]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/i386/kernel/smpboot.c
Merge branch 'master'
[mirror_ubuntu-bionic-kernel.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/bootmem.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/percpu.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Package ID of each logical CPU */
70 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
71 EXPORT_SYMBOL(phys_proc_id);
72
73 /* Core ID of each logical CPU */
74 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
75 EXPORT_SYMBOL(cpu_core_id);
76
77 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_sibling_map);
79
80 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
81 EXPORT_SYMBOL(cpu_core_map);
82
83 /* bitmap of online cpus */
84 cpumask_t cpu_online_map __read_mostly;
85 EXPORT_SYMBOL(cpu_online_map);
86
87 cpumask_t cpu_callin_map;
88 cpumask_t cpu_callout_map;
89 EXPORT_SYMBOL(cpu_callout_map);
90 cpumask_t cpu_possible_map;
91 EXPORT_SYMBOL(cpu_possible_map);
92 static cpumask_t smp_commenced_mask;
93
94 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
95 * is no way to resync one AP against BP. TBD: for prescott and above, we
96 * should use IA64's algorithm
97 */
98 static int __devinitdata tsc_sync_disabled;
99
100 /* Per CPU bogomips and other parameters */
101 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
102 EXPORT_SYMBOL(cpu_data);
103
104 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
105 { [0 ... NR_CPUS-1] = 0xff };
106 EXPORT_SYMBOL(x86_cpu_to_apicid);
107
108 /*
109 * Trampoline 80x86 program as an array.
110 */
111
112 extern unsigned char trampoline_data [];
113 extern unsigned char trampoline_end [];
114 static unsigned char *trampoline_base;
115 static int trampoline_exec;
116
117 static void map_cpu_to_logical_apicid(void);
118
119 /* State of each CPU. */
120 DEFINE_PER_CPU(int, cpu_state) = { 0 };
121
122 /*
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
126 */
127
128 static unsigned long __devinit setup_trampoline(void)
129 {
130 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
131 return virt_to_phys(trampoline_base);
132 }
133
134 /*
135 * We are called very early to get the low memory for the
136 * SMP bootup trampoline page.
137 */
138 void __init smp_alloc_memory(void)
139 {
140 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
141 /*
142 * Has to be in very low memory so we can execute
143 * real-mode AP code.
144 */
145 if (__pa(trampoline_base) >= 0x9F000)
146 BUG();
147 /*
148 * Make the SMP trampoline executable:
149 */
150 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
151 }
152
153 /*
154 * The bootstrap kernel entry code has set these up. Save them for
155 * a given CPU
156 */
157
158 static void __devinit smp_store_cpu_info(int id)
159 {
160 struct cpuinfo_x86 *c = cpu_data + id;
161
162 *c = boot_cpu_data;
163 if (id!=0)
164 identify_cpu(c);
165 /*
166 * Mask B, Pentium, but not Pentium MMX
167 */
168 if (c->x86_vendor == X86_VENDOR_INTEL &&
169 c->x86 == 5 &&
170 c->x86_mask >= 1 && c->x86_mask <= 4 &&
171 c->x86_model <= 3)
172 /*
173 * Remember we have B step Pentia with bugs
174 */
175 smp_b_stepping = 1;
176
177 /*
178 * Certain Athlons might work (for various values of 'work') in SMP
179 * but they are not certified as MP capable.
180 */
181 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
182
183 /* Athlon 660/661 is valid. */
184 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
185 goto valid_k7;
186
187 /* Duron 670 is valid */
188 if ((c->x86_model==7) && (c->x86_mask==0))
189 goto valid_k7;
190
191 /*
192 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
193 * It's worth noting that the A5 stepping (662) of some Athlon XP's
194 * have the MP bit set.
195 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
196 */
197 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
198 ((c->x86_model==7) && (c->x86_mask>=1)) ||
199 (c->x86_model> 7))
200 if (cpu_has_mp)
201 goto valid_k7;
202
203 /* If we get here, it's not a certified SMP capable AMD system. */
204 add_taint(TAINT_UNSAFE_SMP);
205 }
206
207 valid_k7:
208 ;
209 }
210
211 /*
212 * TSC synchronization.
213 *
214 * We first check whether all CPUs have their TSC's synchronized,
215 * then we print a warning if not, and always resync.
216 */
217
218 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
219 static atomic_t tsc_count_start = ATOMIC_INIT(0);
220 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
221 static unsigned long long tsc_values[NR_CPUS];
222
223 #define NR_LOOPS 5
224
225 static void __init synchronize_tsc_bp (void)
226 {
227 int i;
228 unsigned long long t0;
229 unsigned long long sum, avg;
230 long long delta;
231 unsigned int one_usec;
232 int buggy = 0;
233
234 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
235
236 /* convert from kcyc/sec to cyc/usec */
237 one_usec = cpu_khz / 1000;
238
239 atomic_set(&tsc_start_flag, 1);
240 wmb();
241
242 /*
243 * We loop a few times to get a primed instruction cache,
244 * then the last pass is more or less synchronized and
245 * the BP and APs set their cycle counters to zero all at
246 * once. This reduces the chance of having random offsets
247 * between the processors, and guarantees that the maximum
248 * delay between the cycle counters is never bigger than
249 * the latency of information-passing (cachelines) between
250 * two CPUs.
251 */
252 for (i = 0; i < NR_LOOPS; i++) {
253 /*
254 * all APs synchronize but they loop on '== num_cpus'
255 */
256 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
257 mb();
258 atomic_set(&tsc_count_stop, 0);
259 wmb();
260 /*
261 * this lets the APs save their current TSC:
262 */
263 atomic_inc(&tsc_count_start);
264
265 rdtscll(tsc_values[smp_processor_id()]);
266 /*
267 * We clear the TSC in the last loop:
268 */
269 if (i == NR_LOOPS-1)
270 write_tsc(0, 0);
271
272 /*
273 * Wait for all APs to leave the synchronization point:
274 */
275 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
276 mb();
277 atomic_set(&tsc_count_start, 0);
278 wmb();
279 atomic_inc(&tsc_count_stop);
280 }
281
282 sum = 0;
283 for (i = 0; i < NR_CPUS; i++) {
284 if (cpu_isset(i, cpu_callout_map)) {
285 t0 = tsc_values[i];
286 sum += t0;
287 }
288 }
289 avg = sum;
290 do_div(avg, num_booting_cpus());
291
292 sum = 0;
293 for (i = 0; i < NR_CPUS; i++) {
294 if (!cpu_isset(i, cpu_callout_map))
295 continue;
296 delta = tsc_values[i] - avg;
297 if (delta < 0)
298 delta = -delta;
299 /*
300 * We report bigger than 2 microseconds clock differences.
301 */
302 if (delta > 2*one_usec) {
303 long realdelta;
304 if (!buggy) {
305 buggy = 1;
306 printk("\n");
307 }
308 realdelta = delta;
309 do_div(realdelta, one_usec);
310 if (tsc_values[i] < avg)
311 realdelta = -realdelta;
312
313 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
314 }
315
316 sum += delta;
317 }
318 if (!buggy)
319 printk("passed.\n");
320 }
321
322 static void __init synchronize_tsc_ap (void)
323 {
324 int i;
325
326 /*
327 * Not every cpu is online at the time
328 * this gets called, so we first wait for the BP to
329 * finish SMP initialization:
330 */
331 while (!atomic_read(&tsc_start_flag)) mb();
332
333 for (i = 0; i < NR_LOOPS; i++) {
334 atomic_inc(&tsc_count_start);
335 while (atomic_read(&tsc_count_start) != num_booting_cpus())
336 mb();
337
338 rdtscll(tsc_values[smp_processor_id()]);
339 if (i == NR_LOOPS-1)
340 write_tsc(0, 0);
341
342 atomic_inc(&tsc_count_stop);
343 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
344 }
345 }
346 #undef NR_LOOPS
347
348 extern void calibrate_delay(void);
349
350 static atomic_t init_deasserted;
351
352 static void __devinit smp_callin(void)
353 {
354 int cpuid, phys_id;
355 unsigned long timeout;
356
357 /*
358 * If waken up by an INIT in an 82489DX configuration
359 * we may get here before an INIT-deassert IPI reaches
360 * our local APIC. We have to wait for the IPI or we'll
361 * lock up on an APIC access.
362 */
363 wait_for_init_deassert(&init_deasserted);
364
365 /*
366 * (This works even if the APIC is not enabled.)
367 */
368 phys_id = GET_APIC_ID(apic_read(APIC_ID));
369 cpuid = smp_processor_id();
370 if (cpu_isset(cpuid, cpu_callin_map)) {
371 printk("huh, phys CPU#%d, CPU#%d already present??\n",
372 phys_id, cpuid);
373 BUG();
374 }
375 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
376
377 /*
378 * STARTUP IPIs are fragile beasts as they might sometimes
379 * trigger some glue motherboard logic. Complete APIC bus
380 * silence for 1 second, this overestimates the time the
381 * boot CPU is spending to send the up to 2 STARTUP IPIs
382 * by a factor of two. This should be enough.
383 */
384
385 /*
386 * Waiting 2s total for startup (udelay is not yet working)
387 */
388 timeout = jiffies + 2*HZ;
389 while (time_before(jiffies, timeout)) {
390 /*
391 * Has the boot CPU finished it's STARTUP sequence?
392 */
393 if (cpu_isset(cpuid, cpu_callout_map))
394 break;
395 rep_nop();
396 }
397
398 if (!time_before(jiffies, timeout)) {
399 printk("BUG: CPU%d started up but did not get a callout!\n",
400 cpuid);
401 BUG();
402 }
403
404 /*
405 * the boot CPU has finished the init stage and is spinning
406 * on callin_map until we finish. We are free to set up this
407 * CPU, first the APIC. (this is probably redundant on most
408 * boards)
409 */
410
411 Dprintk("CALLIN, before setup_local_APIC().\n");
412 smp_callin_clear_local_apic();
413 setup_local_APIC();
414 map_cpu_to_logical_apicid();
415
416 /*
417 * Get our bogomips.
418 */
419 calibrate_delay();
420 Dprintk("Stack at about %p\n",&cpuid);
421
422 /*
423 * Save our processor parameters
424 */
425 smp_store_cpu_info(cpuid);
426
427 disable_APIC_timer();
428
429 /*
430 * Allow the master to continue.
431 */
432 cpu_set(cpuid, cpu_callin_map);
433
434 /*
435 * Synchronize the TSC with the BP
436 */
437 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
438 synchronize_tsc_ap();
439 }
440
441 static int cpucount;
442
443 static inline void
444 set_cpu_sibling_map(int cpu)
445 {
446 int i;
447
448 if (smp_num_siblings > 1) {
449 for (i = 0; i < NR_CPUS; i++) {
450 if (!cpu_isset(i, cpu_callout_map))
451 continue;
452 if (cpu_core_id[cpu] == cpu_core_id[i]) {
453 cpu_set(i, cpu_sibling_map[cpu]);
454 cpu_set(cpu, cpu_sibling_map[i]);
455 }
456 }
457 } else {
458 cpu_set(cpu, cpu_sibling_map[cpu]);
459 }
460
461 if (current_cpu_data.x86_num_cores > 1) {
462 for (i = 0; i < NR_CPUS; i++) {
463 if (!cpu_isset(i, cpu_callout_map))
464 continue;
465 if (phys_proc_id[cpu] == phys_proc_id[i]) {
466 cpu_set(i, cpu_core_map[cpu]);
467 cpu_set(cpu, cpu_core_map[i]);
468 }
469 }
470 } else {
471 cpu_core_map[cpu] = cpu_sibling_map[cpu];
472 }
473 }
474
475 /*
476 * Activate a secondary processor.
477 */
478 static void __devinit start_secondary(void *unused)
479 {
480 /*
481 * Dont put anything before smp_callin(), SMP
482 * booting is too fragile that we want to limit the
483 * things done here to the most necessary things.
484 */
485 cpu_init();
486 smp_callin();
487 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
488 rep_nop();
489 setup_secondary_APIC_clock();
490 if (nmi_watchdog == NMI_IO_APIC) {
491 disable_8259A_irq(0);
492 enable_NMI_through_LVT0(NULL);
493 enable_8259A_irq(0);
494 }
495 enable_APIC_timer();
496 /*
497 * low-memory mappings have been cleared, flush them from
498 * the local TLBs too.
499 */
500 local_flush_tlb();
501
502 /* This must be done before setting cpu_online_map */
503 set_cpu_sibling_map(raw_smp_processor_id());
504 wmb();
505
506 /*
507 * We need to hold call_lock, so there is no inconsistency
508 * between the time smp_call_function() determines number of
509 * IPI receipients, and the time when the determination is made
510 * for which cpus receive the IPI. Holding this
511 * lock helps us to not include this cpu in a currently in progress
512 * smp_call_function().
513 */
514 lock_ipi_call_lock();
515 cpu_set(smp_processor_id(), cpu_online_map);
516 unlock_ipi_call_lock();
517 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
518
519 /* We can take interrupts now: we're officially "up". */
520 local_irq_enable();
521
522 wmb();
523 cpu_idle();
524 }
525
526 /*
527 * Everything has been set up for the secondary
528 * CPUs - they just need to reload everything
529 * from the task structure
530 * This function must not return.
531 */
532 void __devinit initialize_secondary(void)
533 {
534 /*
535 * We don't actually need to load the full TSS,
536 * basically just the stack pointer and the eip.
537 */
538
539 asm volatile(
540 "movl %0,%%esp\n\t"
541 "jmp *%1"
542 :
543 :"r" (current->thread.esp),"r" (current->thread.eip));
544 }
545
546 extern struct {
547 void * esp;
548 unsigned short ss;
549 } stack_start;
550
551 #ifdef CONFIG_NUMA
552
553 /* which logical CPUs are on which nodes */
554 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
555 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
556 /* which node each logical CPU is on */
557 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
558 EXPORT_SYMBOL(cpu_2_node);
559
560 /* set up a mapping between cpu and node. */
561 static inline void map_cpu_to_node(int cpu, int node)
562 {
563 printk("Mapping cpu %d to node %d\n", cpu, node);
564 cpu_set(cpu, node_2_cpu_mask[node]);
565 cpu_2_node[cpu] = node;
566 }
567
568 /* undo a mapping between cpu and node. */
569 static inline void unmap_cpu_to_node(int cpu)
570 {
571 int node;
572
573 printk("Unmapping cpu %d from all nodes\n", cpu);
574 for (node = 0; node < MAX_NUMNODES; node ++)
575 cpu_clear(cpu, node_2_cpu_mask[node]);
576 cpu_2_node[cpu] = 0;
577 }
578 #else /* !CONFIG_NUMA */
579
580 #define map_cpu_to_node(cpu, node) ({})
581 #define unmap_cpu_to_node(cpu) ({})
582
583 #endif /* CONFIG_NUMA */
584
585 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
586
587 static void map_cpu_to_logical_apicid(void)
588 {
589 int cpu = smp_processor_id();
590 int apicid = logical_smp_processor_id();
591
592 cpu_2_logical_apicid[cpu] = apicid;
593 map_cpu_to_node(cpu, apicid_to_node(apicid));
594 }
595
596 static void unmap_cpu_to_logical_apicid(int cpu)
597 {
598 cpu_2_logical_apicid[cpu] = BAD_APICID;
599 unmap_cpu_to_node(cpu);
600 }
601
602 #if APIC_DEBUG
603 static inline void __inquire_remote_apic(int apicid)
604 {
605 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
606 char *names[] = { "ID", "VERSION", "SPIV" };
607 int timeout, status;
608
609 printk("Inquiring remote APIC #%d...\n", apicid);
610
611 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
612 printk("... APIC #%d %s: ", apicid, names[i]);
613
614 /*
615 * Wait for idle.
616 */
617 apic_wait_icr_idle();
618
619 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
620 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
621
622 timeout = 0;
623 do {
624 udelay(100);
625 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
626 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
627
628 switch (status) {
629 case APIC_ICR_RR_VALID:
630 status = apic_read(APIC_RRR);
631 printk("%08x\n", status);
632 break;
633 default:
634 printk("failed\n");
635 }
636 }
637 }
638 #endif
639
640 #ifdef WAKE_SECONDARY_VIA_NMI
641 /*
642 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
643 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
644 * won't ... remember to clear down the APIC, etc later.
645 */
646 static int __devinit
647 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
648 {
649 unsigned long send_status = 0, accept_status = 0;
650 int timeout, maxlvt;
651
652 /* Target chip */
653 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
654
655 /* Boot on the stack */
656 /* Kick the second */
657 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
658
659 Dprintk("Waiting for send to finish...\n");
660 timeout = 0;
661 do {
662 Dprintk("+");
663 udelay(100);
664 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
665 } while (send_status && (timeout++ < 1000));
666
667 /*
668 * Give the other CPU some time to accept the IPI.
669 */
670 udelay(200);
671 /*
672 * Due to the Pentium erratum 3AP.
673 */
674 maxlvt = get_maxlvt();
675 if (maxlvt > 3) {
676 apic_read_around(APIC_SPIV);
677 apic_write(APIC_ESR, 0);
678 }
679 accept_status = (apic_read(APIC_ESR) & 0xEF);
680 Dprintk("NMI sent.\n");
681
682 if (send_status)
683 printk("APIC never delivered???\n");
684 if (accept_status)
685 printk("APIC delivery error (%lx).\n", accept_status);
686
687 return (send_status | accept_status);
688 }
689 #endif /* WAKE_SECONDARY_VIA_NMI */
690
691 #ifdef WAKE_SECONDARY_VIA_INIT
692 static int __devinit
693 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
694 {
695 unsigned long send_status = 0, accept_status = 0;
696 int maxlvt, timeout, num_starts, j;
697
698 /*
699 * Be paranoid about clearing APIC errors.
700 */
701 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
702 apic_read_around(APIC_SPIV);
703 apic_write(APIC_ESR, 0);
704 apic_read(APIC_ESR);
705 }
706
707 Dprintk("Asserting INIT.\n");
708
709 /*
710 * Turn INIT on target chip
711 */
712 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
713
714 /*
715 * Send IPI
716 */
717 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
718 | APIC_DM_INIT);
719
720 Dprintk("Waiting for send to finish...\n");
721 timeout = 0;
722 do {
723 Dprintk("+");
724 udelay(100);
725 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
726 } while (send_status && (timeout++ < 1000));
727
728 mdelay(10);
729
730 Dprintk("Deasserting INIT.\n");
731
732 /* Target chip */
733 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
734
735 /* Send IPI */
736 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
737
738 Dprintk("Waiting for send to finish...\n");
739 timeout = 0;
740 do {
741 Dprintk("+");
742 udelay(100);
743 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
744 } while (send_status && (timeout++ < 1000));
745
746 atomic_set(&init_deasserted, 1);
747
748 /*
749 * Should we send STARTUP IPIs ?
750 *
751 * Determine this based on the APIC version.
752 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
753 */
754 if (APIC_INTEGRATED(apic_version[phys_apicid]))
755 num_starts = 2;
756 else
757 num_starts = 0;
758
759 /*
760 * Run STARTUP IPI loop.
761 */
762 Dprintk("#startup loops: %d.\n", num_starts);
763
764 maxlvt = get_maxlvt();
765
766 for (j = 1; j <= num_starts; j++) {
767 Dprintk("Sending STARTUP #%d.\n",j);
768 apic_read_around(APIC_SPIV);
769 apic_write(APIC_ESR, 0);
770 apic_read(APIC_ESR);
771 Dprintk("After apic_write.\n");
772
773 /*
774 * STARTUP IPI
775 */
776
777 /* Target chip */
778 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
779
780 /* Boot on the stack */
781 /* Kick the second */
782 apic_write_around(APIC_ICR, APIC_DM_STARTUP
783 | (start_eip >> 12));
784
785 /*
786 * Give the other CPU some time to accept the IPI.
787 */
788 udelay(300);
789
790 Dprintk("Startup point 1.\n");
791
792 Dprintk("Waiting for send to finish...\n");
793 timeout = 0;
794 do {
795 Dprintk("+");
796 udelay(100);
797 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
798 } while (send_status && (timeout++ < 1000));
799
800 /*
801 * Give the other CPU some time to accept the IPI.
802 */
803 udelay(200);
804 /*
805 * Due to the Pentium erratum 3AP.
806 */
807 if (maxlvt > 3) {
808 apic_read_around(APIC_SPIV);
809 apic_write(APIC_ESR, 0);
810 }
811 accept_status = (apic_read(APIC_ESR) & 0xEF);
812 if (send_status || accept_status)
813 break;
814 }
815 Dprintk("After Startup.\n");
816
817 if (send_status)
818 printk("APIC never delivered???\n");
819 if (accept_status)
820 printk("APIC delivery error (%lx).\n", accept_status);
821
822 return (send_status | accept_status);
823 }
824 #endif /* WAKE_SECONDARY_VIA_INIT */
825
826 extern cpumask_t cpu_initialized;
827 static inline int alloc_cpu_id(void)
828 {
829 cpumask_t tmp_map;
830 int cpu;
831 cpus_complement(tmp_map, cpu_present_map);
832 cpu = first_cpu(tmp_map);
833 if (cpu >= NR_CPUS)
834 return -ENODEV;
835 return cpu;
836 }
837
838 #ifdef CONFIG_HOTPLUG_CPU
839 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
840 static inline struct task_struct * alloc_idle_task(int cpu)
841 {
842 struct task_struct *idle;
843
844 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
845 /* initialize thread_struct. we really want to avoid destroy
846 * idle tread
847 */
848 idle->thread.esp = (unsigned long)(((struct pt_regs *)
849 (THREAD_SIZE + (unsigned long) idle->thread_info)) - 1);
850 init_idle(idle, cpu);
851 return idle;
852 }
853 idle = fork_idle(cpu);
854
855 if (!IS_ERR(idle))
856 cpu_idle_tasks[cpu] = idle;
857 return idle;
858 }
859 #else
860 #define alloc_idle_task(cpu) fork_idle(cpu)
861 #endif
862
863 static int __devinit do_boot_cpu(int apicid, int cpu)
864 /*
865 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
866 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
867 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
868 */
869 {
870 struct task_struct *idle;
871 unsigned long boot_error;
872 int timeout;
873 unsigned long start_eip;
874 unsigned short nmi_high = 0, nmi_low = 0;
875
876 ++cpucount;
877
878 /*
879 * We can't use kernel_thread since we must avoid to
880 * reschedule the child.
881 */
882 idle = alloc_idle_task(cpu);
883 if (IS_ERR(idle))
884 panic("failed fork for CPU %d", cpu);
885 idle->thread.eip = (unsigned long) start_secondary;
886 /* start_eip had better be page-aligned! */
887 start_eip = setup_trampoline();
888
889 /* So we see what's up */
890 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
891 /* Stack for startup_32 can be just as for start_secondary onwards */
892 stack_start.esp = (void *) idle->thread.esp;
893
894 irq_ctx_init(cpu);
895
896 /*
897 * This grunge runs the startup process for
898 * the targeted processor.
899 */
900
901 atomic_set(&init_deasserted, 0);
902
903 Dprintk("Setting warm reset code and vector.\n");
904
905 store_NMI_vector(&nmi_high, &nmi_low);
906
907 smpboot_setup_warm_reset_vector(start_eip);
908
909 /*
910 * Starting actual IPI sequence...
911 */
912 boot_error = wakeup_secondary_cpu(apicid, start_eip);
913
914 if (!boot_error) {
915 /*
916 * allow APs to start initializing.
917 */
918 Dprintk("Before Callout %d.\n", cpu);
919 cpu_set(cpu, cpu_callout_map);
920 Dprintk("After Callout %d.\n", cpu);
921
922 /*
923 * Wait 5s total for a response
924 */
925 for (timeout = 0; timeout < 50000; timeout++) {
926 if (cpu_isset(cpu, cpu_callin_map))
927 break; /* It has booted */
928 udelay(100);
929 }
930
931 if (cpu_isset(cpu, cpu_callin_map)) {
932 /* number CPUs logically, starting from 1 (BSP is 0) */
933 Dprintk("OK.\n");
934 printk("CPU%d: ", cpu);
935 print_cpu_info(&cpu_data[cpu]);
936 Dprintk("CPU has booted.\n");
937 } else {
938 boot_error= 1;
939 if (*((volatile unsigned char *)trampoline_base)
940 == 0xA5)
941 /* trampoline started but...? */
942 printk("Stuck ??\n");
943 else
944 /* trampoline code not run */
945 printk("Not responding.\n");
946 inquire_remote_apic(apicid);
947 }
948 }
949
950 if (boot_error) {
951 /* Try to put things back the way they were before ... */
952 unmap_cpu_to_logical_apicid(cpu);
953 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
954 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
955 cpucount--;
956 } else {
957 x86_cpu_to_apicid[cpu] = apicid;
958 cpu_set(cpu, cpu_present_map);
959 }
960
961 /* mark "stuck" area as not stuck */
962 *((volatile unsigned long *)trampoline_base) = 0;
963
964 return boot_error;
965 }
966
967 #ifdef CONFIG_HOTPLUG_CPU
968 void cpu_exit_clear(void)
969 {
970 int cpu = raw_smp_processor_id();
971
972 idle_task_exit();
973
974 cpucount --;
975 cpu_uninit();
976 irq_ctx_exit(cpu);
977
978 cpu_clear(cpu, cpu_callout_map);
979 cpu_clear(cpu, cpu_callin_map);
980 cpu_clear(cpu, cpu_present_map);
981
982 cpu_clear(cpu, smp_commenced_mask);
983 unmap_cpu_to_logical_apicid(cpu);
984 }
985
986 struct warm_boot_cpu_info {
987 struct completion *complete;
988 int apicid;
989 int cpu;
990 };
991
992 static void __devinit do_warm_boot_cpu(void *p)
993 {
994 struct warm_boot_cpu_info *info = p;
995 do_boot_cpu(info->apicid, info->cpu);
996 complete(info->complete);
997 }
998
999 int __devinit smp_prepare_cpu(int cpu)
1000 {
1001 DECLARE_COMPLETION(done);
1002 struct warm_boot_cpu_info info;
1003 struct work_struct task;
1004 int apicid, ret;
1005
1006 lock_cpu_hotplug();
1007 apicid = x86_cpu_to_apicid[cpu];
1008 if (apicid == BAD_APICID) {
1009 ret = -ENODEV;
1010 goto exit;
1011 }
1012
1013 info.complete = &done;
1014 info.apicid = apicid;
1015 info.cpu = cpu;
1016 INIT_WORK(&task, do_warm_boot_cpu, &info);
1017
1018 tsc_sync_disabled = 1;
1019
1020 /* init low mem mapping */
1021 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1022 KERNEL_PGD_PTRS);
1023 flush_tlb_all();
1024 schedule_work(&task);
1025 wait_for_completion(&done);
1026
1027 tsc_sync_disabled = 0;
1028 zap_low_mappings();
1029 ret = 0;
1030 exit:
1031 unlock_cpu_hotplug();
1032 return ret;
1033 }
1034 #endif
1035
1036 static void smp_tune_scheduling (void)
1037 {
1038 unsigned long cachesize; /* kB */
1039 unsigned long bandwidth = 350; /* MB/s */
1040 /*
1041 * Rough estimation for SMP scheduling, this is the number of
1042 * cycles it takes for a fully memory-limited process to flush
1043 * the SMP-local cache.
1044 *
1045 * (For a P5 this pretty much means we will choose another idle
1046 * CPU almost always at wakeup time (this is due to the small
1047 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1048 * the cache size)
1049 */
1050
1051 if (!cpu_khz) {
1052 /*
1053 * this basically disables processor-affinity
1054 * scheduling on SMP without a TSC.
1055 */
1056 return;
1057 } else {
1058 cachesize = boot_cpu_data.x86_cache_size;
1059 if (cachesize == -1) {
1060 cachesize = 16; /* Pentiums, 2x8kB cache */
1061 bandwidth = 100;
1062 }
1063 }
1064 }
1065
1066 /*
1067 * Cycle through the processors sending APIC IPIs to boot each.
1068 */
1069
1070 static int boot_cpu_logical_apicid;
1071 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1072 void *xquad_portio;
1073 #ifdef CONFIG_X86_NUMAQ
1074 EXPORT_SYMBOL(xquad_portio);
1075 #endif
1076
1077 static void __init smp_boot_cpus(unsigned int max_cpus)
1078 {
1079 int apicid, cpu, bit, kicked;
1080 unsigned long bogosum = 0;
1081
1082 /*
1083 * Setup boot CPU information
1084 */
1085 smp_store_cpu_info(0); /* Final full version of the data */
1086 printk("CPU%d: ", 0);
1087 print_cpu_info(&cpu_data[0]);
1088
1089 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1090 boot_cpu_logical_apicid = logical_smp_processor_id();
1091 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1092
1093 current_thread_info()->cpu = 0;
1094 smp_tune_scheduling();
1095 cpus_clear(cpu_sibling_map[0]);
1096 cpu_set(0, cpu_sibling_map[0]);
1097
1098 cpus_clear(cpu_core_map[0]);
1099 cpu_set(0, cpu_core_map[0]);
1100
1101 /*
1102 * If we couldn't find an SMP configuration at boot time,
1103 * get out of here now!
1104 */
1105 if (!smp_found_config && !acpi_lapic) {
1106 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1107 smpboot_clear_io_apic_irqs();
1108 phys_cpu_present_map = physid_mask_of_physid(0);
1109 if (APIC_init_uniprocessor())
1110 printk(KERN_NOTICE "Local APIC not detected."
1111 " Using dummy APIC emulation.\n");
1112 map_cpu_to_logical_apicid();
1113 cpu_set(0, cpu_sibling_map[0]);
1114 cpu_set(0, cpu_core_map[0]);
1115 return;
1116 }
1117
1118 /*
1119 * Should not be necessary because the MP table should list the boot
1120 * CPU too, but we do it for the sake of robustness anyway.
1121 * Makes no sense to do this check in clustered apic mode, so skip it
1122 */
1123 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1124 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1125 boot_cpu_physical_apicid);
1126 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1127 }
1128
1129 /*
1130 * If we couldn't find a local APIC, then get out of here now!
1131 */
1132 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1133 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1134 boot_cpu_physical_apicid);
1135 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1136 smpboot_clear_io_apic_irqs();
1137 phys_cpu_present_map = physid_mask_of_physid(0);
1138 cpu_set(0, cpu_sibling_map[0]);
1139 cpu_set(0, cpu_core_map[0]);
1140 return;
1141 }
1142
1143 verify_local_APIC();
1144
1145 /*
1146 * If SMP should be disabled, then really disable it!
1147 */
1148 if (!max_cpus) {
1149 smp_found_config = 0;
1150 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1151 smpboot_clear_io_apic_irqs();
1152 phys_cpu_present_map = physid_mask_of_physid(0);
1153 cpu_set(0, cpu_sibling_map[0]);
1154 cpu_set(0, cpu_core_map[0]);
1155 return;
1156 }
1157
1158 connect_bsp_APIC();
1159 setup_local_APIC();
1160 map_cpu_to_logical_apicid();
1161
1162
1163 setup_portio_remap();
1164
1165 /*
1166 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1167 *
1168 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1169 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1170 * clustered apic ID.
1171 */
1172 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1173
1174 kicked = 1;
1175 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1176 apicid = cpu_present_to_apicid(bit);
1177 /*
1178 * Don't even attempt to start the boot CPU!
1179 */
1180 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1181 continue;
1182
1183 if (!check_apicid_present(bit))
1184 continue;
1185 if (max_cpus <= cpucount+1)
1186 continue;
1187
1188 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1189 printk("CPU #%d not responding - cannot use it.\n",
1190 apicid);
1191 else
1192 ++kicked;
1193 }
1194
1195 /*
1196 * Cleanup possible dangling ends...
1197 */
1198 smpboot_restore_warm_reset_vector();
1199
1200 /*
1201 * Allow the user to impress friends.
1202 */
1203 Dprintk("Before bogomips.\n");
1204 for (cpu = 0; cpu < NR_CPUS; cpu++)
1205 if (cpu_isset(cpu, cpu_callout_map))
1206 bogosum += cpu_data[cpu].loops_per_jiffy;
1207 printk(KERN_INFO
1208 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1209 cpucount+1,
1210 bogosum/(500000/HZ),
1211 (bogosum/(5000/HZ))%100);
1212
1213 Dprintk("Before bogocount - setting activated=1.\n");
1214
1215 if (smp_b_stepping)
1216 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1217
1218 /*
1219 * Don't taint if we are running SMP kernel on a single non-MP
1220 * approved Athlon
1221 */
1222 if (tainted & TAINT_UNSAFE_SMP) {
1223 if (cpucount)
1224 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1225 else
1226 tainted &= ~TAINT_UNSAFE_SMP;
1227 }
1228
1229 Dprintk("Boot done.\n");
1230
1231 /*
1232 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1233 * efficiently.
1234 */
1235 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1236 cpus_clear(cpu_sibling_map[cpu]);
1237 cpus_clear(cpu_core_map[cpu]);
1238 }
1239
1240 cpu_set(0, cpu_sibling_map[0]);
1241 cpu_set(0, cpu_core_map[0]);
1242
1243 smpboot_setup_io_apic();
1244
1245 setup_boot_APIC_clock();
1246
1247 /*
1248 * Synchronize the TSC with the AP
1249 */
1250 if (cpu_has_tsc && cpucount && cpu_khz)
1251 synchronize_tsc_bp();
1252 }
1253
1254 /* These are wrappers to interface to the new boot process. Someone
1255 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1256 void __init smp_prepare_cpus(unsigned int max_cpus)
1257 {
1258 smp_commenced_mask = cpumask_of_cpu(0);
1259 cpu_callin_map = cpumask_of_cpu(0);
1260 mb();
1261 smp_boot_cpus(max_cpus);
1262 }
1263
1264 void __devinit smp_prepare_boot_cpu(void)
1265 {
1266 cpu_set(smp_processor_id(), cpu_online_map);
1267 cpu_set(smp_processor_id(), cpu_callout_map);
1268 cpu_set(smp_processor_id(), cpu_present_map);
1269 cpu_set(smp_processor_id(), cpu_possible_map);
1270 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1271 }
1272
1273 #ifdef CONFIG_HOTPLUG_CPU
1274 static void
1275 remove_siblinginfo(int cpu)
1276 {
1277 int sibling;
1278
1279 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1280 cpu_clear(cpu, cpu_sibling_map[sibling]);
1281 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1282 cpu_clear(cpu, cpu_core_map[sibling]);
1283 cpus_clear(cpu_sibling_map[cpu]);
1284 cpus_clear(cpu_core_map[cpu]);
1285 phys_proc_id[cpu] = BAD_APICID;
1286 cpu_core_id[cpu] = BAD_APICID;
1287 }
1288
1289 int __cpu_disable(void)
1290 {
1291 cpumask_t map = cpu_online_map;
1292 int cpu = smp_processor_id();
1293
1294 /*
1295 * Perhaps use cpufreq to drop frequency, but that could go
1296 * into generic code.
1297 *
1298 * We won't take down the boot processor on i386 due to some
1299 * interrupts only being able to be serviced by the BSP.
1300 * Especially so if we're not using an IOAPIC -zwane
1301 */
1302 if (cpu == 0)
1303 return -EBUSY;
1304
1305 /* We enable the timer again on the exit path of the death loop */
1306 disable_APIC_timer();
1307 /* Allow any queued timer interrupts to get serviced */
1308 local_irq_enable();
1309 mdelay(1);
1310 local_irq_disable();
1311
1312 remove_siblinginfo(cpu);
1313
1314 cpu_clear(cpu, map);
1315 fixup_irqs(map);
1316 /* It's now safe to remove this processor from the online map */
1317 cpu_clear(cpu, cpu_online_map);
1318 return 0;
1319 }
1320
1321 void __cpu_die(unsigned int cpu)
1322 {
1323 /* We don't do anything here: idle task is faking death itself. */
1324 unsigned int i;
1325
1326 for (i = 0; i < 10; i++) {
1327 /* They ack this in play_dead by setting CPU_DEAD */
1328 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1329 printk ("CPU %d is now offline\n", cpu);
1330 return;
1331 }
1332 msleep(100);
1333 }
1334 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1335 }
1336 #else /* ... !CONFIG_HOTPLUG_CPU */
1337 int __cpu_disable(void)
1338 {
1339 return -ENOSYS;
1340 }
1341
1342 void __cpu_die(unsigned int cpu)
1343 {
1344 /* We said "no" in __cpu_disable */
1345 BUG();
1346 }
1347 #endif /* CONFIG_HOTPLUG_CPU */
1348
1349 int __devinit __cpu_up(unsigned int cpu)
1350 {
1351 /* In case one didn't come up */
1352 if (!cpu_isset(cpu, cpu_callin_map)) {
1353 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1354 local_irq_enable();
1355 return -EIO;
1356 }
1357
1358 local_irq_enable();
1359 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1360 /* Unleash the CPU! */
1361 cpu_set(cpu, smp_commenced_mask);
1362 while (!cpu_isset(cpu, cpu_online_map))
1363 mb();
1364 return 0;
1365 }
1366
1367 void __init smp_cpus_done(unsigned int max_cpus)
1368 {
1369 #ifdef CONFIG_X86_IO_APIC
1370 setup_ioapic_dest();
1371 #endif
1372 zap_low_mappings();
1373 #ifndef CONFIG_HOTPLUG_CPU
1374 /*
1375 * Disable executability of the SMP trampoline:
1376 */
1377 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1378 #endif
1379 }
1380
1381 void __init smp_intr_init(void)
1382 {
1383 /*
1384 * IRQ0 must be given a fixed assignment and initialized,
1385 * because it's used before the IO-APIC is set up.
1386 */
1387 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1388
1389 /*
1390 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1391 * IPI, driven by wakeup.
1392 */
1393 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1394
1395 /* IPI for invalidation */
1396 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1397
1398 /* IPI for generic function call */
1399 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1400 }