]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/i386/kernel/traps.c
[PATCH] i386: Page-align the GDT
[mirror_ubuntu-artful-kernel.git] / arch / i386 / kernel / traps.c
1 /*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/nmi.h>
33 #include <linux/bug.h>
34
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43
44 #include <asm/processor.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/atomic.h>
48 #include <asm/debugreg.h>
49 #include <asm/desc.h>
50 #include <asm/i387.h>
51 #include <asm/nmi.h>
52 #include <asm/unwind.h>
53 #include <asm/smp.h>
54 #include <asm/arch_hooks.h>
55 #include <asm/kdebug.h>
56 #include <asm/stacktrace.h>
57
58 #include <linux/module.h>
59
60 #include "mach_traps.h"
61
62 int panic_on_unrecovered_nmi;
63
64 asmlinkage int system_call(void);
65
66 /* Do we ignore FPU interrupts ? */
67 char ignore_fpu_irq = 0;
68
69 /*
70 * The IDT has to be page-aligned to simplify the Pentium
71 * F0 0F bug workaround.. We have a special link segment
72 * for this.
73 */
74 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
75
76 asmlinkage void divide_error(void);
77 asmlinkage void debug(void);
78 asmlinkage void nmi(void);
79 asmlinkage void int3(void);
80 asmlinkage void overflow(void);
81 asmlinkage void bounds(void);
82 asmlinkage void invalid_op(void);
83 asmlinkage void device_not_available(void);
84 asmlinkage void coprocessor_segment_overrun(void);
85 asmlinkage void invalid_TSS(void);
86 asmlinkage void segment_not_present(void);
87 asmlinkage void stack_segment(void);
88 asmlinkage void general_protection(void);
89 asmlinkage void page_fault(void);
90 asmlinkage void coprocessor_error(void);
91 asmlinkage void simd_coprocessor_error(void);
92 asmlinkage void alignment_check(void);
93 asmlinkage void spurious_interrupt_bug(void);
94 asmlinkage void machine_check(void);
95
96 int kstack_depth_to_print = 24;
97 static unsigned int code_bytes = 64;
98 ATOMIC_NOTIFIER_HEAD(i386die_chain);
99
100 int register_die_notifier(struct notifier_block *nb)
101 {
102 vmalloc_sync_all();
103 return atomic_notifier_chain_register(&i386die_chain, nb);
104 }
105 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
106
107 int unregister_die_notifier(struct notifier_block *nb)
108 {
109 return atomic_notifier_chain_unregister(&i386die_chain, nb);
110 }
111 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
112
113 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
114 {
115 return p > (void *)tinfo &&
116 p < (void *)tinfo + THREAD_SIZE - 3;
117 }
118
119 static inline unsigned long print_context_stack(struct thread_info *tinfo,
120 unsigned long *stack, unsigned long ebp,
121 struct stacktrace_ops *ops, void *data)
122 {
123 unsigned long addr;
124
125 #ifdef CONFIG_FRAME_POINTER
126 while (valid_stack_ptr(tinfo, (void *)ebp)) {
127 unsigned long new_ebp;
128 addr = *(unsigned long *)(ebp + 4);
129 ops->address(data, addr);
130 /*
131 * break out of recursive entries (such as
132 * end_of_stack_stop_unwind_function). Also,
133 * we can never allow a frame pointer to
134 * move downwards!
135 */
136 new_ebp = *(unsigned long *)ebp;
137 if (new_ebp <= ebp)
138 break;
139 ebp = new_ebp;
140 }
141 #else
142 while (valid_stack_ptr(tinfo, stack)) {
143 addr = *stack++;
144 if (__kernel_text_address(addr))
145 ops->address(data, addr);
146 }
147 #endif
148 return ebp;
149 }
150
151 #define MSG(msg) ops->warning(data, msg)
152
153 void dump_trace(struct task_struct *task, struct pt_regs *regs,
154 unsigned long *stack,
155 struct stacktrace_ops *ops, void *data)
156 {
157 unsigned long ebp = 0;
158
159 if (!task)
160 task = current;
161
162 if (!stack) {
163 unsigned long dummy;
164 stack = &dummy;
165 if (task && task != current)
166 stack = (unsigned long *)task->thread.esp;
167 }
168
169 #ifdef CONFIG_FRAME_POINTER
170 if (!ebp) {
171 if (task == current) {
172 /* Grab ebp right from our regs */
173 asm ("movl %%ebp, %0" : "=r" (ebp) : );
174 } else {
175 /* ebp is the last reg pushed by switch_to */
176 ebp = *(unsigned long *) task->thread.esp;
177 }
178 }
179 #endif
180
181 while (1) {
182 struct thread_info *context;
183 context = (struct thread_info *)
184 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
185 ebp = print_context_stack(context, stack, ebp, ops, data);
186 /* Should be after the line below, but somewhere
187 in early boot context comes out corrupted and we
188 can't reference it -AK */
189 if (ops->stack(data, "IRQ") < 0)
190 break;
191 stack = (unsigned long*)context->previous_esp;
192 if (!stack)
193 break;
194 touch_nmi_watchdog();
195 }
196 }
197 EXPORT_SYMBOL(dump_trace);
198
199 static void
200 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
201 {
202 printk(data);
203 print_symbol(msg, symbol);
204 printk("\n");
205 }
206
207 static void print_trace_warning(void *data, char *msg)
208 {
209 printk("%s%s\n", (char *)data, msg);
210 }
211
212 static int print_trace_stack(void *data, char *name)
213 {
214 return 0;
215 }
216
217 /*
218 * Print one address/symbol entries per line.
219 */
220 static void print_trace_address(void *data, unsigned long addr)
221 {
222 printk("%s [<%08lx>] ", (char *)data, addr);
223 print_symbol("%s\n", addr);
224 }
225
226 static struct stacktrace_ops print_trace_ops = {
227 .warning = print_trace_warning,
228 .warning_symbol = print_trace_warning_symbol,
229 .stack = print_trace_stack,
230 .address = print_trace_address,
231 };
232
233 static void
234 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
235 unsigned long * stack, char *log_lvl)
236 {
237 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
238 printk("%s =======================\n", log_lvl);
239 }
240
241 void show_trace(struct task_struct *task, struct pt_regs *regs,
242 unsigned long * stack)
243 {
244 show_trace_log_lvl(task, regs, stack, "");
245 }
246
247 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
248 unsigned long *esp, char *log_lvl)
249 {
250 unsigned long *stack;
251 int i;
252
253 if (esp == NULL) {
254 if (task)
255 esp = (unsigned long*)task->thread.esp;
256 else
257 esp = (unsigned long *)&esp;
258 }
259
260 stack = esp;
261 for(i = 0; i < kstack_depth_to_print; i++) {
262 if (kstack_end(stack))
263 break;
264 if (i && ((i % 8) == 0))
265 printk("\n%s ", log_lvl);
266 printk("%08lx ", *stack++);
267 }
268 printk("\n%sCall Trace:\n", log_lvl);
269 show_trace_log_lvl(task, regs, esp, log_lvl);
270 }
271
272 void show_stack(struct task_struct *task, unsigned long *esp)
273 {
274 printk(" ");
275 show_stack_log_lvl(task, NULL, esp, "");
276 }
277
278 /*
279 * The architecture-independent dump_stack generator
280 */
281 void dump_stack(void)
282 {
283 unsigned long stack;
284
285 show_trace(current, NULL, &stack);
286 }
287
288 EXPORT_SYMBOL(dump_stack);
289
290 void show_registers(struct pt_regs *regs)
291 {
292 int i;
293 int in_kernel = 1;
294 unsigned long esp;
295 unsigned short ss, gs;
296
297 esp = (unsigned long) (&regs->esp);
298 savesegment(ss, ss);
299 savesegment(gs, gs);
300 if (user_mode_vm(regs)) {
301 in_kernel = 0;
302 esp = regs->esp;
303 ss = regs->xss & 0xffff;
304 }
305 print_modules();
306 printk(KERN_EMERG "CPU: %d\n"
307 KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
308 KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
309 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
310 print_tainted(), regs->eflags, init_utsname()->release,
311 (int)strcspn(init_utsname()->version, " "),
312 init_utsname()->version);
313 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
314 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
315 regs->eax, regs->ebx, regs->ecx, regs->edx);
316 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
317 regs->esi, regs->edi, regs->ebp, esp);
318 printk(KERN_EMERG "ds: %04x es: %04x fs: %04x gs: %04x ss: %04x\n",
319 regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
320 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
321 TASK_COMM_LEN, current->comm, current->pid,
322 current_thread_info(), current, current->thread_info);
323 /*
324 * When in-kernel, we also print out the stack and code at the
325 * time of the fault..
326 */
327 if (in_kernel) {
328 u8 *eip;
329 unsigned int code_prologue = code_bytes * 43 / 64;
330 unsigned int code_len = code_bytes;
331 unsigned char c;
332
333 printk("\n" KERN_EMERG "Stack: ");
334 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
335
336 printk(KERN_EMERG "Code: ");
337
338 eip = (u8 *)regs->eip - code_prologue;
339 if (eip < (u8 *)PAGE_OFFSET ||
340 probe_kernel_address(eip, c)) {
341 /* try starting at EIP */
342 eip = (u8 *)regs->eip;
343 code_len = code_len - code_prologue + 1;
344 }
345 for (i = 0; i < code_len; i++, eip++) {
346 if (eip < (u8 *)PAGE_OFFSET ||
347 probe_kernel_address(eip, c)) {
348 printk(" Bad EIP value.");
349 break;
350 }
351 if (eip == (u8 *)regs->eip)
352 printk("<%02x> ", c);
353 else
354 printk("%02x ", c);
355 }
356 }
357 printk("\n");
358 }
359
360 int is_valid_bugaddr(unsigned long eip)
361 {
362 unsigned short ud2;
363
364 if (eip < PAGE_OFFSET)
365 return 0;
366 if (probe_kernel_address((unsigned short *)eip, ud2))
367 return 0;
368
369 return ud2 == 0x0b0f;
370 }
371
372 /*
373 * This is gone through when something in the kernel has done something bad and
374 * is about to be terminated.
375 */
376 void die(const char * str, struct pt_regs * regs, long err)
377 {
378 static struct {
379 spinlock_t lock;
380 u32 lock_owner;
381 int lock_owner_depth;
382 } die = {
383 .lock = __SPIN_LOCK_UNLOCKED(die.lock),
384 .lock_owner = -1,
385 .lock_owner_depth = 0
386 };
387 static int die_counter;
388 unsigned long flags;
389
390 oops_enter();
391
392 if (die.lock_owner != raw_smp_processor_id()) {
393 console_verbose();
394 spin_lock_irqsave(&die.lock, flags);
395 die.lock_owner = smp_processor_id();
396 die.lock_owner_depth = 0;
397 bust_spinlocks(1);
398 }
399 else
400 local_save_flags(flags);
401
402 if (++die.lock_owner_depth < 3) {
403 int nl = 0;
404 unsigned long esp;
405 unsigned short ss;
406
407 report_bug(regs->eip);
408
409 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
410 #ifdef CONFIG_PREEMPT
411 printk(KERN_EMERG "PREEMPT ");
412 nl = 1;
413 #endif
414 #ifdef CONFIG_SMP
415 if (!nl)
416 printk(KERN_EMERG);
417 printk("SMP ");
418 nl = 1;
419 #endif
420 #ifdef CONFIG_DEBUG_PAGEALLOC
421 if (!nl)
422 printk(KERN_EMERG);
423 printk("DEBUG_PAGEALLOC");
424 nl = 1;
425 #endif
426 if (nl)
427 printk("\n");
428 if (notify_die(DIE_OOPS, str, regs, err,
429 current->thread.trap_no, SIGSEGV) !=
430 NOTIFY_STOP) {
431 show_registers(regs);
432 /* Executive summary in case the oops scrolled away */
433 esp = (unsigned long) (&regs->esp);
434 savesegment(ss, ss);
435 if (user_mode(regs)) {
436 esp = regs->esp;
437 ss = regs->xss & 0xffff;
438 }
439 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
440 print_symbol("%s", regs->eip);
441 printk(" SS:ESP %04x:%08lx\n", ss, esp);
442 }
443 else
444 regs = NULL;
445 } else
446 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
447
448 bust_spinlocks(0);
449 die.lock_owner = -1;
450 spin_unlock_irqrestore(&die.lock, flags);
451
452 if (!regs)
453 return;
454
455 if (kexec_should_crash(current))
456 crash_kexec(regs);
457
458 if (in_interrupt())
459 panic("Fatal exception in interrupt");
460
461 if (panic_on_oops)
462 panic("Fatal exception");
463
464 oops_exit();
465 do_exit(SIGSEGV);
466 }
467
468 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
469 {
470 if (!user_mode_vm(regs))
471 die(str, regs, err);
472 }
473
474 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
475 struct pt_regs * regs, long error_code,
476 siginfo_t *info)
477 {
478 struct task_struct *tsk = current;
479
480 if (regs->eflags & VM_MASK) {
481 if (vm86)
482 goto vm86_trap;
483 goto trap_signal;
484 }
485
486 if (!user_mode(regs))
487 goto kernel_trap;
488
489 trap_signal: {
490 /*
491 * We want error_code and trap_no set for userspace faults and
492 * kernelspace faults which result in die(), but not
493 * kernelspace faults which are fixed up. die() gives the
494 * process no chance to handle the signal and notice the
495 * kernel fault information, so that won't result in polluting
496 * the information about previously queued, but not yet
497 * delivered, faults. See also do_general_protection below.
498 */
499 tsk->thread.error_code = error_code;
500 tsk->thread.trap_no = trapnr;
501
502 if (info)
503 force_sig_info(signr, info, tsk);
504 else
505 force_sig(signr, tsk);
506 return;
507 }
508
509 kernel_trap: {
510 if (!fixup_exception(regs)) {
511 tsk->thread.error_code = error_code;
512 tsk->thread.trap_no = trapnr;
513 die(str, regs, error_code);
514 }
515 return;
516 }
517
518 vm86_trap: {
519 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
520 if (ret) goto trap_signal;
521 return;
522 }
523 }
524
525 #define DO_ERROR(trapnr, signr, str, name) \
526 fastcall void do_##name(struct pt_regs * regs, long error_code) \
527 { \
528 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
529 == NOTIFY_STOP) \
530 return; \
531 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
532 }
533
534 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
535 fastcall void do_##name(struct pt_regs * regs, long error_code) \
536 { \
537 siginfo_t info; \
538 info.si_signo = signr; \
539 info.si_errno = 0; \
540 info.si_code = sicode; \
541 info.si_addr = (void __user *)siaddr; \
542 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
543 == NOTIFY_STOP) \
544 return; \
545 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
546 }
547
548 #define DO_VM86_ERROR(trapnr, signr, str, name) \
549 fastcall void do_##name(struct pt_regs * regs, long error_code) \
550 { \
551 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
552 == NOTIFY_STOP) \
553 return; \
554 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
555 }
556
557 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
558 fastcall void do_##name(struct pt_regs * regs, long error_code) \
559 { \
560 siginfo_t info; \
561 info.si_signo = signr; \
562 info.si_errno = 0; \
563 info.si_code = sicode; \
564 info.si_addr = (void __user *)siaddr; \
565 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
566 == NOTIFY_STOP) \
567 return; \
568 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
569 }
570
571 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
572 #ifndef CONFIG_KPROBES
573 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
574 #endif
575 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
576 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
577 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
578 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
579 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
580 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
581 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
582 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
583 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
584
585 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
586 long error_code)
587 {
588 int cpu = get_cpu();
589 struct tss_struct *tss = &per_cpu(init_tss, cpu);
590 struct thread_struct *thread = &current->thread;
591
592 /*
593 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
594 * invalid offset set (the LAZY one) and the faulting thread has
595 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
596 * and we set the offset field correctly. Then we let the CPU to
597 * restart the faulting instruction.
598 */
599 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
600 thread->io_bitmap_ptr) {
601 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
602 thread->io_bitmap_max);
603 /*
604 * If the previously set map was extending to higher ports
605 * than the current one, pad extra space with 0xff (no access).
606 */
607 if (thread->io_bitmap_max < tss->io_bitmap_max)
608 memset((char *) tss->io_bitmap +
609 thread->io_bitmap_max, 0xff,
610 tss->io_bitmap_max - thread->io_bitmap_max);
611 tss->io_bitmap_max = thread->io_bitmap_max;
612 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
613 tss->io_bitmap_owner = thread;
614 put_cpu();
615 return;
616 }
617 put_cpu();
618
619 if (regs->eflags & VM_MASK)
620 goto gp_in_vm86;
621
622 if (!user_mode(regs))
623 goto gp_in_kernel;
624
625 current->thread.error_code = error_code;
626 current->thread.trap_no = 13;
627 force_sig(SIGSEGV, current);
628 return;
629
630 gp_in_vm86:
631 local_irq_enable();
632 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
633 return;
634
635 gp_in_kernel:
636 if (!fixup_exception(regs)) {
637 current->thread.error_code = error_code;
638 current->thread.trap_no = 13;
639 if (notify_die(DIE_GPF, "general protection fault", regs,
640 error_code, 13, SIGSEGV) == NOTIFY_STOP)
641 return;
642 die("general protection fault", regs, error_code);
643 }
644 }
645
646 static __kprobes void
647 mem_parity_error(unsigned char reason, struct pt_regs * regs)
648 {
649 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
650 "CPU %d.\n", reason, smp_processor_id());
651 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
652 if (panic_on_unrecovered_nmi)
653 panic("NMI: Not continuing");
654
655 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
656
657 /* Clear and disable the memory parity error line. */
658 clear_mem_error(reason);
659 }
660
661 static __kprobes void
662 io_check_error(unsigned char reason, struct pt_regs * regs)
663 {
664 unsigned long i;
665
666 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
667 show_registers(regs);
668
669 /* Re-enable the IOCK line, wait for a few seconds */
670 reason = (reason & 0xf) | 8;
671 outb(reason, 0x61);
672 i = 2000;
673 while (--i) udelay(1000);
674 reason &= ~8;
675 outb(reason, 0x61);
676 }
677
678 static __kprobes void
679 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
680 {
681 #ifdef CONFIG_MCA
682 /* Might actually be able to figure out what the guilty party
683 * is. */
684 if( MCA_bus ) {
685 mca_handle_nmi();
686 return;
687 }
688 #endif
689 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
690 "CPU %d.\n", reason, smp_processor_id());
691 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
692 if (panic_on_unrecovered_nmi)
693 panic("NMI: Not continuing");
694
695 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
696 }
697
698 static DEFINE_SPINLOCK(nmi_print_lock);
699
700 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
701 {
702 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
703 NOTIFY_STOP)
704 return;
705
706 spin_lock(&nmi_print_lock);
707 /*
708 * We are in trouble anyway, lets at least try
709 * to get a message out.
710 */
711 bust_spinlocks(1);
712 printk(KERN_EMERG "%s", msg);
713 printk(" on CPU%d, eip %08lx, registers:\n",
714 smp_processor_id(), regs->eip);
715 show_registers(regs);
716 console_silent();
717 spin_unlock(&nmi_print_lock);
718 bust_spinlocks(0);
719
720 /* If we are in kernel we are probably nested up pretty bad
721 * and might aswell get out now while we still can.
722 */
723 if (!user_mode_vm(regs)) {
724 current->thread.trap_no = 2;
725 crash_kexec(regs);
726 }
727
728 do_exit(SIGSEGV);
729 }
730
731 static __kprobes void default_do_nmi(struct pt_regs * regs)
732 {
733 unsigned char reason = 0;
734
735 /* Only the BSP gets external NMIs from the system. */
736 if (!smp_processor_id())
737 reason = get_nmi_reason();
738
739 if (!(reason & 0xc0)) {
740 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
741 == NOTIFY_STOP)
742 return;
743 #ifdef CONFIG_X86_LOCAL_APIC
744 /*
745 * Ok, so this is none of the documented NMI sources,
746 * so it must be the NMI watchdog.
747 */
748 if (nmi_watchdog_tick(regs, reason))
749 return;
750 if (!do_nmi_callback(regs, smp_processor_id()))
751 #endif
752 unknown_nmi_error(reason, regs);
753
754 return;
755 }
756 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
757 return;
758 if (reason & 0x80)
759 mem_parity_error(reason, regs);
760 if (reason & 0x40)
761 io_check_error(reason, regs);
762 /*
763 * Reassert NMI in case it became active meanwhile
764 * as it's edge-triggered.
765 */
766 reassert_nmi();
767 }
768
769 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
770 {
771 int cpu;
772
773 nmi_enter();
774
775 cpu = smp_processor_id();
776
777 ++nmi_count(cpu);
778
779 default_do_nmi(regs);
780
781 nmi_exit();
782 }
783
784 #ifdef CONFIG_KPROBES
785 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
786 {
787 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
788 == NOTIFY_STOP)
789 return;
790 /* This is an interrupt gate, because kprobes wants interrupts
791 disabled. Normal trap handlers don't. */
792 restore_interrupts(regs);
793 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
794 }
795 #endif
796
797 /*
798 * Our handling of the processor debug registers is non-trivial.
799 * We do not clear them on entry and exit from the kernel. Therefore
800 * it is possible to get a watchpoint trap here from inside the kernel.
801 * However, the code in ./ptrace.c has ensured that the user can
802 * only set watchpoints on userspace addresses. Therefore the in-kernel
803 * watchpoint trap can only occur in code which is reading/writing
804 * from user space. Such code must not hold kernel locks (since it
805 * can equally take a page fault), therefore it is safe to call
806 * force_sig_info even though that claims and releases locks.
807 *
808 * Code in ./signal.c ensures that the debug control register
809 * is restored before we deliver any signal, and therefore that
810 * user code runs with the correct debug control register even though
811 * we clear it here.
812 *
813 * Being careful here means that we don't have to be as careful in a
814 * lot of more complicated places (task switching can be a bit lazy
815 * about restoring all the debug state, and ptrace doesn't have to
816 * find every occurrence of the TF bit that could be saved away even
817 * by user code)
818 */
819 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
820 {
821 unsigned int condition;
822 struct task_struct *tsk = current;
823
824 get_debugreg(condition, 6);
825
826 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
827 SIGTRAP) == NOTIFY_STOP)
828 return;
829 /* It's safe to allow irq's after DR6 has been saved */
830 if (regs->eflags & X86_EFLAGS_IF)
831 local_irq_enable();
832
833 /* Mask out spurious debug traps due to lazy DR7 setting */
834 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
835 if (!tsk->thread.debugreg[7])
836 goto clear_dr7;
837 }
838
839 if (regs->eflags & VM_MASK)
840 goto debug_vm86;
841
842 /* Save debug status register where ptrace can see it */
843 tsk->thread.debugreg[6] = condition;
844
845 /*
846 * Single-stepping through TF: make sure we ignore any events in
847 * kernel space (but re-enable TF when returning to user mode).
848 */
849 if (condition & DR_STEP) {
850 /*
851 * We already checked v86 mode above, so we can
852 * check for kernel mode by just checking the CPL
853 * of CS.
854 */
855 if (!user_mode(regs))
856 goto clear_TF_reenable;
857 }
858
859 /* Ok, finally something we can handle */
860 send_sigtrap(tsk, regs, error_code);
861
862 /* Disable additional traps. They'll be re-enabled when
863 * the signal is delivered.
864 */
865 clear_dr7:
866 set_debugreg(0, 7);
867 return;
868
869 debug_vm86:
870 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
871 return;
872
873 clear_TF_reenable:
874 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
875 regs->eflags &= ~TF_MASK;
876 return;
877 }
878
879 /*
880 * Note that we play around with the 'TS' bit in an attempt to get
881 * the correct behaviour even in the presence of the asynchronous
882 * IRQ13 behaviour
883 */
884 void math_error(void __user *eip)
885 {
886 struct task_struct * task;
887 siginfo_t info;
888 unsigned short cwd, swd;
889
890 /*
891 * Save the info for the exception handler and clear the error.
892 */
893 task = current;
894 save_init_fpu(task);
895 task->thread.trap_no = 16;
896 task->thread.error_code = 0;
897 info.si_signo = SIGFPE;
898 info.si_errno = 0;
899 info.si_code = __SI_FAULT;
900 info.si_addr = eip;
901 /*
902 * (~cwd & swd) will mask out exceptions that are not set to unmasked
903 * status. 0x3f is the exception bits in these regs, 0x200 is the
904 * C1 reg you need in case of a stack fault, 0x040 is the stack
905 * fault bit. We should only be taking one exception at a time,
906 * so if this combination doesn't produce any single exception,
907 * then we have a bad program that isn't syncronizing its FPU usage
908 * and it will suffer the consequences since we won't be able to
909 * fully reproduce the context of the exception
910 */
911 cwd = get_fpu_cwd(task);
912 swd = get_fpu_swd(task);
913 switch (swd & ~cwd & 0x3f) {
914 case 0x000: /* No unmasked exception */
915 return;
916 default: /* Multiple exceptions */
917 break;
918 case 0x001: /* Invalid Op */
919 /*
920 * swd & 0x240 == 0x040: Stack Underflow
921 * swd & 0x240 == 0x240: Stack Overflow
922 * User must clear the SF bit (0x40) if set
923 */
924 info.si_code = FPE_FLTINV;
925 break;
926 case 0x002: /* Denormalize */
927 case 0x010: /* Underflow */
928 info.si_code = FPE_FLTUND;
929 break;
930 case 0x004: /* Zero Divide */
931 info.si_code = FPE_FLTDIV;
932 break;
933 case 0x008: /* Overflow */
934 info.si_code = FPE_FLTOVF;
935 break;
936 case 0x020: /* Precision */
937 info.si_code = FPE_FLTRES;
938 break;
939 }
940 force_sig_info(SIGFPE, &info, task);
941 }
942
943 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
944 {
945 ignore_fpu_irq = 1;
946 math_error((void __user *)regs->eip);
947 }
948
949 static void simd_math_error(void __user *eip)
950 {
951 struct task_struct * task;
952 siginfo_t info;
953 unsigned short mxcsr;
954
955 /*
956 * Save the info for the exception handler and clear the error.
957 */
958 task = current;
959 save_init_fpu(task);
960 task->thread.trap_no = 19;
961 task->thread.error_code = 0;
962 info.si_signo = SIGFPE;
963 info.si_errno = 0;
964 info.si_code = __SI_FAULT;
965 info.si_addr = eip;
966 /*
967 * The SIMD FPU exceptions are handled a little differently, as there
968 * is only a single status/control register. Thus, to determine which
969 * unmasked exception was caught we must mask the exception mask bits
970 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
971 */
972 mxcsr = get_fpu_mxcsr(task);
973 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
974 case 0x000:
975 default:
976 break;
977 case 0x001: /* Invalid Op */
978 info.si_code = FPE_FLTINV;
979 break;
980 case 0x002: /* Denormalize */
981 case 0x010: /* Underflow */
982 info.si_code = FPE_FLTUND;
983 break;
984 case 0x004: /* Zero Divide */
985 info.si_code = FPE_FLTDIV;
986 break;
987 case 0x008: /* Overflow */
988 info.si_code = FPE_FLTOVF;
989 break;
990 case 0x020: /* Precision */
991 info.si_code = FPE_FLTRES;
992 break;
993 }
994 force_sig_info(SIGFPE, &info, task);
995 }
996
997 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
998 long error_code)
999 {
1000 if (cpu_has_xmm) {
1001 /* Handle SIMD FPU exceptions on PIII+ processors. */
1002 ignore_fpu_irq = 1;
1003 simd_math_error((void __user *)regs->eip);
1004 } else {
1005 /*
1006 * Handle strange cache flush from user space exception
1007 * in all other cases. This is undocumented behaviour.
1008 */
1009 if (regs->eflags & VM_MASK) {
1010 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1011 error_code);
1012 return;
1013 }
1014 current->thread.trap_no = 19;
1015 current->thread.error_code = error_code;
1016 die_if_kernel("cache flush denied", regs, error_code);
1017 force_sig(SIGSEGV, current);
1018 }
1019 }
1020
1021 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1022 long error_code)
1023 {
1024 #if 0
1025 /* No need to warn about this any longer. */
1026 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1027 #endif
1028 }
1029
1030 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
1031 unsigned long kesp)
1032 {
1033 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1034 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1035 unsigned long new_kesp = kesp - base;
1036 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1037 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1038 /* Set up base for espfix segment */
1039 desc &= 0x00f0ff0000000000ULL;
1040 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1041 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1042 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1043 (lim_pages & 0xffff);
1044 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1045 return new_kesp;
1046 }
1047
1048 /*
1049 * 'math_state_restore()' saves the current math information in the
1050 * old math state array, and gets the new ones from the current task
1051 *
1052 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1053 * Don't touch unless you *really* know how it works.
1054 *
1055 * Must be called with kernel preemption disabled (in this case,
1056 * local interrupts are disabled at the call-site in entry.S).
1057 */
1058 asmlinkage void math_state_restore(void)
1059 {
1060 struct thread_info *thread = current_thread_info();
1061 struct task_struct *tsk = thread->task;
1062
1063 clts(); /* Allow maths ops (or we recurse) */
1064 if (!tsk_used_math(tsk))
1065 init_fpu(tsk);
1066 restore_fpu(tsk);
1067 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1068 tsk->fpu_counter++;
1069 }
1070
1071 #ifndef CONFIG_MATH_EMULATION
1072
1073 asmlinkage void math_emulate(long arg)
1074 {
1075 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1076 printk(KERN_EMERG "killing %s.\n",current->comm);
1077 force_sig(SIGFPE,current);
1078 schedule();
1079 }
1080
1081 #endif /* CONFIG_MATH_EMULATION */
1082
1083 #ifdef CONFIG_X86_F00F_BUG
1084 void __init trap_init_f00f_bug(void)
1085 {
1086 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1087
1088 /*
1089 * Update the IDT descriptor and reload the IDT so that
1090 * it uses the read-only mapped virtual address.
1091 */
1092 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1093 load_idt(&idt_descr);
1094 }
1095 #endif
1096
1097 /*
1098 * This needs to use 'idt_table' rather than 'idt', and
1099 * thus use the _nonmapped_ version of the IDT, as the
1100 * Pentium F0 0F bugfix can have resulted in the mapped
1101 * IDT being write-protected.
1102 */
1103 void set_intr_gate(unsigned int n, void *addr)
1104 {
1105 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1106 }
1107
1108 /*
1109 * This routine sets up an interrupt gate at directory privilege level 3.
1110 */
1111 static inline void set_system_intr_gate(unsigned int n, void *addr)
1112 {
1113 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1114 }
1115
1116 static void __init set_trap_gate(unsigned int n, void *addr)
1117 {
1118 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1119 }
1120
1121 static void __init set_system_gate(unsigned int n, void *addr)
1122 {
1123 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1124 }
1125
1126 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1127 {
1128 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1129 }
1130
1131
1132 void __init trap_init(void)
1133 {
1134 #ifdef CONFIG_EISA
1135 void __iomem *p = ioremap(0x0FFFD9, 4);
1136 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1137 EISA_bus = 1;
1138 }
1139 iounmap(p);
1140 #endif
1141
1142 #ifdef CONFIG_X86_LOCAL_APIC
1143 init_apic_mappings();
1144 #endif
1145
1146 set_trap_gate(0,&divide_error);
1147 set_intr_gate(1,&debug);
1148 set_intr_gate(2,&nmi);
1149 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1150 set_system_gate(4,&overflow);
1151 set_trap_gate(5,&bounds);
1152 set_trap_gate(6,&invalid_op);
1153 set_trap_gate(7,&device_not_available);
1154 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1155 set_trap_gate(9,&coprocessor_segment_overrun);
1156 set_trap_gate(10,&invalid_TSS);
1157 set_trap_gate(11,&segment_not_present);
1158 set_trap_gate(12,&stack_segment);
1159 set_trap_gate(13,&general_protection);
1160 set_intr_gate(14,&page_fault);
1161 set_trap_gate(15,&spurious_interrupt_bug);
1162 set_trap_gate(16,&coprocessor_error);
1163 set_trap_gate(17,&alignment_check);
1164 #ifdef CONFIG_X86_MCE
1165 set_trap_gate(18,&machine_check);
1166 #endif
1167 set_trap_gate(19,&simd_coprocessor_error);
1168
1169 if (cpu_has_fxsr) {
1170 /*
1171 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1172 * Generates a compile-time "error: zero width for bit-field" if
1173 * the alignment is wrong.
1174 */
1175 struct fxsrAlignAssert {
1176 int _:!(offsetof(struct task_struct,
1177 thread.i387.fxsave) & 15);
1178 };
1179
1180 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1181 set_in_cr4(X86_CR4_OSFXSR);
1182 printk("done.\n");
1183 }
1184 if (cpu_has_xmm) {
1185 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1186 "support... ");
1187 set_in_cr4(X86_CR4_OSXMMEXCPT);
1188 printk("done.\n");
1189 }
1190
1191 set_system_gate(SYSCALL_VECTOR,&system_call);
1192
1193 /*
1194 * Should be a barrier for any external CPU state.
1195 */
1196 cpu_init();
1197
1198 trap_init_hook();
1199 }
1200
1201 static int __init kstack_setup(char *s)
1202 {
1203 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1204 return 1;
1205 }
1206 __setup("kstack=", kstack_setup);
1207
1208 static int __init code_bytes_setup(char *s)
1209 {
1210 code_bytes = simple_strtoul(s, NULL, 0);
1211 if (code_bytes > 8192)
1212 code_bytes = 8192;
1213
1214 return 1;
1215 }
1216 __setup("code_bytes=", code_bytes_setup);