]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/i386/kernel/time.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[mirror_ubuntu-jammy-kernel.git] / arch / i386 / kernel / time.c
1 /*
2 * linux/arch/i386/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1996-05-03 Ingo Molnar
14 * fixed time warps in do_[slow|fast]_gettimeoffset()
15 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
16 * "A Kernel Model for Precision Timekeeping" by Dave Mills
17 * 1998-09-05 (Various)
18 * More robust do_fast_gettimeoffset() algorithm implemented
19 * (works with APM, Cyrix 6x86MX and Centaur C6),
20 * monotonic gettimeofday() with fast_get_timeoffset(),
21 * drift-proof precision TSC calibration on boot
22 * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
23 * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
24 * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
25 * 1998-12-16 Andrea Arcangeli
26 * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
27 * because was not accounting lost_ticks.
28 * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli
29 * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
30 * serialize accesses to xtime/lost_ticks).
31 */
32
33 #include <linux/errno.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/time.h>
41 #include <linux/delay.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sysdev.h>
46 #include <linux/bcd.h>
47 #include <linux/efi.h>
48 #include <linux/mca.h>
49
50 #include <asm/io.h>
51 #include <asm/smp.h>
52 #include <asm/irq.h>
53 #include <asm/msr.h>
54 #include <asm/delay.h>
55 #include <asm/mpspec.h>
56 #include <asm/uaccess.h>
57 #include <asm/processor.h>
58 #include <asm/timer.h>
59
60 #include "mach_time.h"
61
62 #include <linux/timex.h>
63 #include <linux/config.h>
64
65 #include <asm/hpet.h>
66
67 #include <asm/arch_hooks.h>
68
69 #include "io_ports.h"
70
71 #include <asm/i8259.h>
72
73 int pit_latch_buggy; /* extern */
74
75 #include "do_timer.h"
76
77 unsigned int cpu_khz; /* Detected as we calibrate the TSC */
78 EXPORT_SYMBOL(cpu_khz);
79
80 extern unsigned long wall_jiffies;
81
82 DEFINE_SPINLOCK(rtc_lock);
83 EXPORT_SYMBOL(rtc_lock);
84
85 #include <asm/i8253.h>
86
87 DEFINE_SPINLOCK(i8253_lock);
88 EXPORT_SYMBOL(i8253_lock);
89
90 struct timer_opts *cur_timer __read_mostly = &timer_none;
91
92 /*
93 * This is a special lock that is owned by the CPU and holds the index
94 * register we are working with. It is required for NMI access to the
95 * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details.
96 */
97 volatile unsigned long cmos_lock = 0;
98 EXPORT_SYMBOL(cmos_lock);
99
100 /* Routines for accessing the CMOS RAM/RTC. */
101 unsigned char rtc_cmos_read(unsigned char addr)
102 {
103 unsigned char val;
104 lock_cmos_prefix(addr);
105 outb_p(addr, RTC_PORT(0));
106 val = inb_p(RTC_PORT(1));
107 lock_cmos_suffix(addr);
108 return val;
109 }
110 EXPORT_SYMBOL(rtc_cmos_read);
111
112 void rtc_cmos_write(unsigned char val, unsigned char addr)
113 {
114 lock_cmos_prefix(addr);
115 outb_p(addr, RTC_PORT(0));
116 outb_p(val, RTC_PORT(1));
117 lock_cmos_suffix(addr);
118 }
119 EXPORT_SYMBOL(rtc_cmos_write);
120
121 /*
122 * This version of gettimeofday has microsecond resolution
123 * and better than microsecond precision on fast x86 machines with TSC.
124 */
125 void do_gettimeofday(struct timeval *tv)
126 {
127 unsigned long seq;
128 unsigned long usec, sec;
129 unsigned long max_ntp_tick;
130
131 do {
132 unsigned long lost;
133
134 seq = read_seqbegin(&xtime_lock);
135
136 usec = cur_timer->get_offset();
137 lost = jiffies - wall_jiffies;
138
139 /*
140 * If time_adjust is negative then NTP is slowing the clock
141 * so make sure not to go into next possible interval.
142 * Better to lose some accuracy than have time go backwards..
143 */
144 if (unlikely(time_adjust < 0)) {
145 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
146 usec = min(usec, max_ntp_tick);
147
148 if (lost)
149 usec += lost * max_ntp_tick;
150 }
151 else if (unlikely(lost))
152 usec += lost * (USEC_PER_SEC / HZ);
153
154 sec = xtime.tv_sec;
155 usec += (xtime.tv_nsec / 1000);
156 } while (read_seqretry(&xtime_lock, seq));
157
158 while (usec >= 1000000) {
159 usec -= 1000000;
160 sec++;
161 }
162
163 tv->tv_sec = sec;
164 tv->tv_usec = usec;
165 }
166
167 EXPORT_SYMBOL(do_gettimeofday);
168
169 int do_settimeofday(struct timespec *tv)
170 {
171 time_t wtm_sec, sec = tv->tv_sec;
172 long wtm_nsec, nsec = tv->tv_nsec;
173
174 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
175 return -EINVAL;
176
177 write_seqlock_irq(&xtime_lock);
178 /*
179 * This is revolting. We need to set "xtime" correctly. However, the
180 * value in this location is the value at the most recent update of
181 * wall time. Discover what correction gettimeofday() would have
182 * made, and then undo it!
183 */
184 nsec -= cur_timer->get_offset() * NSEC_PER_USEC;
185 nsec -= (jiffies - wall_jiffies) * TICK_NSEC;
186
187 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
188 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
189
190 set_normalized_timespec(&xtime, sec, nsec);
191 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
192
193 ntp_clear();
194 write_sequnlock_irq(&xtime_lock);
195 clock_was_set();
196 return 0;
197 }
198
199 EXPORT_SYMBOL(do_settimeofday);
200
201 static int set_rtc_mmss(unsigned long nowtime)
202 {
203 int retval;
204
205 WARN_ON(irqs_disabled());
206
207 /* gets recalled with irq locally disabled */
208 spin_lock_irq(&rtc_lock);
209 if (efi_enabled)
210 retval = efi_set_rtc_mmss(nowtime);
211 else
212 retval = mach_set_rtc_mmss(nowtime);
213 spin_unlock_irq(&rtc_lock);
214
215 return retval;
216 }
217
218
219 int timer_ack;
220
221 /* monotonic_clock(): returns # of nanoseconds passed since time_init()
222 * Note: This function is required to return accurate
223 * time even in the absence of multiple timer ticks.
224 */
225 unsigned long long monotonic_clock(void)
226 {
227 return cur_timer->monotonic_clock();
228 }
229 EXPORT_SYMBOL(monotonic_clock);
230
231 #if defined(CONFIG_SMP) && defined(CONFIG_FRAME_POINTER)
232 unsigned long profile_pc(struct pt_regs *regs)
233 {
234 unsigned long pc = instruction_pointer(regs);
235
236 if (in_lock_functions(pc))
237 return *(unsigned long *)(regs->ebp + 4);
238
239 return pc;
240 }
241 EXPORT_SYMBOL(profile_pc);
242 #endif
243
244 /*
245 * timer_interrupt() needs to keep up the real-time clock,
246 * as well as call the "do_timer()" routine every clocktick
247 */
248 static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
249 {
250 #ifdef CONFIG_X86_IO_APIC
251 if (timer_ack) {
252 /*
253 * Subtle, when I/O APICs are used we have to ack timer IRQ
254 * manually to reset the IRR bit for do_slow_gettimeoffset().
255 * This will also deassert NMI lines for the watchdog if run
256 * on an 82489DX-based system.
257 */
258 spin_lock(&i8259A_lock);
259 outb(0x0c, PIC_MASTER_OCW3);
260 /* Ack the IRQ; AEOI will end it automatically. */
261 inb(PIC_MASTER_POLL);
262 spin_unlock(&i8259A_lock);
263 }
264 #endif
265
266 do_timer_interrupt_hook(regs);
267
268
269 if (MCA_bus) {
270 /* The PS/2 uses level-triggered interrupts. You can't
271 turn them off, nor would you want to (any attempt to
272 enable edge-triggered interrupts usually gets intercepted by a
273 special hardware circuit). Hence we have to acknowledge
274 the timer interrupt. Through some incredibly stupid
275 design idea, the reset for IRQ 0 is done by setting the
276 high bit of the PPI port B (0x61). Note that some PS/2s,
277 notably the 55SX, work fine if this is removed. */
278
279 irq = inb_p( 0x61 ); /* read the current state */
280 outb_p( irq|0x80, 0x61 ); /* reset the IRQ */
281 }
282 }
283
284 /*
285 * This is the same as the above, except we _also_ save the current
286 * Time Stamp Counter value at the time of the timer interrupt, so that
287 * we later on can estimate the time of day more exactly.
288 */
289 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
290 {
291 /*
292 * Here we are in the timer irq handler. We just have irqs locally
293 * disabled but we don't know if the timer_bh is running on the other
294 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
295 * the irq version of write_lock because as just said we have irq
296 * locally disabled. -arca
297 */
298 write_seqlock(&xtime_lock);
299
300 cur_timer->mark_offset();
301
302 do_timer_interrupt(irq, regs);
303
304 write_sequnlock(&xtime_lock);
305 return IRQ_HANDLED;
306 }
307
308 /* not static: needed by APM */
309 unsigned long get_cmos_time(void)
310 {
311 unsigned long retval;
312
313 spin_lock(&rtc_lock);
314
315 if (efi_enabled)
316 retval = efi_get_time();
317 else
318 retval = mach_get_cmos_time();
319
320 spin_unlock(&rtc_lock);
321
322 return retval;
323 }
324 EXPORT_SYMBOL(get_cmos_time);
325
326 static void sync_cmos_clock(unsigned long dummy);
327
328 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
329
330 static void sync_cmos_clock(unsigned long dummy)
331 {
332 struct timeval now, next;
333 int fail = 1;
334
335 /*
336 * If we have an externally synchronized Linux clock, then update
337 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
338 * called as close as possible to 500 ms before the new second starts.
339 * This code is run on a timer. If the clock is set, that timer
340 * may not expire at the correct time. Thus, we adjust...
341 */
342 if (!ntp_synced())
343 /*
344 * Not synced, exit, do not restart a timer (if one is
345 * running, let it run out).
346 */
347 return;
348
349 do_gettimeofday(&now);
350 if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
351 now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
352 fail = set_rtc_mmss(now.tv_sec);
353
354 next.tv_usec = USEC_AFTER - now.tv_usec;
355 if (next.tv_usec <= 0)
356 next.tv_usec += USEC_PER_SEC;
357
358 if (!fail)
359 next.tv_sec = 659;
360 else
361 next.tv_sec = 0;
362
363 if (next.tv_usec >= USEC_PER_SEC) {
364 next.tv_sec++;
365 next.tv_usec -= USEC_PER_SEC;
366 }
367 mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
368 }
369
370 void notify_arch_cmos_timer(void)
371 {
372 mod_timer(&sync_cmos_timer, jiffies + 1);
373 }
374
375 static long clock_cmos_diff, sleep_start;
376
377 static struct timer_opts *last_timer;
378 static int timer_suspend(struct sys_device *dev, pm_message_t state)
379 {
380 /*
381 * Estimate time zone so that set_time can update the clock
382 */
383 clock_cmos_diff = -get_cmos_time();
384 clock_cmos_diff += get_seconds();
385 sleep_start = get_cmos_time();
386 last_timer = cur_timer;
387 cur_timer = &timer_none;
388 if (last_timer->suspend)
389 last_timer->suspend(state);
390 return 0;
391 }
392
393 static int timer_resume(struct sys_device *dev)
394 {
395 unsigned long flags;
396 unsigned long sec;
397 unsigned long sleep_length;
398
399 #ifdef CONFIG_HPET_TIMER
400 if (is_hpet_enabled())
401 hpet_reenable();
402 #endif
403 setup_pit_timer();
404 sec = get_cmos_time() + clock_cmos_diff;
405 sleep_length = (get_cmos_time() - sleep_start) * HZ;
406 write_seqlock_irqsave(&xtime_lock, flags);
407 xtime.tv_sec = sec;
408 xtime.tv_nsec = 0;
409 write_sequnlock_irqrestore(&xtime_lock, flags);
410 jiffies += sleep_length;
411 wall_jiffies += sleep_length;
412 if (last_timer->resume)
413 last_timer->resume();
414 cur_timer = last_timer;
415 last_timer = NULL;
416 touch_softlockup_watchdog();
417 return 0;
418 }
419
420 static struct sysdev_class timer_sysclass = {
421 .resume = timer_resume,
422 .suspend = timer_suspend,
423 set_kset_name("timer"),
424 };
425
426
427 /* XXX this driverfs stuff should probably go elsewhere later -john */
428 static struct sys_device device_timer = {
429 .id = 0,
430 .cls = &timer_sysclass,
431 };
432
433 static int time_init_device(void)
434 {
435 int error = sysdev_class_register(&timer_sysclass);
436 if (!error)
437 error = sysdev_register(&device_timer);
438 return error;
439 }
440
441 device_initcall(time_init_device);
442
443 #ifdef CONFIG_HPET_TIMER
444 extern void (*late_time_init)(void);
445 /* Duplicate of time_init() below, with hpet_enable part added */
446 static void __init hpet_time_init(void)
447 {
448 xtime.tv_sec = get_cmos_time();
449 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
450 set_normalized_timespec(&wall_to_monotonic,
451 -xtime.tv_sec, -xtime.tv_nsec);
452
453 if ((hpet_enable() >= 0) && hpet_use_timer) {
454 printk("Using HPET for base-timer\n");
455 }
456
457 cur_timer = select_timer();
458 printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
459
460 time_init_hook();
461 }
462 #endif
463
464 void __init time_init(void)
465 {
466 #ifdef CONFIG_HPET_TIMER
467 if (is_hpet_capable()) {
468 /*
469 * HPET initialization needs to do memory-mapped io. So, let
470 * us do a late initialization after mem_init().
471 */
472 late_time_init = hpet_time_init;
473 return;
474 }
475 #endif
476 xtime.tv_sec = get_cmos_time();
477 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
478 set_normalized_timespec(&wall_to_monotonic,
479 -xtime.tv_sec, -xtime.tv_nsec);
480
481 cur_timer = select_timer();
482 printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
483
484 time_init_hook();
485 }