 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
728 apic_read_around(APIC_SPIV);
729 apic_write(APIC_ESR, 0);
730 apic_read(APIC_ESR);
731 }
732
733 Dprintk("Asserting INIT.\n");
734
735 /*
736 * Turn INIT on target chip
737 */
738 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
739
740 /*
741 * Send IPI
742 */
743 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
744 | APIC_DM_INIT);
745
746 Dprintk("Waiting for send to finish...\n");
747 timeout = 0;
748 do {
749 Dprintk("+");
750 udelay(100);
751 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
752 } while (send_status && (timeout++ < 1000));
753
754 mdelay(10);
755
756 Dprintk("Deasserting INIT.\n");
757
758 /* Target chip */
759 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
760
761 /* Send IPI */
762 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
763
764 Dprintk("Waiting for send to finish...\n");
765 timeout = 0;
766 do {
767 Dprintk("+");
768 udelay(100);
769 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
770 } while (send_status && (timeout++ < 1000));
771
772 atomic_set(&init_deasserted, 1);
773
774 /*
775 * Should we send STARTUP IPIs ?
776 *
777 * Determine this based on the APIC version.
778 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
779 */
780 if (APIC_INTEGRATED(apic_version[phys_apicid]))
781 num_starts = 2;
782 else
783 num_starts = 0;
784
785 /*
786 * Run STARTUP IPI loop.
787 */
788 Dprintk("#startup loops: %d.\n", num_starts);
789
790 maxlvt = get_maxlvt();
791
792 for (j = 1; j <= num_starts; j++) {
793 Dprintk("Sending STARTUP #%d.\n",j);
794 apic_read_around(APIC_SPIV);
795 apic_write(APIC_ESR, 0);
796 apic_read(APIC_ESR);
797 Dprintk("After apic_write.\n");
798
799 /*
800 * STARTUP IPI
801 */
802
803 /* Target chip */
804 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
805
806 /* Boot on the stack */
807 /* Kick the second */
808 apic_write_around(APIC_ICR, APIC_DM_STARTUP
809 | (start_eip >> 12));
810
811 /*
812 * Give the other CPU some time to accept the IPI.
813 */
814 udelay(300);
815
816 Dprintk("Startup point 1.\n");
817
818 Dprintk("Waiting for send to finish...\n");
819 timeout = 0;
820 do {
821 Dprintk("+");
822 udelay(100);
823 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
824 } while (send_status && (timeout++ < 1000));
825
826 /*
827 * Give the other CPU some time to accept the IPI.
828 */
829 udelay(200);
830 /*
831 * Due to the Pentium erratum 3AP.
832 */
833 if (maxlvt > 3) {
834 apic_read_around(APIC_SPIV);
835 apic_write(APIC_ESR, 0);
836 }
837 accept_status = (apic_read(APIC_ESR) & 0xEF);
838 if (send_status || accept_status)
839 break;
840 }
841 Dprintk("After Startup.\n");
842
843 if (send_status)
844 printk("APIC never delivered???\n");
845 if (accept_status)
846 printk("APIC delivery error (%lx).\n", accept_status);
847
848 return (send_status | accept_status);
849 }
850 #endif /* WAKE_SECONDARY_VIA_INIT */
851
852 extern cpumask_t cpu_initialized;
853 static inline int alloc_cpu_id(void)
854 {
855 cpumask_t tmp_map;
856 int cpu;
857 cpus_complement(tmp_map, cpu_present_map);
858 cpu = first_cpu(tmp_map);
859 if (cpu >= NR_CPUS)
860 return -ENODEV;
861 return cpu;
862 }
863
864 #ifdef CONFIG_HOTPLUG_CPU
865 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
866 static inline struct task_struct * alloc_idle_task(int cpu)
867 {
868 struct task_struct *idle;
869
870 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
871 /* initialize thread_struct. we really want to avoid destroy
872 * idle tread
873 */
874 idle->thread.esp = (unsigned long)task_pt_regs(idle);
875 init_idle(idle, cpu);
876 return idle;
877 }
878 idle = fork_idle(cpu);
879
880 if (!IS_ERR(idle))
881 cpu_idle_tasks[cpu] = idle;
882 return idle;
883 }
884 #else
885 #define alloc_idle_task(cpu) fork_idle(cpu)
886 #endif
887
888 static int __devinit do_boot_cpu(int apicid, int cpu)
889 /*
890 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
891 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
892 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
893 */
894 {
895 struct task_struct *idle;
896 unsigned long boot_error;
897 int timeout;
898 unsigned long start_eip;
899 unsigned short nmi_high = 0, nmi_low = 0;
900
901 if (!cpu_gdt_descr[cpu].address &&
902 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
903 printk("Failed to allocate GDT for CPU %d\n", cpu);
904 return 1;
905 }
906
907 ++cpucount;
908
909 /*
910 * We can't use kernel_thread since we must avoid to
911 * reschedule the child.
912 */
913 idle = alloc_idle_task(cpu);
914 if (IS_ERR(idle))
915 panic("failed fork for CPU %d", cpu);
916 idle->thread.eip = (unsigned long) start_secondary;
917 /* start_eip had better be page-aligned! */
918 start_eip = setup_trampoline();
919
920 /* So we see what's up */
921 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
922 /* Stack for startup_32 can be just as for start_secondary onwards */
923 stack_start.esp = (void *) idle->thread.esp;
924
925 irq_ctx_init(cpu);
926
927 /*
928 * This grunge runs the startup process for
929 * the targeted processor.
930 */
931
932 atomic_set(&init_deasserted, 0);
933
934 Dprintk("Setting warm reset code and vector.\n");
935
936 store_NMI_vector(&nmi_high, &nmi_low);
937
938 smpboot_setup_warm_reset_vector(start_eip);
939
940 /*
941 * Starting actual IPI sequence...
942 */
943 boot_error = wakeup_secondary_cpu(apicid, start_eip);
944
945 if (!boot_error) {
946 /*
947 * allow APs to start initializing.
948 */
949 Dprintk("Before Callout %d.\n", cpu);
950 cpu_set(cpu, cpu_callout_map);
951 Dprintk("After Callout %d.\n", cpu);
952
953 /*
954 * Wait 5s total for a response
955 */
956 for (timeout = 0; timeout < 50000; timeout++) {
957 if (cpu_isset(cpu, cpu_callin_map))
958 break; /* It has booted */
959 udelay(100);
960 }
961
962 if (cpu_isset(cpu, cpu_callin_map)) {
963 /* number CPUs logically, starting from 1 (BSP is 0) */
964 Dprintk("OK.\n");
965 printk("CPU%d: ", cpu);
966 print_cpu_info(&cpu_data[cpu]);
967 Dprintk("CPU has booted.\n");
968 } else {
969 boot_error= 1;
970 if (*((volatile unsigned char *)trampoline_base)
971 == 0xA5)
972 /* trampoline started but...? */
973 printk("Stuck ??\n");
974 else
975 /* trampoline code not run */
976 printk("Not responding.\n");
977 inquire_remote_apic(apicid);
978 }
979 }
980
981 if (boot_error) {
982 /* Try to put things back the way they were before ... */
983 unmap_cpu_to_logical_apicid(cpu);
984 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
985 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
986 cpucount--;
987 } else {
988 x86_cpu_to_apicid[cpu] = apicid;
989 cpu_set(cpu, cpu_present_map);
990 }
991
992 /* mark "stuck" area as not stuck */
993 *((volatile unsigned long *)trampoline_base) = 0;
994
995 return boot_error;
996 }
997
998 #ifdef CONFIG_HOTPLUG_CPU
999 void cpu_exit_clear(void)
1000 {
1001 int cpu = raw_smp_processor_id();
1002
1003 idle_task_exit();
1004
1005 cpucount --;
1006 cpu_uninit();
1007 irq_ctx_exit(cpu);
1008
1009 cpu_clear(cpu, cpu_callout_map);
1010 cpu_clear(cpu, cpu_callin_map);
1011 cpu_clear(cpu, cpu_present_map);
1012
1013 cpu_clear(cpu, smp_commenced_mask);
1014 unmap_cpu_to_logical_apicid(cpu);
1015 }
1016
1017 struct warm_boot_cpu_info {
1018 struct completion *complete;
1019 int apicid;
1020 int cpu;
1021 };
1022
1023 static void __devinit do_warm_boot_cpu(void *p)
1024 {
1025 struct warm_boot_cpu_info *info = p;
1026 do_boot_cpu(info->apicid, info->cpu);
1027 complete(info->complete);
1028 }
1029
1030 int __devinit smp_prepare_cpu(int cpu)
1031 {
1032 DECLARE_COMPLETION(done);
1033 struct warm_boot_cpu_info info;
1034 struct work_struct task;
1035 int apicid, ret;
1036
1037 lock_cpu_hotplug();
1038 apicid = x86_cpu_to_apicid[cpu];
1039 if (apicid == BAD_APICID) {
1040 ret = -ENODEV;
1041 goto exit;
1042 }
1043
1044 info.complete = &done;
1045 info.apicid = apicid;
1046 info.cpu = cpu;
1047 INIT_WORK(&task, do_warm_boot_cpu, &info);
1048
1049 tsc_sync_disabled = 1;
1050
1051 /* init low mem mapping */
1052 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1053 KERNEL_PGD_PTRS);
1054 flush_tlb_all();
1055 schedule_work(&task);
1056 wait_for_completion(&done);
1057
1058 tsc_sync_disabled = 0;
1059 zap_low_mappings();
1060 ret = 0;
1061 exit:
1062 unlock_cpu_hotplug();
1063 return ret;
1064 }
1065 #endif
1066
1067 static void smp_tune_scheduling (void)
1068 {
1069 unsigned long cachesize; /* kB */
1070 unsigned long bandwidth = 350; /* MB/s */
1071 /*
1072 * Rough estimation for SMP scheduling, this is the number of
1073 * cycles it takes for a fully memory-limited process to flush
1074 * the SMP-local cache.
1075 *
1076 * (For a P5 this pretty much means we will choose another idle
1077 * CPU almost always at wakeup time (this is due to the small
1078 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1079 * the cache size)
1080 */
1081
1082 if (!cpu_khz) {
1083 /*
1084 * this basically disables processor-affinity
1085 * scheduling on SMP without a TSC.
1086 */
1087 return;
1088 } else {
1089 cachesize = boot_cpu_data.x86_cache_size;
1090 if (cachesize == -1) {
1091 cachesize = 16; /* Pentiums, 2x8kB cache */
1092 bandwidth = 100;
1093 }
1094 max_cache_size = cachesize * 1024;
1095 }
1096 }
1097
1098 /*
1099 * Cycle through the processors sending APIC IPIs to boot each.
1100 */
1101
1102 static int boot_cpu_logical_apicid;
1103 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1104 void *xquad_portio;
1105 #ifdef CONFIG_X86_NUMAQ
1106 EXPORT_SYMBOL(xquad_portio);
1107 #endif
1108
1109 static void __init smp_boot_cpus(unsigned int max_cpus)
1110 {
1111 int apicid, cpu, bit, kicked;
1112 unsigned long bogosum = 0;
1113
1114 /*
1115 * Setup boot CPU information
1116 */
1117 smp_store_cpu_info(0); /* Final full version of the data */
1118 printk("CPU%d: ", 0);
1119 print_cpu_info(&cpu_data[0]);
1120
1121 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1122 boot_cpu_logical_apicid = logical_smp_processor_id();
1123 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1124
1125 current_thread_info()->cpu = 0;
1126 smp_tune_scheduling();
1127
1128 set_cpu_sibling_map(0);
1129
1130 /*
1131 * If we couldn't find an SMP configuration at boot time,
1132 * get out of here now!
1133 */
1134 if (!smp_found_config && !acpi_lapic) {
1135 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1136 smpboot_clear_io_apic_irqs();
1137 phys_cpu_present_map = physid_mask_of_physid(0);
1138 if (APIC_init_uniprocessor())
1139 printk(KERN_NOTICE "Local APIC not detected."
1140 " Using dummy APIC emulation.\n");
1141 map_cpu_to_logical_apicid();
1142 cpu_set(0, cpu_sibling_map[0]);
1143 cpu_set(0, cpu_core_map[0]);
1144 return;
1145 }
1146
1147 /*
1148 * Should not be necessary because the MP table should list the boot
1149 * CPU too, but we do it for the sake of robustness anyway.
1150 * Makes no sense to do this check in clustered apic mode, so skip it
1151 */
1152 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1153 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1154 boot_cpu_physical_apicid);
1155 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1156 }
1157
1158 /*
1159 * If we couldn't find a local APIC, then get out of here now!
1160 */
1161 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1162 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1163 boot_cpu_physical_apicid);
1164 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1165 smpboot_clear_io_apic_irqs();
1166 phys_cpu_present_map = physid_mask_of_physid(0);
1167 cpu_set(0, cpu_sibling_map[0]);
1168 cpu_set(0, cpu_core_map[0]);
1169 return;
1170 }
1171
1172 verify_local_APIC();
1173
1174 /*
1175 * If SMP should be disabled, then really disable it!
1176 */
1177 if (!max_cpus) {
1178 smp_found_config = 0;
1179 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1180 smpboot_clear_io_apic_irqs();
1181 phys_cpu_present_map = physid_mask_of_physid(0);
1182 cpu_set(0, cpu_sibling_map[0]);
1183 cpu_set(0, cpu_core_map[0]);
1184 return;
1185 }
1186
1187 connect_bsp_APIC();
1188 setup_local_APIC();
1189 map_cpu_to_logical_apicid();
1190
1191
1192 setup_portio_remap();
1193
1194 /*
1195 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1196 *
1197 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1198 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1199 * clustered apic ID.
1200 */
1201 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1202
1203 kicked = 1;
1204 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1205 apicid = cpu_present_to_apicid(bit);
1206 /*
1207 * Don't even attempt to start the boot CPU!
1208 */
1209 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1210 continue;
1211
1212 if (!check_apicid_present(bit))
1213 continue;
1214 if (max_cpus <= cpucount+1)
1215 continue;
1216
1217 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1218 printk("CPU #%d not responding - cannot use it.\n",
1219 apicid);
1220 else
1221 ++kicked;
1222 }
1223
1224 /*
1225 * Cleanup possible dangling ends...
1226 */
1227 smpboot_restore_warm_reset_vector();
1228
1229 /*
1230 * Allow the user to impress friends.
1231 */
1232 Dprintk("Before bogomips.\n");
1233 for (cpu = 0; cpu < NR_CPUS; cpu++)
1234 if (cpu_isset(cpu, cpu_callout_map))
1235 bogosum += cpu_data[cpu].loops_per_jiffy;
1236 printk(KERN_INFO
1237 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1238 cpucount+1,
1239 bogosum/(500000/HZ),
1240 (bogosum/(5000/HZ))%100);
1241
1242 Dprintk("Before bogocount - setting activated=1.\n");
1243
1244 if (smp_b_stepping)
1245 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1246
1247 /*
1248 * Don't taint if we are running SMP kernel on a single non-MP
1249 * approved Athlon
1250 */
1251 if (tainted & TAINT_UNSAFE_SMP) {
1252 if (cpucount)
1253 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1254 else
1255 tainted &= ~TAINT_UNSAFE_SMP;
1256 }
1257
1258 Dprintk("Boot done.\n");
1259
1260 /*
1261 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1262 * efficiently.
1263 */
1264 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1265 cpus_clear(cpu_sibling_map[cpu]);
1266 cpus_clear(cpu_core_map[cpu]);
1267 }
1268
1269 cpu_set(0, cpu_sibling_map[0]);
1270 cpu_set(0, cpu_core_map[0]);
1271
1272 smpboot_setup_io_apic();
1273
1274 setup_boot_APIC_clock();
1275
1276 /*
1277 * Synchronize the TSC with the AP
1278 */
1279 if (cpu_has_tsc && cpucount && cpu_khz)
1280 synchronize_tsc_bp();
1281 }
1282
1283 /* These are wrappers to interface to the new boot process. Someone
1284 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1285 void __init smp_prepare_cpus(unsigned int max_cpus)
1286 {
1287 smp_commenced_mask = cpumask_of_cpu(0);
1288 cpu_callin_map = cpumask_of_cpu(0);
1289 mb();
1290 smp_boot_cpus(max_cpus);
1291 }
1292
1293 void __devinit smp_prepare_boot_cpu(void)
1294 {
1295 cpu_set(smp_processor_id(), cpu_online_map);
1296 cpu_set(smp_processor_id(), cpu_callout_map);
1297 cpu_set(smp_processor_id(), cpu_present_map);
1298 cpu_set(smp_processor_id(), cpu_possible_map);
1299 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1300 }
1301
1302 #ifdef CONFIG_HOTPLUG_CPU
1303 static void
1304 remove_siblinginfo(int cpu)
1305 {
1306 int sibling;
1307 struct cpuinfo_x86 *c = cpu_data;
1308
1309 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1310 cpu_clear(cpu, cpu_core_map[sibling]);
1311 /*
1312 * last thread sibling in this cpu core going down
1313 */
1314 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1315 c[sibling].booted_cores--;
1316 }
1317
1318 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1319 cpu_clear(cpu, cpu_sibling_map[sibling]);
1320 cpus_clear(cpu_sibling_map[cpu]);
1321 cpus_clear(cpu_core_map[cpu]);
1322 phys_proc_id[cpu] = BAD_APICID;
1323 cpu_core_id[cpu] = BAD_APICID;
1324 cpu_clear(cpu, cpu_sibling_setup_map);
1325 }
1326
1327 int __cpu_disable(void)
1328 {
1329 cpumask_t map = cpu_online_map;
1330 int cpu = smp_processor_id();
1331
1332 /*
1333 * Perhaps use cpufreq to drop frequency, but that could go
1334 * into generic code.
1335 *
1336 * We won't take down the boot processor on i386 due to some
1337 * interrupts only being able to be serviced by the BSP.
1338 * Especially so if we're not using an IOAPIC -zwane
1339 */
1340 if (cpu == 0)
1341 return -EBUSY;
1342
1343 clear_local_APIC();
1344 /* Allow any queued timer interrupts to get serviced */
1345 local_irq_enable();
1346 mdelay(1);
1347 local_irq_disable();
1348
1349 remove_siblinginfo(cpu);
1350
1351 cpu_clear(cpu, map);
1352 fixup_irqs(map);
1353 /* It's now safe to remove this processor from the online map */
1354 cpu_clear(cpu, cpu_online_map);
1355 return 0;
1356 }
1357
1358 void __cpu_die(unsigned int cpu)
1359 {
1360 /* We don't do anything here: idle task is faking death itself. */
1361 unsigned int i;
1362
1363 for (i = 0; i < 10; i++) {
1364 /* They ack this in play_dead by setting CPU_DEAD */
1365 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1366 printk ("CPU %d is now offline\n", cpu);
1367 return;
1368 }
1369 msleep(100);
1370 }
1371 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1372 }
1373 #else /* ... !CONFIG_HOTPLUG_CPU */
1374 int __cpu_disable(void)
1375 {
1376 return -ENOSYS;
1377 }
1378
1379 void __cpu_die(unsigned int cpu)
1380 {
1381 /* We said "no" in __cpu_disable */
1382 BUG();
1383 }
1384 #endif /* CONFIG_HOTPLUG_CPU */
1385
1386 int __devinit __cpu_up(unsigned int cpu)
1387 {
1388 /* In case one didn't come up */
1389 if (!cpu_isset(cpu, cpu_callin_map)) {
1390 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1391 local_irq_enable();
1392 return -EIO;
1393 }
1394
1395 local_irq_enable();
1396 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1397 /* Unleash the CPU! */
1398 cpu_set(cpu, smp_commenced_mask);
1399 while (!cpu_isset(cpu, cpu_online_map))
1400 mb();
1401 return 0;
1402 }
1403
1404 void __init smp_cpus_done(unsigned int max_cpus)
1405 {
1406 #ifdef CONFIG_X86_IO_APIC
1407 setup_ioapic_dest();
1408 #endif
1409 zap_low_mappings();
1410 #ifndef CONFIG_HOTPLUG_CPU
1411 /*
1412 * Disable executability of the SMP trampoline:
1413 */
1414 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1415 #endif
1416 }
1417
1418 void __init smp_intr_init(void)
1419 {
1420 /*
1421 * IRQ0 must be given a fixed assignment and initialized,
1422 * because it's used before the IO-APIC is set up.
1423 */
1424 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1425
1426 /*
1427 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1428 * IPI, driven by wakeup.
1429 */
1430 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1431
1432 /* IPI for invalidation */
1433 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1434
1435 /* IPI for generic function call */
1436 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1437 }