]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/i386/kernel/smpboot.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/irq.h>
46 #include <linux/bootmem.h>
47 #include <linux/notifier.h>
48 #include <linux/cpu.h>
49 #include <linux/percpu.h>
50
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
53 #include <asm/tlbflush.h>
54 #include <asm/desc.h>
55 #include <asm/arch_hooks.h>
56
57 #include <mach_apic.h>
58 #include <mach_wakecpu.h>
59 #include <smpboot_hooks.h>
60
61 /* Set if we find a B stepping CPU */
62 static int __devinitdata smp_b_stepping;
63
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 #ifdef CONFIG_X86_HT
67 EXPORT_SYMBOL(smp_num_siblings);
68 #endif
69
70 /* Package ID of each logical CPU */
71 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
72 EXPORT_SYMBOL(phys_proc_id);
73
74 /* Core ID of each logical CPU */
75 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
76 EXPORT_SYMBOL(cpu_core_id);
77
78 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
79 EXPORT_SYMBOL(cpu_sibling_map);
80
81 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
82 EXPORT_SYMBOL(cpu_core_map);
83
84 /* bitmap of online cpus */
85 cpumask_t cpu_online_map __read_mostly;
86 EXPORT_SYMBOL(cpu_online_map);
87
88 cpumask_t cpu_callin_map;
89 cpumask_t cpu_callout_map;
90 EXPORT_SYMBOL(cpu_callout_map);
91 cpumask_t cpu_possible_map;
92 EXPORT_SYMBOL(cpu_possible_map);
93 static cpumask_t smp_commenced_mask;
94
95 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
96 * is no way to resync one AP against BP. TBD: for prescott and above, we
97 * should use IA64's algorithm
98 */
99 static int __devinitdata tsc_sync_disabled;
100
101 /* Per CPU bogomips and other parameters */
102 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
103 EXPORT_SYMBOL(cpu_data);
104
105 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
106 { [0 ... NR_CPUS-1] = 0xff };
107 EXPORT_SYMBOL(x86_cpu_to_apicid);
108
109 /*
110 * Trampoline 80x86 program as an array.
111 */
112
113 extern unsigned char trampoline_data [];
114 extern unsigned char trampoline_end [];
115 static unsigned char *trampoline_base;
116 static int trampoline_exec;
117
118 static void map_cpu_to_logical_apicid(void);
119
120 /* State of each CPU. */
121 DEFINE_PER_CPU(int, cpu_state) = { 0 };
122
123 /*
124 * Currently trivial. Write the real->protected mode
125 * bootstrap into the page concerned. The caller
126 * has made sure it's suitably aligned.
127 */
128
129 static unsigned long __devinit setup_trampoline(void)
130 {
131 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(trampoline_base);
133 }
134
135 /*
136 * We are called very early to get the low memory for the
137 * SMP bootup trampoline page.
138 */
139 void __init smp_alloc_memory(void)
140 {
141 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
142 /*
143 * Has to be in very low memory so we can execute
144 * real-mode AP code.
145 */
146 if (__pa(trampoline_base) >= 0x9F000)
147 BUG();
148 /*
149 * Make the SMP trampoline executable:
150 */
151 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
152 }
153
154 /*
155 * The bootstrap kernel entry code has set these up. Save them for
156 * a given CPU
157 */
158
159 static void __devinit smp_store_cpu_info(int id)
160 {
161 struct cpuinfo_x86 *c = cpu_data + id;
162
163 *c = boot_cpu_data;
164 if (id!=0)
165 identify_cpu(c);
166 /*
167 * Mask B, Pentium, but not Pentium MMX
168 */
169 if (c->x86_vendor == X86_VENDOR_INTEL &&
170 c->x86 == 5 &&
171 c->x86_mask >= 1 && c->x86_mask <= 4 &&
172 c->x86_model <= 3)
173 /*
174 * Remember we have B step Pentia with bugs
175 */
176 smp_b_stepping = 1;
177
178 /*
179 * Certain Athlons might work (for various values of 'work') in SMP
180 * but they are not certified as MP capable.
181 */
182 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
183
184 /* Athlon 660/661 is valid. */
185 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
186 goto valid_k7;
187
188 /* Duron 670 is valid */
189 if ((c->x86_model==7) && (c->x86_mask==0))
190 goto valid_k7;
191
192 /*
193 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
194 * It's worth noting that the A5 stepping (662) of some Athlon XP's
195 * have the MP bit set.
196 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
197 */
198 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
199 ((c->x86_model==7) && (c->x86_mask>=1)) ||
200 (c->x86_model> 7))
201 if (cpu_has_mp)
202 goto valid_k7;
203
204 /* If we get here, it's not a certified SMP capable AMD system. */
205 tainted |= TAINT_UNSAFE_SMP;
206 }
207
208 valid_k7:
209 ;
210 }
211
212 /*
213 * TSC synchronization.
214 *
215 * We first check whether all CPUs have their TSC's synchronized,
216 * then we print a warning if not, and always resync.
217 */
218
219 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
220 static atomic_t tsc_count_start = ATOMIC_INIT(0);
221 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
222 static unsigned long long tsc_values[NR_CPUS];
223
224 #define NR_LOOPS 5
225
226 static void __init synchronize_tsc_bp (void)
227 {
228 int i;
229 unsigned long long t0;
230 unsigned long long sum, avg;
231 long long delta;
232 unsigned int one_usec;
233 int buggy = 0;
234
235 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
236
237 /* convert from kcyc/sec to cyc/usec */
238 one_usec = cpu_khz / 1000;
239
240 atomic_set(&tsc_start_flag, 1);
241 wmb();
242
243 /*
244 * We loop a few times to get a primed instruction cache,
245 * then the last pass is more or less synchronized and
246 * the BP and APs set their cycle counters to zero all at
247 * once. This reduces the chance of having random offsets
248 * between the processors, and guarantees that the maximum
249 * delay between the cycle counters is never bigger than
250 * the latency of information-passing (cachelines) between
251 * two CPUs.
252 */
253 for (i = 0; i < NR_LOOPS; i++) {
254 /*
255 * all APs synchronize but they loop on '== num_cpus'
256 */
257 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
258 mb();
259 atomic_set(&tsc_count_stop, 0);
260 wmb();
261 /*
262 * this lets the APs save their current TSC:
263 */
264 atomic_inc(&tsc_count_start);
265
266 rdtscll(tsc_values[smp_processor_id()]);
267 /*
268 * We clear the TSC in the last loop:
269 */
270 if (i == NR_LOOPS-1)
271 write_tsc(0, 0);
272
273 /*
274 * Wait for all APs to leave the synchronization point:
275 */
276 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
277 mb();
278 atomic_set(&tsc_count_start, 0);
279 wmb();
280 atomic_inc(&tsc_count_stop);
281 }
282
283 sum = 0;
284 for (i = 0; i < NR_CPUS; i++) {
285 if (cpu_isset(i, cpu_callout_map)) {
286 t0 = tsc_values[i];
287 sum += t0;
288 }
289 }
290 avg = sum;
291 do_div(avg, num_booting_cpus());
292
293 sum = 0;
294 for (i = 0; i < NR_CPUS; i++) {
295 if (!cpu_isset(i, cpu_callout_map))
296 continue;
297 delta = tsc_values[i] - avg;
298 if (delta < 0)
299 delta = -delta;
300 /*
301 * We report bigger than 2 microseconds clock differences.
302 */
303 if (delta > 2*one_usec) {
304 long realdelta;
305 if (!buggy) {
306 buggy = 1;
307 printk("\n");
308 }
309 realdelta = delta;
310 do_div(realdelta, one_usec);
311 if (tsc_values[i] < avg)
312 realdelta = -realdelta;
313
314 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
315 }
316
317 sum += delta;
318 }
319 if (!buggy)
320 printk("passed.\n");
321 }
322
323 static void __init synchronize_tsc_ap (void)
324 {
325 int i;
326
327 /*
328 * Not every cpu is online at the time
329 * this gets called, so we first wait for the BP to
330 * finish SMP initialization:
331 */
332 while (!atomic_read(&tsc_start_flag)) mb();
333
334 for (i = 0; i < NR_LOOPS; i++) {
335 atomic_inc(&tsc_count_start);
336 while (atomic_read(&tsc_count_start) != num_booting_cpus())
337 mb();
338
339 rdtscll(tsc_values[smp_processor_id()]);
340 if (i == NR_LOOPS-1)
341 write_tsc(0, 0);
342
343 atomic_inc(&tsc_count_stop);
344 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
345 }
346 }
347 #undef NR_LOOPS
348
349 extern void calibrate_delay(void);
350
351 static atomic_t init_deasserted;
352
353 static void __devinit smp_callin(void)
354 {
355 int cpuid, phys_id;
356 unsigned long timeout;
357
358 /*
359 * If waken up by an INIT in an 82489DX configuration
360 * we may get here before an INIT-deassert IPI reaches
361 * our local APIC. We have to wait for the IPI or we'll
362 * lock up on an APIC access.
363 */
364 wait_for_init_deassert(&init_deasserted);
365
366 /*
367 * (This works even if the APIC is not enabled.)
368 */
369 phys_id = GET_APIC_ID(apic_read(APIC_ID));
370 cpuid = smp_processor_id();
371 if (cpu_isset(cpuid, cpu_callin_map)) {
372 printk("huh, phys CPU#%d, CPU#%d already present??\n",
373 phys_id, cpuid);
374 BUG();
375 }
376 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
377
378 /*
379 * STARTUP IPIs are fragile beasts as they might sometimes
380 * trigger some glue motherboard logic. Complete APIC bus
381 * silence for 1 second, this overestimates the time the
382 * boot CPU is spending to send the up to 2 STARTUP IPIs
383 * by a factor of two. This should be enough.
384 */
385
386 /*
387 * Waiting 2s total for startup (udelay is not yet working)
388 */
389 timeout = jiffies + 2*HZ;
390 while (time_before(jiffies, timeout)) {
391 /*
392 * Has the boot CPU finished it's STARTUP sequence?
393 */
394 if (cpu_isset(cpuid, cpu_callout_map))
395 break;
396 rep_nop();
397 }
398
399 if (!time_before(jiffies, timeout)) {
400 printk("BUG: CPU%d started up but did not get a callout!\n",
401 cpuid);
402 BUG();
403 }
404
405 /*
406 * the boot CPU has finished the init stage and is spinning
407 * on callin_map until we finish. We are free to set up this
408 * CPU, first the APIC. (this is probably redundant on most
409 * boards)
410 */
411
412 Dprintk("CALLIN, before setup_local_APIC().\n");
413 smp_callin_clear_local_apic();
414 setup_local_APIC();
415 map_cpu_to_logical_apicid();
416
417 /*
418 * Get our bogomips.
419 */
420 calibrate_delay();
421 Dprintk("Stack at about %p\n",&cpuid);
422
423 /*
424 * Save our processor parameters
425 */
426 smp_store_cpu_info(cpuid);
427
428 disable_APIC_timer();
429
430 /*
431 * Allow the master to continue.
432 */
433 cpu_set(cpuid, cpu_callin_map);
434
435 /*
436 * Synchronize the TSC with the BP
437 */
438 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
439 synchronize_tsc_ap();
440 }
441
442 static int cpucount;
443
444 static inline void
445 set_cpu_sibling_map(int cpu)
446 {
447 int i;
448
449 if (smp_num_siblings > 1) {
450 for (i = 0; i < NR_CPUS; i++) {
451 if (!cpu_isset(i, cpu_callout_map))
452 continue;
453 if (cpu_core_id[cpu] == cpu_core_id[i]) {
454 cpu_set(i, cpu_sibling_map[cpu]);
455 cpu_set(cpu, cpu_sibling_map[i]);
456 }
457 }
458 } else {
459 cpu_set(cpu, cpu_sibling_map[cpu]);
460 }
461
462 if (current_cpu_data.x86_num_cores > 1) {
463 for (i = 0; i < NR_CPUS; i++) {
464 if (!cpu_isset(i, cpu_callout_map))
465 continue;
466 if (phys_proc_id[cpu] == phys_proc_id[i]) {
467 cpu_set(i, cpu_core_map[cpu]);
468 cpu_set(cpu, cpu_core_map[i]);
469 }
470 }
471 } else {
472 cpu_core_map[cpu] = cpu_sibling_map[cpu];
473 }
474 }
475
476 /*
477 * Activate a secondary processor.
478 */
479 static void __devinit start_secondary(void *unused)
480 {
481 /*
482 * Dont put anything before smp_callin(), SMP
483 * booting is too fragile that we want to limit the
484 * things done here to the most necessary things.
485 */
486 cpu_init();
487 smp_callin();
488 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
489 rep_nop();
490 setup_secondary_APIC_clock();
491 if (nmi_watchdog == NMI_IO_APIC) {
492 disable_8259A_irq(0);
493 enable_NMI_through_LVT0(NULL);
494 enable_8259A_irq(0);
495 }
496 enable_APIC_timer();
497 /*
498 * low-memory mappings have been cleared, flush them from
499 * the local TLBs too.
500 */
501 local_flush_tlb();
502
503 /* This must be done before setting cpu_online_map */
504 set_cpu_sibling_map(raw_smp_processor_id());
505 wmb();
506
507 /*
508 * We need to hold call_lock, so there is no inconsistency
509 * between the time smp_call_function() determines number of
510 * IPI receipients, and the time when the determination is made
511 * for which cpus receive the IPI. Holding this
512 * lock helps us to not include this cpu in a currently in progress
513 * smp_call_function().
514 */
515 lock_ipi_call_lock();
516 cpu_set(smp_processor_id(), cpu_online_map);
517 unlock_ipi_call_lock();
518 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
519
520 /* We can take interrupts now: we're officially "up". */
521 local_irq_enable();
522
523 wmb();
524 cpu_idle();
525 }
526
527 /*
528 * Everything has been set up for the secondary
529 * CPUs - they just need to reload everything
530 * from the task structure
531 * This function must not return.
532 */
533 void __devinit initialize_secondary(void)
534 {
535 /*
536 * We don't actually need to load the full TSS,
537 * basically just the stack pointer and the eip.
538 */
539
540 asm volatile(
541 "movl %0,%%esp\n\t"
542 "jmp *%1"
543 :
544 :"r" (current->thread.esp),"r" (current->thread.eip));
545 }
546
547 extern struct {
548 void * esp;
549 unsigned short ss;
550 } stack_start;
551
552 #ifdef CONFIG_NUMA
553
554 /* which logical CPUs are on which nodes */
555 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
556 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
557 /* which node each logical CPU is on */
558 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
559 EXPORT_SYMBOL(cpu_2_node);
560
561 /* set up a mapping between cpu and node. */
562 static inline void map_cpu_to_node(int cpu, int node)
563 {
564 printk("Mapping cpu %d to node %d\n", cpu, node);
565 cpu_set(cpu, node_2_cpu_mask[node]);
566 cpu_2_node[cpu] = node;
567 }
568
569 /* undo a mapping between cpu and node. */
570 static inline void unmap_cpu_to_node(int cpu)
571 {
572 int node;
573
574 printk("Unmapping cpu %d from all nodes\n", cpu);
575 for (node = 0; node < MAX_NUMNODES; node ++)
576 cpu_clear(cpu, node_2_cpu_mask[node]);
577 cpu_2_node[cpu] = 0;
578 }
579 #else /* !CONFIG_NUMA */
580
581 #define map_cpu_to_node(cpu, node) ({})
582 #define unmap_cpu_to_node(cpu) ({})
583
584 #endif /* CONFIG_NUMA */
585
586 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
587
588 static void map_cpu_to_logical_apicid(void)
589 {
590 int cpu = smp_processor_id();
591 int apicid = logical_smp_processor_id();
592
593 cpu_2_logical_apicid[cpu] = apicid;
594 map_cpu_to_node(cpu, apicid_to_node(apicid));
595 }
596
597 static void unmap_cpu_to_logical_apicid(int cpu)
598 {
599 cpu_2_logical_apicid[cpu] = BAD_APICID;
600 unmap_cpu_to_node(cpu);
601 }
602
603 #if APIC_DEBUG
604 static inline void __inquire_remote_apic(int apicid)
605 {
606 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
607 char *names[] = { "ID", "VERSION", "SPIV" };
608 int timeout, status;
609
610 printk("Inquiring remote APIC #%d...\n", apicid);
611
612 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
613 printk("... APIC #%d %s: ", apicid, names[i]);
614
615 /*
616 * Wait for idle.
617 */
618 apic_wait_icr_idle();
619
620 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
621 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
622
623 timeout = 0;
624 do {
625 udelay(100);
626 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
627 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
628
629 switch (status) {
630 case APIC_ICR_RR_VALID:
631 status = apic_read(APIC_RRR);
632 printk("%08x\n", status);
633 break;
634 default:
635 printk("failed\n");
636 }
637 }
638 }
639 #endif
640
641 #ifdef WAKE_SECONDARY_VIA_NMI
642 /*
643 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
644 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
645 * won't ... remember to clear down the APIC, etc later.
646 */
647 static int __devinit
648 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
649 {
650 unsigned long send_status = 0, accept_status = 0;
651 int timeout, maxlvt;
652
653 /* Target chip */
654 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
655
656 /* Boot on the stack */
657 /* Kick the second */
658 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
659
660 Dprintk("Waiting for send to finish...\n");
661 timeout = 0;
662 do {
663 Dprintk("+");
664 udelay(100);
665 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
666 } while (send_status && (timeout++ < 1000));
667
668 /*
669 * Give the other CPU some time to accept the IPI.
670 */
671 udelay(200);
672 /*
673 * Due to the Pentium erratum 3AP.
674 */
675 maxlvt = get_maxlvt();
676 if (maxlvt > 3) {
677 apic_read_around(APIC_SPIV);
678 apic_write(APIC_ESR, 0);
679 }
680 accept_status = (apic_read(APIC_ESR) & 0xEF);
681 Dprintk("NMI sent.\n");
682
683 if (send_status)
684 printk("APIC never delivered???\n");
685 if (accept_status)
686 printk("APIC delivery error (%lx).\n", accept_status);
687
688 return (send_status | accept_status);
689 }
690 #endif /* WAKE_SECONDARY_VIA_NMI */
691
692 #ifdef WAKE_SECONDARY_VIA_INIT
693 static int __devinit
694 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
695 {
696 unsigned long send_status = 0, accept_status = 0;
697 int maxlvt, timeout, num_starts, j;
698
699 /*
700 * Be paranoid about clearing APIC errors.
701 */
702 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
703 apic_read_around(APIC_SPIV);
704 apic_write(APIC_ESR, 0);
705 apic_read(APIC_ESR);
706 }
707
708 Dprintk("Asserting INIT.\n");
709
710 /*
711 * Turn INIT on target chip
712 */
713 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
714
715 /*
716 * Send IPI
717 */
718 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
719 | APIC_DM_INIT);
720
721 Dprintk("Waiting for send to finish...\n");
722 timeout = 0;
723 do {
724 Dprintk("+");
725 udelay(100);
726 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
727 } while (send_status && (timeout++ < 1000));
728
729 mdelay(10);
730
731 Dprintk("Deasserting INIT.\n");
732
733 /* Target chip */
734 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
735
736 /* Send IPI */
737 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
738
739 Dprintk("Waiting for send to finish...\n");
740 timeout = 0;
741 do {
742 Dprintk("+");
743 udelay(100);
744 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
745 } while (send_status && (timeout++ < 1000));
746
747 atomic_set(&init_deasserted, 1);
748
749 /*
750 * Should we send STARTUP IPIs ?
751 *
752 * Determine this based on the APIC version.
753 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
754 */
755 if (APIC_INTEGRATED(apic_version[phys_apicid]))
756 num_starts = 2;
757 else
758 num_starts = 0;
759
760 /*
761 * Run STARTUP IPI loop.
762 */
763 Dprintk("#startup loops: %d.\n", num_starts);
764
765 maxlvt = get_maxlvt();
766
767 for (j = 1; j <= num_starts; j++) {
768 Dprintk("Sending STARTUP #%d.\n",j);
769 apic_read_around(APIC_SPIV);
770 apic_write(APIC_ESR, 0);
771 apic_read(APIC_ESR);
772 Dprintk("After apic_write.\n");
773
774 /*
775 * STARTUP IPI
776 */
777
778 /* Target chip */
779 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
780
781 /* Boot on the stack */
782 /* Kick the second */
783 apic_write_around(APIC_ICR, APIC_DM_STARTUP
784 | (start_eip >> 12));
785
786 /*
787 * Give the other CPU some time to accept the IPI.
788 */
789 udelay(300);
790
791 Dprintk("Startup point 1.\n");
792
793 Dprintk("Waiting for send to finish...\n");
794 timeout = 0;
795 do {
796 Dprintk("+");
797 udelay(100);
798 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
799 } while (send_status && (timeout++ < 1000));
800
801 /*
802 * Give the other CPU some time to accept the IPI.
803 */
804 udelay(200);
805 /*
806 * Due to the Pentium erratum 3AP.
807 */
808 if (maxlvt > 3) {
809 apic_read_around(APIC_SPIV);
810 apic_write(APIC_ESR, 0);
811 }
812 accept_status = (apic_read(APIC_ESR) & 0xEF);
813 if (send_status || accept_status)
814 break;
815 }
816 Dprintk("After Startup.\n");
817
818 if (send_status)
819 printk("APIC never delivered???\n");
820 if (accept_status)
821 printk("APIC delivery error (%lx).\n", accept_status);
822
823 return (send_status | accept_status);
824 }
825 #endif /* WAKE_SECONDARY_VIA_INIT */
826
827 extern cpumask_t cpu_initialized;
828 static inline int alloc_cpu_id(void)
829 {
830 cpumask_t tmp_map;
831 int cpu;
832 cpus_complement(tmp_map, cpu_present_map);
833 cpu = first_cpu(tmp_map);
834 if (cpu >= NR_CPUS)
835 return -ENODEV;
836 return cpu;
837 }
838
839 #ifdef CONFIG_HOTPLUG_CPU
840 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
841 static inline struct task_struct * alloc_idle_task(int cpu)
842 {
843 struct task_struct *idle;
844
845 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
846 /* initialize thread_struct. we really want to avoid destroy
847 * idle tread
848 */
849 idle->thread.esp = (unsigned long)(((struct pt_regs *)
850 (THREAD_SIZE + (unsigned long) idle->thread_info)) - 1);
851 init_idle(idle, cpu);
852 return idle;
853 }
854 idle = fork_idle(cpu);
855
856 if (!IS_ERR(idle))
857 cpu_idle_tasks[cpu] = idle;
858 return idle;
859 }
860 #else
861 #define alloc_idle_task(cpu) fork_idle(cpu)
862 #endif
863
864 static int __devinit do_boot_cpu(int apicid, int cpu)
865 /*
866 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
867 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
868 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
869 */
870 {
871 struct task_struct *idle;
872 unsigned long boot_error;
873 int timeout;
874 unsigned long start_eip;
875 unsigned short nmi_high = 0, nmi_low = 0;
876
877 ++cpucount;
878
879 /*
880 * We can't use kernel_thread since we must avoid to
881 * reschedule the child.
882 */
883 idle = alloc_idle_task(cpu);
884 if (IS_ERR(idle))
885 panic("failed fork for CPU %d", cpu);
886 idle->thread.eip = (unsigned long) start_secondary;
887 /* start_eip had better be page-aligned! */
888 start_eip = setup_trampoline();
889
890 /* So we see what's up */
891 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
892 /* Stack for startup_32 can be just as for start_secondary onwards */
893 stack_start.esp = (void *) idle->thread.esp;
894
895 irq_ctx_init(cpu);
896
897 /*
898 * This grunge runs the startup process for
899 * the targeted processor.
900 */
901
902 atomic_set(&init_deasserted, 0);
903
904 Dprintk("Setting warm reset code and vector.\n");
905
906 store_NMI_vector(&nmi_high, &nmi_low);
907
908 smpboot_setup_warm_reset_vector(start_eip);
909
910 /*
911 * Starting actual IPI sequence...
912 */
913 boot_error = wakeup_secondary_cpu(apicid, start_eip);
914
915 if (!boot_error) {
916 /*
917 * allow APs to start initializing.
918 */
919 Dprintk("Before Callout %d.\n", cpu);
920 cpu_set(cpu, cpu_callout_map);
921 Dprintk("After Callout %d.\n", cpu);
922
923 /*
924 * Wait 5s total for a response
925 */
926 for (timeout = 0; timeout < 50000; timeout++) {
927 if (cpu_isset(cpu, cpu_callin_map))
928 break; /* It has booted */
929 udelay(100);
930 }
931
932 if (cpu_isset(cpu, cpu_callin_map)) {
933 /* number CPUs logically, starting from 1 (BSP is 0) */
934 Dprintk("OK.\n");
935 printk("CPU%d: ", cpu);
936 print_cpu_info(&cpu_data[cpu]);
937 Dprintk("CPU has booted.\n");
938 } else {
939 boot_error= 1;
940 if (*((volatile unsigned char *)trampoline_base)
941 == 0xA5)
942 /* trampoline started but...? */
943 printk("Stuck ??\n");
944 else
945 /* trampoline code not run */
946 printk("Not responding.\n");
947 inquire_remote_apic(apicid);
948 }
949 }
950
951 if (boot_error) {
952 /* Try to put things back the way they were before ... */
953 unmap_cpu_to_logical_apicid(cpu);
954 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
955 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
956 cpucount--;
957 } else {
958 x86_cpu_to_apicid[cpu] = apicid;
959 cpu_set(cpu, cpu_present_map);
960 }
961
962 /* mark "stuck" area as not stuck */
963 *((volatile unsigned long *)trampoline_base) = 0;
964
965 return boot_error;
966 }
967
968 #ifdef CONFIG_HOTPLUG_CPU
969 void cpu_exit_clear(void)
970 {
971 int cpu = raw_smp_processor_id();
972
973 idle_task_exit();
974
975 cpucount --;
976 cpu_uninit();
977 irq_ctx_exit(cpu);
978
979 cpu_clear(cpu, cpu_callout_map);
980 cpu_clear(cpu, cpu_callin_map);
981 cpu_clear(cpu, cpu_present_map);
982
983 cpu_clear(cpu, smp_commenced_mask);
984 unmap_cpu_to_logical_apicid(cpu);
985 }
986
987 struct warm_boot_cpu_info {
988 struct completion *complete;
989 int apicid;
990 int cpu;
991 };
992
993 static void __devinit do_warm_boot_cpu(void *p)
994 {
995 struct warm_boot_cpu_info *info = p;
996 do_boot_cpu(info->apicid, info->cpu);
997 complete(info->complete);
998 }
999
1000 int __devinit smp_prepare_cpu(int cpu)
1001 {
1002 DECLARE_COMPLETION(done);
1003 struct warm_boot_cpu_info info;
1004 struct work_struct task;
1005 int apicid, ret;
1006
1007 lock_cpu_hotplug();
1008 apicid = x86_cpu_to_apicid[cpu];
1009 if (apicid == BAD_APICID) {
1010 ret = -ENODEV;
1011 goto exit;
1012 }
1013
1014 info.complete = &done;
1015 info.apicid = apicid;
1016 info.cpu = cpu;
1017 INIT_WORK(&task, do_warm_boot_cpu, &info);
1018
1019 tsc_sync_disabled = 1;
1020
1021 /* init low mem mapping */
1022 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1023 KERNEL_PGD_PTRS);
1024 flush_tlb_all();
1025 schedule_work(&task);
1026 wait_for_completion(&done);
1027
1028 tsc_sync_disabled = 0;
1029 zap_low_mappings();
1030 ret = 0;
1031 exit:
1032 unlock_cpu_hotplug();
1033 return ret;
1034 }
1035 #endif
1036
1037 static void smp_tune_scheduling (void)
1038 {
1039 unsigned long cachesize; /* kB */
1040 unsigned long bandwidth = 350; /* MB/s */
1041 /*
1042 * Rough estimation for SMP scheduling, this is the number of
1043 * cycles it takes for a fully memory-limited process to flush
1044 * the SMP-local cache.
1045 *
1046 * (For a P5 this pretty much means we will choose another idle
1047 * CPU almost always at wakeup time (this is due to the small
1048 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1049 * the cache size)
1050 */
1051
1052 if (!cpu_khz) {
1053 /*
1054 * this basically disables processor-affinity
1055 * scheduling on SMP without a TSC.
1056 */
1057 return;
1058 } else {
1059 cachesize = boot_cpu_data.x86_cache_size;
1060 if (cachesize == -1) {
1061 cachesize = 16; /* Pentiums, 2x8kB cache */
1062 bandwidth = 100;
1063 }
1064 }
1065 }
1066
1067 /*
1068 * Cycle through the processors sending APIC IPIs to boot each.
1069 */
1070
1071 static int boot_cpu_logical_apicid;
1072 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1073 void *xquad_portio;
1074 #ifdef CONFIG_X86_NUMAQ
1075 EXPORT_SYMBOL(xquad_portio);
1076 #endif
1077
1078 static void __init smp_boot_cpus(unsigned int max_cpus)
1079 {
1080 int apicid, cpu, bit, kicked;
1081 unsigned long bogosum = 0;
1082
1083 /*
1084 * Setup boot CPU information
1085 */
1086 smp_store_cpu_info(0); /* Final full version of the data */
1087 printk("CPU%d: ", 0);
1088 print_cpu_info(&cpu_data[0]);
1089
1090 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1091 boot_cpu_logical_apicid = logical_smp_processor_id();
1092 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1093
1094 current_thread_info()->cpu = 0;
1095 smp_tune_scheduling();
1096 cpus_clear(cpu_sibling_map[0]);
1097 cpu_set(0, cpu_sibling_map[0]);
1098
1099 cpus_clear(cpu_core_map[0]);
1100 cpu_set(0, cpu_core_map[0]);
1101
1102 /*
1103 * If we couldn't find an SMP configuration at boot time,
1104 * get out of here now!
1105 */
1106 if (!smp_found_config && !acpi_lapic) {
1107 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1108 smpboot_clear_io_apic_irqs();
1109 phys_cpu_present_map = physid_mask_of_physid(0);
1110 if (APIC_init_uniprocessor())
1111 printk(KERN_NOTICE "Local APIC not detected."
1112 " Using dummy APIC emulation.\n");
1113 map_cpu_to_logical_apicid();
1114 cpu_set(0, cpu_sibling_map[0]);
1115 cpu_set(0, cpu_core_map[0]);
1116 return;
1117 }
1118
1119 /*
1120 * Should not be necessary because the MP table should list the boot
1121 * CPU too, but we do it for the sake of robustness anyway.
1122 * Makes no sense to do this check in clustered apic mode, so skip it
1123 */
1124 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1125 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1126 boot_cpu_physical_apicid);
1127 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1128 }
1129
1130 /*
1131 * If we couldn't find a local APIC, then get out of here now!
1132 */
1133 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1134 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1135 boot_cpu_physical_apicid);
1136 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1137 smpboot_clear_io_apic_irqs();
1138 phys_cpu_present_map = physid_mask_of_physid(0);
1139 cpu_set(0, cpu_sibling_map[0]);
1140 cpu_set(0, cpu_core_map[0]);
1141 return;
1142 }
1143
1144 verify_local_APIC();
1145
1146 /*
1147 * If SMP should be disabled, then really disable it!
1148 */
1149 if (!max_cpus) {
1150 smp_found_config = 0;
1151 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1152 smpboot_clear_io_apic_irqs();
1153 phys_cpu_present_map = physid_mask_of_physid(0);
1154 cpu_set(0, cpu_sibling_map[0]);
1155 cpu_set(0, cpu_core_map[0]);
1156 return;
1157 }
1158
1159 connect_bsp_APIC();
1160 setup_local_APIC();
1161 map_cpu_to_logical_apicid();
1162
1163
1164 setup_portio_remap();
1165
1166 /*
1167 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1168 *
1169 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1170 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1171 * clustered apic ID.
1172 */
1173 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1174
1175 kicked = 1;
1176 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1177 apicid = cpu_present_to_apicid(bit);
1178 /*
1179 * Don't even attempt to start the boot CPU!
1180 */
1181 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1182 continue;
1183
1184 if (!check_apicid_present(bit))
1185 continue;
1186 if (max_cpus <= cpucount+1)
1187 continue;
1188
1189 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1190 printk("CPU #%d not responding - cannot use it.\n",
1191 apicid);
1192 else
1193 ++kicked;
1194 }
1195
1196 /*
1197 * Cleanup possible dangling ends...
1198 */
1199 smpboot_restore_warm_reset_vector();
1200
1201 /*
1202 * Allow the user to impress friends.
1203 */
1204 Dprintk("Before bogomips.\n");
1205 for (cpu = 0; cpu < NR_CPUS; cpu++)
1206 if (cpu_isset(cpu, cpu_callout_map))
1207 bogosum += cpu_data[cpu].loops_per_jiffy;
1208 printk(KERN_INFO
1209 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1210 cpucount+1,
1211 bogosum/(500000/HZ),
1212 (bogosum/(5000/HZ))%100);
1213
1214 Dprintk("Before bogocount - setting activated=1.\n");
1215
1216 if (smp_b_stepping)
1217 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1218
1219 /*
1220 * Don't taint if we are running SMP kernel on a single non-MP
1221 * approved Athlon
1222 */
1223 if (tainted & TAINT_UNSAFE_SMP) {
1224 if (cpucount)
1225 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1226 else
1227 tainted &= ~TAINT_UNSAFE_SMP;
1228 }
1229
1230 Dprintk("Boot done.\n");
1231
1232 /*
1233 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1234 * efficiently.
1235 */
1236 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1237 cpus_clear(cpu_sibling_map[cpu]);
1238 cpus_clear(cpu_core_map[cpu]);
1239 }
1240
1241 cpu_set(0, cpu_sibling_map[0]);
1242 cpu_set(0, cpu_core_map[0]);
1243
1244 smpboot_setup_io_apic();
1245
1246 setup_boot_APIC_clock();
1247
1248 /*
1249 * Synchronize the TSC with the AP
1250 */
1251 if (cpu_has_tsc && cpucount && cpu_khz)
1252 synchronize_tsc_bp();
1253 }
1254
1255 /* These are wrappers to interface to the new boot process. Someone
1256 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1257 void __init smp_prepare_cpus(unsigned int max_cpus)
1258 {
1259 smp_commenced_mask = cpumask_of_cpu(0);
1260 cpu_callin_map = cpumask_of_cpu(0);
1261 mb();
1262 smp_boot_cpus(max_cpus);
1263 }
1264
1265 void __devinit smp_prepare_boot_cpu(void)
1266 {
1267 cpu_set(smp_processor_id(), cpu_online_map);
1268 cpu_set(smp_processor_id(), cpu_callout_map);
1269 cpu_set(smp_processor_id(), cpu_present_map);
1270 cpu_set(smp_processor_id(), cpu_possible_map);
1271 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1272 }
1273
1274 #ifdef CONFIG_HOTPLUG_CPU
1275 static void
1276 remove_siblinginfo(int cpu)
1277 {
1278 int sibling;
1279
1280 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1281 cpu_clear(cpu, cpu_sibling_map[sibling]);
1282 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1283 cpu_clear(cpu, cpu_core_map[sibling]);
1284 cpus_clear(cpu_sibling_map[cpu]);
1285 cpus_clear(cpu_core_map[cpu]);
1286 phys_proc_id[cpu] = BAD_APICID;
1287 cpu_core_id[cpu] = BAD_APICID;
1288 }
1289
1290 int __cpu_disable(void)
1291 {
1292 cpumask_t map = cpu_online_map;
1293 int cpu = smp_processor_id();
1294
1295 /*
1296 * Perhaps use cpufreq to drop frequency, but that could go
1297 * into generic code.
1298 *
1299 * We won't take down the boot processor on i386 due to some
1300 * interrupts only being able to be serviced by the BSP.
1301 * Especially so if we're not using an IOAPIC -zwane
1302 */
1303 if (cpu == 0)
1304 return -EBUSY;
1305
1306 /* We enable the timer again on the exit path of the death loop */
1307 disable_APIC_timer();
1308 /* Allow any queued timer interrupts to get serviced */
1309 local_irq_enable();
1310 mdelay(1);
1311 local_irq_disable();
1312
1313 remove_siblinginfo(cpu);
1314
1315 cpu_clear(cpu, map);
1316 fixup_irqs(map);
1317 /* It's now safe to remove this processor from the online map */
1318 cpu_clear(cpu, cpu_online_map);
1319 return 0;
1320 }
1321
1322 void __cpu_die(unsigned int cpu)
1323 {
1324 /* We don't do anything here: idle task is faking death itself. */
1325 unsigned int i;
1326
1327 for (i = 0; i < 10; i++) {
1328 /* They ack this in play_dead by setting CPU_DEAD */
1329 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1330 printk ("CPU %d is now offline\n", cpu);
1331 return;
1332 }
1333 msleep(100);
1334 }
1335 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336 }
1337 #else /* ... !CONFIG_HOTPLUG_CPU */
1338 int __cpu_disable(void)
1339 {
1340 return -ENOSYS;
1341 }
1342
1343 void __cpu_die(unsigned int cpu)
1344 {
1345 /* We said "no" in __cpu_disable */
1346 BUG();
1347 }
1348 #endif /* CONFIG_HOTPLUG_CPU */
1349
1350 int __devinit __cpu_up(unsigned int cpu)
1351 {
1352 /* In case one didn't come up */
1353 if (!cpu_isset(cpu, cpu_callin_map)) {
1354 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1355 local_irq_enable();
1356 return -EIO;
1357 }
1358
1359 local_irq_enable();
1360 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1361 /* Unleash the CPU! */
1362 cpu_set(cpu, smp_commenced_mask);
1363 while (!cpu_isset(cpu, cpu_online_map))
1364 mb();
1365 return 0;
1366 }
1367
1368 void __init smp_cpus_done(unsigned int max_cpus)
1369 {
1370 #ifdef CONFIG_X86_IO_APIC
1371 setup_ioapic_dest();
1372 #endif
1373 zap_low_mappings();
1374 #ifndef CONFIG_HOTPLUG_CPU
1375 /*
1376 * Disable executability of the SMP trampoline:
1377 */
1378 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1379 #endif
1380 }
1381
1382 void __init smp_intr_init(void)
1383 {
1384 /*
1385 * IRQ0 must be given a fixed assignment and initialized,
1386 * because it's used before the IO-APIC is set up.
1387 */
1388 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1389
1390 /*
1391 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1392 * IPI, driven by wakeup.
1393 */
1394 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1395
1396 /* IPI for invalidation */
1397 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1398
1399 /* IPI for generic function call */
1400 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1401 }