]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/i386/mach-voyager/voyager_smp.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[mirror_ubuntu-artful-kernel.git] / arch / i386 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * linux/arch/i386/kernel/voyager_smp.c
8 *
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/smp_lock.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/bootmem.h>
23 #include <linux/completion.h>
24 #include <asm/desc.h>
25 #include <asm/voyager.h>
26 #include <asm/vic.h>
27 #include <asm/mtrr.h>
28 #include <asm/pgalloc.h>
29 #include <asm/tlbflush.h>
30 #include <asm/arch_hooks.h>
31
32 /* TLB state -- visible externally, indexed physically */
33 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
34
35 /* CPU IRQ affinity -- set to all ones initially */
36 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
37
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
41 EXPORT_SYMBOL(cpu_data);
42
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62
63 /* Have we found an SMP box - used by time.c to do the profiling
64 interrupt for timeslicing; do not set to 1 until the per CPU timer
65 interrupt is active */
66 int smp_found_config = 0;
67
68 /* Used for the invalidate map that's also checked in the spinlock */
69 static volatile unsigned long smp_invalidate_needed;
70
71 /* Bitmask of currently online CPUs - used by setup.c for
72 /proc/cpuinfo, visible externally but still physical */
73 cpumask_t cpu_online_map = CPU_MASK_NONE;
74 EXPORT_SYMBOL(cpu_online_map);
75
76 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
79
80
81 /* The internal functions */
82 static void send_CPI(__u32 cpuset, __u8 cpi);
83 static void ack_CPI(__u8 cpi);
84 static int ack_QIC_CPI(__u8 cpi);
85 static void ack_special_QIC_CPI(__u8 cpi);
86 static void ack_VIC_CPI(__u8 cpi);
87 static void send_CPI_allbutself(__u8 cpi);
88 static void enable_vic_irq(unsigned int irq);
89 static void disable_vic_irq(unsigned int irq);
90 static unsigned int startup_vic_irq(unsigned int irq);
91 static void enable_local_vic_irq(unsigned int irq);
92 static void disable_local_vic_irq(unsigned int irq);
93 static void before_handle_vic_irq(unsigned int irq);
94 static void after_handle_vic_irq(unsigned int irq);
95 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
96 static void ack_vic_irq(unsigned int irq);
97 static void vic_enable_cpi(void);
98 static void do_boot_cpu(__u8 cpuid);
99 static void do_quad_bootstrap(void);
100
101 int hard_smp_processor_id(void);
102 int safe_smp_processor_id(void);
103
104 /* Inline functions */
105 static inline void
106 send_one_QIC_CPI(__u8 cpu, __u8 cpi)
107 {
108 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
109 (smp_processor_id() << 16) + cpi;
110 }
111
112 static inline void
113 send_QIC_CPI(__u32 cpuset, __u8 cpi)
114 {
115 int cpu;
116
117 for_each_online_cpu(cpu) {
118 if(cpuset & (1<<cpu)) {
119 #ifdef VOYAGER_DEBUG
120 if(!cpu_isset(cpu, cpu_online_map))
121 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
122 #endif
123 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
124 }
125 }
126 }
127
128 static inline void
129 wrapper_smp_local_timer_interrupt(void)
130 {
131 irq_enter();
132 smp_local_timer_interrupt();
133 irq_exit();
134 }
135
136 static inline void
137 send_one_CPI(__u8 cpu, __u8 cpi)
138 {
139 if(voyager_quad_processors & (1<<cpu))
140 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
141 else
142 send_CPI(1<<cpu, cpi);
143 }
144
145 static inline void
146 send_CPI_allbutself(__u8 cpi)
147 {
148 __u8 cpu = smp_processor_id();
149 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
150 send_CPI(mask, cpi);
151 }
152
153 static inline int
154 is_cpu_quad(void)
155 {
156 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
157 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
158 }
159
160 static inline int
161 is_cpu_extended(void)
162 {
163 __u8 cpu = hard_smp_processor_id();
164
165 return(voyager_extended_vic_processors & (1<<cpu));
166 }
167
168 static inline int
169 is_cpu_vic_boot(void)
170 {
171 __u8 cpu = hard_smp_processor_id();
172
173 return(voyager_extended_vic_processors
174 & voyager_allowed_boot_processors & (1<<cpu));
175 }
176
177
178 static inline void
179 ack_CPI(__u8 cpi)
180 {
181 switch(cpi) {
182 case VIC_CPU_BOOT_CPI:
183 if(is_cpu_quad() && !is_cpu_vic_boot())
184 ack_QIC_CPI(cpi);
185 else
186 ack_VIC_CPI(cpi);
187 break;
188 case VIC_SYS_INT:
189 case VIC_CMN_INT:
190 /* These are slightly strange. Even on the Quad card,
191 * They are vectored as VIC CPIs */
192 if(is_cpu_quad())
193 ack_special_QIC_CPI(cpi);
194 else
195 ack_VIC_CPI(cpi);
196 break;
197 default:
198 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
199 break;
200 }
201 }
202
203 /* local variables */
204
205 /* The VIC IRQ descriptors -- these look almost identical to the
206 * 8259 IRQs except that masks and things must be kept per processor
207 */
208 static struct hw_interrupt_type vic_irq_type = {
209 .typename = "VIC-level",
210 .startup = startup_vic_irq,
211 .shutdown = disable_vic_irq,
212 .enable = enable_vic_irq,
213 .disable = disable_vic_irq,
214 .ack = before_handle_vic_irq,
215 .end = after_handle_vic_irq,
216 .set_affinity = set_vic_irq_affinity,
217 };
218
219 /* used to count up as CPUs are brought on line (starts at 0) */
220 static int cpucount = 0;
221
222 /* steal a page from the bottom of memory for the trampoline and
223 * squirrel its address away here. This will be in kernel virtual
224 * space */
225 static __u32 trampoline_base;
226
227 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
228 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
229 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
230 static DEFINE_PER_CPU(int, prof_counter) = 1;
231
232 /* the map used to check if a CPU has booted */
233 static __u32 cpu_booted_map;
234
235 /* the synchronize flag used to hold all secondary CPUs spinning in
236 * a tight loop until the boot sequence is ready for them */
237 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
238
239 /* This is for the new dynamic CPU boot code */
240 cpumask_t cpu_callin_map = CPU_MASK_NONE;
241 cpumask_t cpu_callout_map = CPU_MASK_NONE;
242 EXPORT_SYMBOL(cpu_callout_map);
243 cpumask_t cpu_possible_map = CPU_MASK_NONE;
244 EXPORT_SYMBOL(cpu_possible_map);
245
246 /* The per processor IRQ masks (these are usually kept in sync) */
247 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
248
249 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
250 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
251
252 /* Lock for enable/disable of VIC interrupts */
253 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
254
255 /* The boot processor is correctly set up in PC mode when it
256 * comes up, but the secondaries need their master/slave 8259
257 * pairs initializing correctly */
258
259 /* Interrupt counters (per cpu) and total - used to try to
260 * even up the interrupt handling routines */
261 static long vic_intr_total = 0;
262 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
263 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
264
265 /* Since we can only use CPI0, we fake all the other CPIs */
266 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
267
268 /* debugging routine to read the isr of the cpu's pic */
269 static inline __u16
270 vic_read_isr(void)
271 {
272 __u16 isr;
273
274 outb(0x0b, 0xa0);
275 isr = inb(0xa0) << 8;
276 outb(0x0b, 0x20);
277 isr |= inb(0x20);
278
279 return isr;
280 }
281
282 static __init void
283 qic_setup(void)
284 {
285 if(!is_cpu_quad()) {
286 /* not a quad, no setup */
287 return;
288 }
289 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
290 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
291
292 if(is_cpu_extended()) {
293 /* the QIC duplicate of the VIC base register */
294 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
295 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
296
297 /* FIXME: should set up the QIC timer and memory parity
298 * error vectors here */
299 }
300 }
301
302 static __init void
303 vic_setup_pic(void)
304 {
305 outb(1, VIC_REDIRECT_REGISTER_1);
306 /* clear the claim registers for dynamic routing */
307 outb(0, VIC_CLAIM_REGISTER_0);
308 outb(0, VIC_CLAIM_REGISTER_1);
309
310 outb(0, VIC_PRIORITY_REGISTER);
311 /* Set the Primary and Secondary Microchannel vector
312 * bases to be the same as the ordinary interrupts
313 *
314 * FIXME: This would be more efficient using separate
315 * vectors. */
316 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
317 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
318 /* Now initiallise the master PIC belonging to this CPU by
319 * sending the four ICWs */
320
321 /* ICW1: level triggered, ICW4 needed */
322 outb(0x19, 0x20);
323
324 /* ICW2: vector base */
325 outb(FIRST_EXTERNAL_VECTOR, 0x21);
326
327 /* ICW3: slave at line 2 */
328 outb(0x04, 0x21);
329
330 /* ICW4: 8086 mode */
331 outb(0x01, 0x21);
332
333 /* now the same for the slave PIC */
334
335 /* ICW1: level trigger, ICW4 needed */
336 outb(0x19, 0xA0);
337
338 /* ICW2: slave vector base */
339 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
340
341 /* ICW3: slave ID */
342 outb(0x02, 0xA1);
343
344 /* ICW4: 8086 mode */
345 outb(0x01, 0xA1);
346 }
347
348 static void
349 do_quad_bootstrap(void)
350 {
351 if(is_cpu_quad() && is_cpu_vic_boot()) {
352 int i;
353 unsigned long flags;
354 __u8 cpuid = hard_smp_processor_id();
355
356 local_irq_save(flags);
357
358 for(i = 0; i<4; i++) {
359 /* FIXME: this would be >>3 &0x7 on the 32 way */
360 if(((cpuid >> 2) & 0x03) == i)
361 /* don't lower our own mask! */
362 continue;
363
364 /* masquerade as local Quad CPU */
365 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
366 /* enable the startup CPI */
367 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
368 /* restore cpu id */
369 outb(0, QIC_PROCESSOR_ID);
370 }
371 local_irq_restore(flags);
372 }
373 }
374
375
376 /* Set up all the basic stuff: read the SMP config and make all the
377 * SMP information reflect only the boot cpu. All others will be
378 * brought on-line later. */
379 void __init
380 find_smp_config(void)
381 {
382 int i;
383
384 boot_cpu_id = hard_smp_processor_id();
385
386 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
387
388 /* initialize the CPU structures (moved from smp_boot_cpus) */
389 for(i=0; i<NR_CPUS; i++) {
390 cpu_irq_affinity[i] = ~0;
391 }
392 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
393
394 /* The boot CPU must be extended */
395 voyager_extended_vic_processors = 1<<boot_cpu_id;
396 /* initially, all of the first 8 cpu's can boot */
397 voyager_allowed_boot_processors = 0xff;
398 /* set up everything for just this CPU, we can alter
399 * this as we start the other CPUs later */
400 /* now get the CPU disposition from the extended CMOS */
401 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
402 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
403 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
404 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
405 cpu_possible_map = phys_cpu_present_map;
406 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
407 /* Here we set up the VIC to enable SMP */
408 /* enable the CPIs by writing the base vector to their register */
409 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
410 outb(1, VIC_REDIRECT_REGISTER_1);
411 /* set the claim registers for static routing --- Boot CPU gets
412 * all interrupts untill all other CPUs started */
413 outb(0xff, VIC_CLAIM_REGISTER_0);
414 outb(0xff, VIC_CLAIM_REGISTER_1);
415 /* Set the Primary and Secondary Microchannel vector
416 * bases to be the same as the ordinary interrupts
417 *
418 * FIXME: This would be more efficient using separate
419 * vectors. */
420 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
421 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
422
423 /* Finally tell the firmware that we're driving */
424 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
425 VOYAGER_SUS_IN_CONTROL_PORT);
426
427 current_thread_info()->cpu = boot_cpu_id;
428 }
429
430 /*
431 * The bootstrap kernel entry code has set these up. Save them
432 * for a given CPU, id is physical */
433 void __init
434 smp_store_cpu_info(int id)
435 {
436 struct cpuinfo_x86 *c=&cpu_data[id];
437
438 *c = boot_cpu_data;
439
440 identify_cpu(c);
441 }
442
443 /* set up the trampoline and return the physical address of the code */
444 static __u32 __init
445 setup_trampoline(void)
446 {
447 /* these two are global symbols in trampoline.S */
448 extern __u8 trampoline_end[];
449 extern __u8 trampoline_data[];
450
451 memcpy((__u8 *)trampoline_base, trampoline_data,
452 trampoline_end - trampoline_data);
453 return virt_to_phys((__u8 *)trampoline_base);
454 }
455
456 /* Routine initially called when a non-boot CPU is brought online */
457 static void __init
458 start_secondary(void *unused)
459 {
460 __u8 cpuid = hard_smp_processor_id();
461 /* external functions not defined in the headers */
462 extern void calibrate_delay(void);
463
464 cpu_init();
465
466 /* OK, we're in the routine */
467 ack_CPI(VIC_CPU_BOOT_CPI);
468
469 /* setup the 8259 master slave pair belonging to this CPU ---
470 * we won't actually receive any until the boot CPU
471 * relinquishes it's static routing mask */
472 vic_setup_pic();
473
474 qic_setup();
475
476 if(is_cpu_quad() && !is_cpu_vic_boot()) {
477 /* clear the boot CPI */
478 __u8 dummy;
479
480 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
481 printk("read dummy %d\n", dummy);
482 }
483
484 /* lower the mask to receive CPIs */
485 vic_enable_cpi();
486
487 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
488
489 /* enable interrupts */
490 local_irq_enable();
491
492 /* get our bogomips */
493 calibrate_delay();
494
495 /* save our processor parameters */
496 smp_store_cpu_info(cpuid);
497
498 /* if we're a quad, we may need to bootstrap other CPUs */
499 do_quad_bootstrap();
500
501 /* FIXME: this is rather a poor hack to prevent the CPU
502 * activating softirqs while it's supposed to be waiting for
503 * permission to proceed. Without this, the new per CPU stuff
504 * in the softirqs will fail */
505 local_irq_disable();
506 cpu_set(cpuid, cpu_callin_map);
507
508 /* signal that we're done */
509 cpu_booted_map = 1;
510
511 while (!cpu_isset(cpuid, smp_commenced_mask))
512 rep_nop();
513 local_irq_enable();
514
515 local_flush_tlb();
516
517 cpu_set(cpuid, cpu_online_map);
518 wmb();
519 cpu_idle();
520 }
521
522
523 /* Routine to kick start the given CPU and wait for it to report ready
524 * (or timeout in startup). When this routine returns, the requested
525 * CPU is either fully running and configured or known to be dead.
526 *
527 * We call this routine sequentially 1 CPU at a time, so no need for
528 * locking */
529
530 static void __init
531 do_boot_cpu(__u8 cpu)
532 {
533 struct task_struct *idle;
534 int timeout;
535 unsigned long flags;
536 int quad_boot = (1<<cpu) & voyager_quad_processors
537 & ~( voyager_extended_vic_processors
538 & voyager_allowed_boot_processors);
539
540 /* For the 486, we can't use the 4Mb page table trick, so
541 * must map a region of memory */
542 #ifdef CONFIG_M486
543 int i;
544 unsigned long *page_table_copies = (unsigned long *)
545 __get_free_page(GFP_KERNEL);
546 #endif
547 pgd_t orig_swapper_pg_dir0;
548
549 /* This is an area in head.S which was used to set up the
550 * initial kernel stack. We need to alter this to give the
551 * booting CPU a new stack (taken from its idle process) */
552 extern struct {
553 __u8 *esp;
554 unsigned short ss;
555 } stack_start;
556 /* This is the format of the CPI IDT gate (in real mode) which
557 * we're hijacking to boot the CPU */
558 union IDTFormat {
559 struct seg {
560 __u16 Offset;
561 __u16 Segment;
562 } idt;
563 __u32 val;
564 } hijack_source;
565
566 __u32 *hijack_vector;
567 __u32 start_phys_address = setup_trampoline();
568
569 /* There's a clever trick to this: The linux trampoline is
570 * compiled to begin at absolute location zero, so make the
571 * address zero but have the data segment selector compensate
572 * for the actual address */
573 hijack_source.idt.Offset = start_phys_address & 0x000F;
574 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
575
576 cpucount++;
577 idle = fork_idle(cpu);
578 if(IS_ERR(idle))
579 panic("failed fork for CPU%d", cpu);
580 idle->thread.eip = (unsigned long) start_secondary;
581 /* init_tasks (in sched.c) is indexed logically */
582 stack_start.esp = (void *) idle->thread.esp;
583
584 irq_ctx_init(cpu);
585
586 /* Note: Don't modify initial ss override */
587 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
588 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
589 hijack_source.idt.Offset, stack_start.esp));
590 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
591 * (so that the booting CPU can find start_32 */
592 orig_swapper_pg_dir0 = swapper_pg_dir[0];
593 #ifdef CONFIG_M486
594 if(page_table_copies == NULL)
595 panic("No free memory for 486 page tables\n");
596 for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++)
597 page_table_copies[i] = (i * PAGE_SIZE)
598 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
599
600 ((unsigned long *)swapper_pg_dir)[0] =
601 ((virt_to_phys(page_table_copies)) & PAGE_MASK)
602 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
603 #else
604 ((unsigned long *)swapper_pg_dir)[0] =
605 (virt_to_phys(pg0) & PAGE_MASK)
606 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
607 #endif
608
609 if(quad_boot) {
610 printk("CPU %d: non extended Quad boot\n", cpu);
611 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
612 *hijack_vector = hijack_source.val;
613 } else {
614 printk("CPU%d: extended VIC boot\n", cpu);
615 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
616 *hijack_vector = hijack_source.val;
617 /* VIC errata, may also receive interrupt at this address */
618 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
619 *hijack_vector = hijack_source.val;
620 }
621 /* All non-boot CPUs start with interrupts fully masked. Need
622 * to lower the mask of the CPI we're about to send. We do
623 * this in the VIC by masquerading as the processor we're
624 * about to boot and lowering its interrupt mask */
625 local_irq_save(flags);
626 if(quad_boot) {
627 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
628 } else {
629 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
630 /* here we're altering registers belonging to `cpu' */
631
632 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
633 /* now go back to our original identity */
634 outb(boot_cpu_id, VIC_PROCESSOR_ID);
635
636 /* and boot the CPU */
637
638 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
639 }
640 cpu_booted_map = 0;
641 local_irq_restore(flags);
642
643 /* now wait for it to become ready (or timeout) */
644 for(timeout = 0; timeout < 50000; timeout++) {
645 if(cpu_booted_map)
646 break;
647 udelay(100);
648 }
649 /* reset the page table */
650 swapper_pg_dir[0] = orig_swapper_pg_dir0;
651 local_flush_tlb();
652 #ifdef CONFIG_M486
653 free_page((unsigned long)page_table_copies);
654 #endif
655
656 if (cpu_booted_map) {
657 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
658 cpu, smp_processor_id()));
659
660 printk("CPU%d: ", cpu);
661 print_cpu_info(&cpu_data[cpu]);
662 wmb();
663 cpu_set(cpu, cpu_callout_map);
664 cpu_set(cpu, cpu_present_map);
665 }
666 else {
667 printk("CPU%d FAILED TO BOOT: ", cpu);
668 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
669 printk("Stuck.\n");
670 else
671 printk("Not responding.\n");
672
673 cpucount--;
674 }
675 }
676
677 void __init
678 smp_boot_cpus(void)
679 {
680 int i;
681
682 /* CAT BUS initialisation must be done after the memory */
683 /* FIXME: The L4 has a catbus too, it just needs to be
684 * accessed in a totally different way */
685 if(voyager_level == 5) {
686 voyager_cat_init();
687
688 /* now that the cat has probed the Voyager System Bus, sanity
689 * check the cpu map */
690 if( ((voyager_quad_processors | voyager_extended_vic_processors)
691 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
692 /* should panic */
693 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
694 }
695 } else if(voyager_level == 4)
696 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
697
698 /* this sets up the idle task to run on the current cpu */
699 voyager_extended_cpus = 1;
700 /* Remove the global_irq_holder setting, it triggers a BUG() on
701 * schedule at the moment */
702 //global_irq_holder = boot_cpu_id;
703
704 /* FIXME: Need to do something about this but currently only works
705 * on CPUs with a tsc which none of mine have.
706 smp_tune_scheduling();
707 */
708 smp_store_cpu_info(boot_cpu_id);
709 printk("CPU%d: ", boot_cpu_id);
710 print_cpu_info(&cpu_data[boot_cpu_id]);
711
712 if(is_cpu_quad()) {
713 /* booting on a Quad CPU */
714 printk("VOYAGER SMP: Boot CPU is Quad\n");
715 qic_setup();
716 do_quad_bootstrap();
717 }
718
719 /* enable our own CPIs */
720 vic_enable_cpi();
721
722 cpu_set(boot_cpu_id, cpu_online_map);
723 cpu_set(boot_cpu_id, cpu_callout_map);
724
725 /* loop over all the extended VIC CPUs and boot them. The
726 * Quad CPUs must be bootstrapped by their extended VIC cpu */
727 for(i = 0; i < NR_CPUS; i++) {
728 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
729 continue;
730 do_boot_cpu(i);
731 /* This udelay seems to be needed for the Quad boots
732 * don't remove unless you know what you're doing */
733 udelay(1000);
734 }
735 /* we could compute the total bogomips here, but why bother?,
736 * Code added from smpboot.c */
737 {
738 unsigned long bogosum = 0;
739 for (i = 0; i < NR_CPUS; i++)
740 if (cpu_isset(i, cpu_online_map))
741 bogosum += cpu_data[i].loops_per_jiffy;
742 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
743 cpucount+1,
744 bogosum/(500000/HZ),
745 (bogosum/(5000/HZ))%100);
746 }
747 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
748 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
749 /* that's it, switch to symmetric mode */
750 outb(0, VIC_PRIORITY_REGISTER);
751 outb(0, VIC_CLAIM_REGISTER_0);
752 outb(0, VIC_CLAIM_REGISTER_1);
753
754 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
755 }
756
757 /* Reload the secondary CPUs task structure (this function does not
758 * return ) */
759 void __init
760 initialize_secondary(void)
761 {
762 #if 0
763 // AC kernels only
764 set_current(hard_get_current());
765 #endif
766
767 /*
768 * We don't actually need to load the full TSS,
769 * basically just the stack pointer and the eip.
770 */
771
772 asm volatile(
773 "movl %0,%%esp\n\t"
774 "jmp *%1"
775 :
776 :"r" (current->thread.esp),"r" (current->thread.eip));
777 }
778
779 /* handle a Voyager SYS_INT -- If we don't, the base board will
780 * panic the system.
781 *
782 * System interrupts occur because some problem was detected on the
783 * various busses. To find out what you have to probe all the
784 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
785 fastcall void
786 smp_vic_sys_interrupt(struct pt_regs *regs)
787 {
788 ack_CPI(VIC_SYS_INT);
789 printk("Voyager SYSTEM INTERRUPT\n");
790 }
791
792 /* Handle a voyager CMN_INT; These interrupts occur either because of
793 * a system status change or because a single bit memory error
794 * occurred. FIXME: At the moment, ignore all this. */
795 fastcall void
796 smp_vic_cmn_interrupt(struct pt_regs *regs)
797 {
798 static __u8 in_cmn_int = 0;
799 static DEFINE_SPINLOCK(cmn_int_lock);
800
801 /* common ints are broadcast, so make sure we only do this once */
802 _raw_spin_lock(&cmn_int_lock);
803 if(in_cmn_int)
804 goto unlock_end;
805
806 in_cmn_int++;
807 _raw_spin_unlock(&cmn_int_lock);
808
809 VDEBUG(("Voyager COMMON INTERRUPT\n"));
810
811 if(voyager_level == 5)
812 voyager_cat_do_common_interrupt();
813
814 _raw_spin_lock(&cmn_int_lock);
815 in_cmn_int = 0;
816 unlock_end:
817 _raw_spin_unlock(&cmn_int_lock);
818 ack_CPI(VIC_CMN_INT);
819 }
820
821 /*
822 * Reschedule call back. Nothing to do, all the work is done
823 * automatically when we return from the interrupt. */
824 static void
825 smp_reschedule_interrupt(void)
826 {
827 /* do nothing */
828 }
829
830 static struct mm_struct * flush_mm;
831 static unsigned long flush_va;
832 static DEFINE_SPINLOCK(tlbstate_lock);
833 #define FLUSH_ALL 0xffffffff
834
835 /*
836 * We cannot call mmdrop() because we are in interrupt context,
837 * instead update mm->cpu_vm_mask.
838 *
839 * We need to reload %cr3 since the page tables may be going
840 * away from under us..
841 */
842 static inline void
843 leave_mm (unsigned long cpu)
844 {
845 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
846 BUG();
847 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
848 load_cr3(swapper_pg_dir);
849 }
850
851
852 /*
853 * Invalidate call-back
854 */
855 static void
856 smp_invalidate_interrupt(void)
857 {
858 __u8 cpu = smp_processor_id();
859
860 if (!test_bit(cpu, &smp_invalidate_needed))
861 return;
862 /* This will flood messages. Don't uncomment unless you see
863 * Problems with cross cpu invalidation
864 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
865 smp_processor_id()));
866 */
867
868 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
869 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
870 if (flush_va == FLUSH_ALL)
871 local_flush_tlb();
872 else
873 __flush_tlb_one(flush_va);
874 } else
875 leave_mm(cpu);
876 }
877 smp_mb__before_clear_bit();
878 clear_bit(cpu, &smp_invalidate_needed);
879 smp_mb__after_clear_bit();
880 }
881
882 /* All the new flush operations for 2.4 */
883
884
885 /* This routine is called with a physical cpu mask */
886 static void
887 flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
888 unsigned long va)
889 {
890 int stuck = 50000;
891
892 if (!cpumask)
893 BUG();
894 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
895 BUG();
896 if (cpumask & (1 << smp_processor_id()))
897 BUG();
898 if (!mm)
899 BUG();
900
901 spin_lock(&tlbstate_lock);
902
903 flush_mm = mm;
904 flush_va = va;
905 atomic_set_mask(cpumask, &smp_invalidate_needed);
906 /*
907 * We have to send the CPI only to
908 * CPUs affected.
909 */
910 send_CPI(cpumask, VIC_INVALIDATE_CPI);
911
912 while (smp_invalidate_needed) {
913 mb();
914 if(--stuck == 0) {
915 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
916 break;
917 }
918 }
919
920 /* Uncomment only to debug invalidation problems
921 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
922 */
923
924 flush_mm = NULL;
925 flush_va = 0;
926 spin_unlock(&tlbstate_lock);
927 }
928
929 void
930 flush_tlb_current_task(void)
931 {
932 struct mm_struct *mm = current->mm;
933 unsigned long cpu_mask;
934
935 preempt_disable();
936
937 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
938 local_flush_tlb();
939 if (cpu_mask)
940 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
941
942 preempt_enable();
943 }
944
945
946 void
947 flush_tlb_mm (struct mm_struct * mm)
948 {
949 unsigned long cpu_mask;
950
951 preempt_disable();
952
953 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
954
955 if (current->active_mm == mm) {
956 if (current->mm)
957 local_flush_tlb();
958 else
959 leave_mm(smp_processor_id());
960 }
961 if (cpu_mask)
962 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
963
964 preempt_enable();
965 }
966
967 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
968 {
969 struct mm_struct *mm = vma->vm_mm;
970 unsigned long cpu_mask;
971
972 preempt_disable();
973
974 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
975 if (current->active_mm == mm) {
976 if(current->mm)
977 __flush_tlb_one(va);
978 else
979 leave_mm(smp_processor_id());
980 }
981
982 if (cpu_mask)
983 flush_tlb_others(cpu_mask, mm, va);
984
985 preempt_enable();
986 }
987 EXPORT_SYMBOL(flush_tlb_page);
988
989 /* enable the requested IRQs */
990 static void
991 smp_enable_irq_interrupt(void)
992 {
993 __u8 irq;
994 __u8 cpu = get_cpu();
995
996 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
997 vic_irq_enable_mask[cpu]));
998
999 spin_lock(&vic_irq_lock);
1000 for(irq = 0; irq < 16; irq++) {
1001 if(vic_irq_enable_mask[cpu] & (1<<irq))
1002 enable_local_vic_irq(irq);
1003 }
1004 vic_irq_enable_mask[cpu] = 0;
1005 spin_unlock(&vic_irq_lock);
1006
1007 put_cpu_no_resched();
1008 }
1009
1010 /*
1011 * CPU halt call-back
1012 */
1013 static void
1014 smp_stop_cpu_function(void *dummy)
1015 {
1016 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1017 cpu_clear(smp_processor_id(), cpu_online_map);
1018 local_irq_disable();
1019 for(;;)
1020 halt();
1021 }
1022
1023 static DEFINE_SPINLOCK(call_lock);
1024
1025 struct call_data_struct {
1026 void (*func) (void *info);
1027 void *info;
1028 volatile unsigned long started;
1029 volatile unsigned long finished;
1030 int wait;
1031 };
1032
1033 static struct call_data_struct * call_data;
1034
1035 /* execute a thread on a new CPU. The function to be called must be
1036 * previously set up. This is used to schedule a function for
1037 * execution on all CPU's - set up the function then broadcast a
1038 * function_interrupt CPI to come here on each CPU */
1039 static void
1040 smp_call_function_interrupt(void)
1041 {
1042 void (*func) (void *info) = call_data->func;
1043 void *info = call_data->info;
1044 /* must take copy of wait because call_data may be replaced
1045 * unless the function is waiting for us to finish */
1046 int wait = call_data->wait;
1047 __u8 cpu = smp_processor_id();
1048
1049 /*
1050 * Notify initiating CPU that I've grabbed the data and am
1051 * about to execute the function
1052 */
1053 mb();
1054 if(!test_and_clear_bit(cpu, &call_data->started)) {
1055 /* If the bit wasn't set, this could be a replay */
1056 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1057 return;
1058 }
1059 /*
1060 * At this point the info structure may be out of scope unless wait==1
1061 */
1062 irq_enter();
1063 (*func)(info);
1064 irq_exit();
1065 if (wait) {
1066 mb();
1067 clear_bit(cpu, &call_data->finished);
1068 }
1069 }
1070
1071 /* Call this function on all CPUs using the function_interrupt above
1072 <func> The function to run. This must be fast and non-blocking.
1073 <info> An arbitrary pointer to pass to the function.
1074 <retry> If true, keep retrying until ready.
1075 <wait> If true, wait until function has completed on other CPUs.
1076 [RETURNS] 0 on success, else a negative status code. Does not return until
1077 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1078 */
1079 int
1080 smp_call_function (void (*func) (void *info), void *info, int retry,
1081 int wait)
1082 {
1083 struct call_data_struct data;
1084 __u32 mask = cpus_addr(cpu_online_map)[0];
1085
1086 mask &= ~(1<<smp_processor_id());
1087
1088 if (!mask)
1089 return 0;
1090
1091 /* Can deadlock when called with interrupts disabled */
1092 WARN_ON(irqs_disabled());
1093
1094 data.func = func;
1095 data.info = info;
1096 data.started = mask;
1097 data.wait = wait;
1098 if (wait)
1099 data.finished = mask;
1100
1101 spin_lock(&call_lock);
1102 call_data = &data;
1103 wmb();
1104 /* Send a message to all other CPUs and wait for them to respond */
1105 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI);
1106
1107 /* Wait for response */
1108 while (data.started)
1109 barrier();
1110
1111 if (wait)
1112 while (data.finished)
1113 barrier();
1114
1115 spin_unlock(&call_lock);
1116
1117 return 0;
1118 }
1119 EXPORT_SYMBOL(smp_call_function);
1120
1121 /* Sorry about the name. In an APIC based system, the APICs
1122 * themselves are programmed to send a timer interrupt. This is used
1123 * by linux to reschedule the processor. Voyager doesn't have this,
1124 * so we use the system clock to interrupt one processor, which in
1125 * turn, broadcasts a timer CPI to all the others --- we receive that
1126 * CPI here. We don't use this actually for counting so losing
1127 * ticks doesn't matter
1128 *
1129 * FIXME: For those CPU's which actually have a local APIC, we could
1130 * try to use it to trigger this interrupt instead of having to
1131 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1132 * no local APIC, so I can't do this
1133 *
1134 * This function is currently a placeholder and is unused in the code */
1135 fastcall void
1136 smp_apic_timer_interrupt(struct pt_regs *regs)
1137 {
1138 struct pt_regs *old_regs = set_irq_regs(regs);
1139 wrapper_smp_local_timer_interrupt();
1140 set_irq_regs(old_regs);
1141 }
1142
1143 /* All of the QUAD interrupt GATES */
1144 fastcall void
1145 smp_qic_timer_interrupt(struct pt_regs *regs)
1146 {
1147 ack_QIC_CPI(QIC_TIMER_CPI);
1148 struct pt_regs *old_regs = set_irq_regs(regs);
1149 wrapper_smp_local_timer_interrupt(void);
1150 set_irq_regs(old_regs);
1151 }
1152
1153 fastcall void
1154 smp_qic_invalidate_interrupt(struct pt_regs *regs)
1155 {
1156 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1157 smp_invalidate_interrupt();
1158 }
1159
1160 fastcall void
1161 smp_qic_reschedule_interrupt(struct pt_regs *regs)
1162 {
1163 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1164 smp_reschedule_interrupt();
1165 }
1166
1167 fastcall void
1168 smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1169 {
1170 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1171 smp_enable_irq_interrupt();
1172 }
1173
1174 fastcall void
1175 smp_qic_call_function_interrupt(struct pt_regs *regs)
1176 {
1177 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1178 smp_call_function_interrupt();
1179 }
1180
1181 fastcall void
1182 smp_vic_cpi_interrupt(struct pt_regs *regs)
1183 {
1184 struct pt_regs *old_regs = set_irq_regs(regs);
1185 __u8 cpu = smp_processor_id();
1186
1187 if(is_cpu_quad())
1188 ack_QIC_CPI(VIC_CPI_LEVEL0);
1189 else
1190 ack_VIC_CPI(VIC_CPI_LEVEL0);
1191
1192 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1193 wrapper_smp_local_timer_interrupt();
1194 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1195 smp_invalidate_interrupt();
1196 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1197 smp_reschedule_interrupt();
1198 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1199 smp_enable_irq_interrupt();
1200 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1201 smp_call_function_interrupt();
1202 set_irq_regs(old_regs);
1203 }
1204
1205 static void
1206 do_flush_tlb_all(void* info)
1207 {
1208 unsigned long cpu = smp_processor_id();
1209
1210 __flush_tlb_all();
1211 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1212 leave_mm(cpu);
1213 }
1214
1215
1216 /* flush the TLB of every active CPU in the system */
1217 void
1218 flush_tlb_all(void)
1219 {
1220 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1221 }
1222
1223 /* used to set up the trampoline for other CPUs when the memory manager
1224 * is sorted out */
1225 void __init
1226 smp_alloc_memory(void)
1227 {
1228 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1229 if(__pa(trampoline_base) >= 0x93000)
1230 BUG();
1231 }
1232
1233 /* send a reschedule CPI to one CPU by physical CPU number*/
1234 void
1235 smp_send_reschedule(int cpu)
1236 {
1237 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1238 }
1239
1240
1241 int
1242 hard_smp_processor_id(void)
1243 {
1244 __u8 i;
1245 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1246 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1247 return cpumask & 0x1F;
1248
1249 for(i = 0; i < 8; i++) {
1250 if(cpumask & (1<<i))
1251 return i;
1252 }
1253 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1254 return 0;
1255 }
1256
1257 int
1258 safe_smp_processor_id(void)
1259 {
1260 return hard_smp_processor_id();
1261 }
1262
1263 /* broadcast a halt to all other CPUs */
1264 void
1265 smp_send_stop(void)
1266 {
1267 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1268 }
1269
1270 /* this function is triggered in time.c when a clock tick fires
1271 * we need to re-broadcast the tick to all CPUs */
1272 void
1273 smp_vic_timer_interrupt(struct pt_regs *regs)
1274 {
1275 struct pt_regs *old_regs = set_irq_regs(regs);
1276 send_CPI_allbutself(VIC_TIMER_CPI);
1277 smp_local_timer_interrupt();
1278 set_irq_regs(old_regs);
1279 }
1280
1281 /* local (per CPU) timer interrupt. It does both profiling and
1282 * process statistics/rescheduling.
1283 *
1284 * We do profiling in every local tick, statistics/rescheduling
1285 * happen only every 'profiling multiplier' ticks. The default
1286 * multiplier is 1 and it can be changed by writing the new multiplier
1287 * value into /proc/profile.
1288 */
1289 void
1290 smp_local_timer_interrupt(void)
1291 {
1292 int cpu = smp_processor_id();
1293 long weight;
1294
1295 profile_tick(CPU_PROFILING);
1296 if (--per_cpu(prof_counter, cpu) <= 0) {
1297 /*
1298 * The multiplier may have changed since the last time we got
1299 * to this point as a result of the user writing to
1300 * /proc/profile. In this case we need to adjust the APIC
1301 * timer accordingly.
1302 *
1303 * Interrupts are already masked off at this point.
1304 */
1305 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1306 if (per_cpu(prof_counter, cpu) !=
1307 per_cpu(prof_old_multiplier, cpu)) {
1308 /* FIXME: need to update the vic timer tick here */
1309 per_cpu(prof_old_multiplier, cpu) =
1310 per_cpu(prof_counter, cpu);
1311 }
1312
1313 update_process_times(user_mode_vm(irq_regs));
1314 }
1315
1316 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1317 /* only extended VIC processors participate in
1318 * interrupt distribution */
1319 return;
1320
1321 /*
1322 * We take the 'long' return path, and there every subsystem
1323 * grabs the apropriate locks (kernel lock/ irq lock).
1324 *
1325 * we might want to decouple profiling from the 'long path',
1326 * and do the profiling totally in assembly.
1327 *
1328 * Currently this isn't too much of an issue (performance wise),
1329 * we can take more than 100K local irqs per second on a 100 MHz P5.
1330 */
1331
1332 if((++vic_tick[cpu] & 0x7) != 0)
1333 return;
1334 /* get here every 16 ticks (about every 1/6 of a second) */
1335
1336 /* Change our priority to give someone else a chance at getting
1337 * the IRQ. The algorithm goes like this:
1338 *
1339 * In the VIC, the dynamically routed interrupt is always
1340 * handled by the lowest priority eligible (i.e. receiving
1341 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1342 * lowest processor number gets it.
1343 *
1344 * The priority of a CPU is controlled by a special per-CPU
1345 * VIC priority register which is 3 bits wide 0 being lowest
1346 * and 7 highest priority..
1347 *
1348 * Therefore we subtract the average number of interrupts from
1349 * the number we've fielded. If this number is negative, we
1350 * lower the activity count and if it is positive, we raise
1351 * it.
1352 *
1353 * I'm afraid this still leads to odd looking interrupt counts:
1354 * the totals are all roughly equal, but the individual ones
1355 * look rather skewed.
1356 *
1357 * FIXME: This algorithm is total crap when mixed with SMP
1358 * affinity code since we now try to even up the interrupt
1359 * counts when an affinity binding is keeping them on a
1360 * particular CPU*/
1361 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1362 - vic_intr_total) >> 4;
1363 weight += 4;
1364 if(weight > 7)
1365 weight = 7;
1366 if(weight < 0)
1367 weight = 0;
1368
1369 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1370
1371 #ifdef VOYAGER_DEBUG
1372 if((vic_tick[cpu] & 0xFFF) == 0) {
1373 /* print this message roughly every 25 secs */
1374 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1375 cpu, vic_tick[cpu], weight);
1376 }
1377 #endif
1378 }
1379
1380 /* setup the profiling timer */
1381 int
1382 setup_profiling_timer(unsigned int multiplier)
1383 {
1384 int i;
1385
1386 if ( (!multiplier))
1387 return -EINVAL;
1388
1389 /*
1390 * Set the new multiplier for each CPU. CPUs don't start using the
1391 * new values until the next timer interrupt in which they do process
1392 * accounting.
1393 */
1394 for (i = 0; i < NR_CPUS; ++i)
1395 per_cpu(prof_multiplier, i) = multiplier;
1396
1397 return 0;
1398 }
1399
1400
1401 /* The CPIs are handled in the per cpu 8259s, so they must be
1402 * enabled to be received: FIX: enabling the CPIs in the early
1403 * boot sequence interferes with bug checking; enable them later
1404 * on in smp_init */
1405 #define VIC_SET_GATE(cpi, vector) \
1406 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1407 #define QIC_SET_GATE(cpi, vector) \
1408 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1409
1410 void __init
1411 smp_intr_init(void)
1412 {
1413 int i;
1414
1415 /* initialize the per cpu irq mask to all disabled */
1416 for(i = 0; i < NR_CPUS; i++)
1417 vic_irq_mask[i] = 0xFFFF;
1418
1419 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1420
1421 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1422 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1423
1424 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1425 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1426 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1427 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1428 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1429
1430
1431 /* now put the VIC descriptor into the first 48 IRQs
1432 *
1433 * This is for later: first 16 correspond to PC IRQs; next 16
1434 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1435 for(i = 0; i < 48; i++)
1436 irq_desc[i].chip = &vic_irq_type;
1437 }
1438
1439 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1440 * processor to receive CPI */
1441 static void
1442 send_CPI(__u32 cpuset, __u8 cpi)
1443 {
1444 int cpu;
1445 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1446
1447 if(cpi < VIC_START_FAKE_CPI) {
1448 /* fake CPI are only used for booting, so send to the
1449 * extended quads as well---Quads must be VIC booted */
1450 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1451 return;
1452 }
1453 if(quad_cpuset)
1454 send_QIC_CPI(quad_cpuset, cpi);
1455 cpuset &= ~quad_cpuset;
1456 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1457 if(cpuset == 0)
1458 return;
1459 for_each_online_cpu(cpu) {
1460 if(cpuset & (1<<cpu))
1461 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1462 }
1463 if(cpuset)
1464 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1465 }
1466
1467 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1468 * set the cache line to shared by reading it.
1469 *
1470 * DON'T make this inline otherwise the cache line read will be
1471 * optimised away
1472 * */
1473 static int
1474 ack_QIC_CPI(__u8 cpi) {
1475 __u8 cpu = hard_smp_processor_id();
1476
1477 cpi &= 7;
1478
1479 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1480 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1481 }
1482
1483 static void
1484 ack_special_QIC_CPI(__u8 cpi)
1485 {
1486 switch(cpi) {
1487 case VIC_CMN_INT:
1488 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1489 break;
1490 case VIC_SYS_INT:
1491 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1492 break;
1493 }
1494 /* also clear at the VIC, just in case (nop for non-extended proc) */
1495 ack_VIC_CPI(cpi);
1496 }
1497
1498 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1499 static void
1500 ack_VIC_CPI(__u8 cpi)
1501 {
1502 #ifdef VOYAGER_DEBUG
1503 unsigned long flags;
1504 __u16 isr;
1505 __u8 cpu = smp_processor_id();
1506
1507 local_irq_save(flags);
1508 isr = vic_read_isr();
1509 if((isr & (1<<(cpi &7))) == 0) {
1510 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1511 }
1512 #endif
1513 /* send specific EOI; the two system interrupts have
1514 * bit 4 set for a separate vector but behave as the
1515 * corresponding 3 bit intr */
1516 outb_p(0x60|(cpi & 7),0x20);
1517
1518 #ifdef VOYAGER_DEBUG
1519 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1520 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1521 }
1522 local_irq_restore(flags);
1523 #endif
1524 }
1525
1526 /* cribbed with thanks from irq.c */
1527 #define __byte(x,y) (((unsigned char *)&(y))[x])
1528 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1529 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1530
1531 static unsigned int
1532 startup_vic_irq(unsigned int irq)
1533 {
1534 enable_vic_irq(irq);
1535
1536 return 0;
1537 }
1538
1539 /* The enable and disable routines. This is where we run into
1540 * conflicting architectural philosophy. Fundamentally, the voyager
1541 * architecture does not expect to have to disable interrupts globally
1542 * (the IRQ controllers belong to each CPU). The processor masquerade
1543 * which is used to start the system shouldn't be used in a running OS
1544 * since it will cause great confusion if two separate CPUs drive to
1545 * the same IRQ controller (I know, I've tried it).
1546 *
1547 * The solution is a variant on the NCR lazy SPL design:
1548 *
1549 * 1) To disable an interrupt, do nothing (other than set the
1550 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1551 *
1552 * 2) If the interrupt dares to come in, raise the local mask against
1553 * it (this will result in all the CPU masks being raised
1554 * eventually).
1555 *
1556 * 3) To enable the interrupt, lower the mask on the local CPU and
1557 * broadcast an Interrupt enable CPI which causes all other CPUs to
1558 * adjust their masks accordingly. */
1559
1560 static void
1561 enable_vic_irq(unsigned int irq)
1562 {
1563 /* linux doesn't to processor-irq affinity, so enable on
1564 * all CPUs we know about */
1565 int cpu = smp_processor_id(), real_cpu;
1566 __u16 mask = (1<<irq);
1567 __u32 processorList = 0;
1568 unsigned long flags;
1569
1570 VDEBUG(("VOYAGER: enable_vic_irq(%d) CPU%d affinity 0x%lx\n",
1571 irq, cpu, cpu_irq_affinity[cpu]));
1572 spin_lock_irqsave(&vic_irq_lock, flags);
1573 for_each_online_cpu(real_cpu) {
1574 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1575 continue;
1576 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1577 /* irq has no affinity for this CPU, ignore */
1578 continue;
1579 }
1580 if(real_cpu == cpu) {
1581 enable_local_vic_irq(irq);
1582 }
1583 else if(vic_irq_mask[real_cpu] & mask) {
1584 vic_irq_enable_mask[real_cpu] |= mask;
1585 processorList |= (1<<real_cpu);
1586 }
1587 }
1588 spin_unlock_irqrestore(&vic_irq_lock, flags);
1589 if(processorList)
1590 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1591 }
1592
1593 static void
1594 disable_vic_irq(unsigned int irq)
1595 {
1596 /* lazy disable, do nothing */
1597 }
1598
1599 static void
1600 enable_local_vic_irq(unsigned int irq)
1601 {
1602 __u8 cpu = smp_processor_id();
1603 __u16 mask = ~(1 << irq);
1604 __u16 old_mask = vic_irq_mask[cpu];
1605
1606 vic_irq_mask[cpu] &= mask;
1607 if(vic_irq_mask[cpu] == old_mask)
1608 return;
1609
1610 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1611 irq, cpu));
1612
1613 if (irq & 8) {
1614 outb_p(cached_A1(cpu),0xA1);
1615 (void)inb_p(0xA1);
1616 }
1617 else {
1618 outb_p(cached_21(cpu),0x21);
1619 (void)inb_p(0x21);
1620 }
1621 }
1622
1623 static void
1624 disable_local_vic_irq(unsigned int irq)
1625 {
1626 __u8 cpu = smp_processor_id();
1627 __u16 mask = (1 << irq);
1628 __u16 old_mask = vic_irq_mask[cpu];
1629
1630 if(irq == 7)
1631 return;
1632
1633 vic_irq_mask[cpu] |= mask;
1634 if(old_mask == vic_irq_mask[cpu])
1635 return;
1636
1637 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1638 irq, cpu));
1639
1640 if (irq & 8) {
1641 outb_p(cached_A1(cpu),0xA1);
1642 (void)inb_p(0xA1);
1643 }
1644 else {
1645 outb_p(cached_21(cpu),0x21);
1646 (void)inb_p(0x21);
1647 }
1648 }
1649
1650 /* The VIC is level triggered, so the ack can only be issued after the
1651 * interrupt completes. However, we do Voyager lazy interrupt
1652 * handling here: It is an extremely expensive operation to mask an
1653 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1654 * this interrupt actually comes in, then we mask and ack here to push
1655 * the interrupt off to another CPU */
1656 static void
1657 before_handle_vic_irq(unsigned int irq)
1658 {
1659 irq_desc_t *desc = irq_desc + irq;
1660 __u8 cpu = smp_processor_id();
1661
1662 _raw_spin_lock(&vic_irq_lock);
1663 vic_intr_total++;
1664 vic_intr_count[cpu]++;
1665
1666 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1667 /* The irq is not in our affinity mask, push it off
1668 * onto another CPU */
1669 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1670 irq, cpu));
1671 disable_local_vic_irq(irq);
1672 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1673 * actually calling the interrupt routine */
1674 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1675 } else if(desc->status & IRQ_DISABLED) {
1676 /* Damn, the interrupt actually arrived, do the lazy
1677 * disable thing. The interrupt routine in irq.c will
1678 * not handle a IRQ_DISABLED interrupt, so nothing more
1679 * need be done here */
1680 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1681 irq, cpu));
1682 disable_local_vic_irq(irq);
1683 desc->status |= IRQ_REPLAY;
1684 } else {
1685 desc->status &= ~IRQ_REPLAY;
1686 }
1687
1688 _raw_spin_unlock(&vic_irq_lock);
1689 }
1690
1691 /* Finish the VIC interrupt: basically mask */
1692 static void
1693 after_handle_vic_irq(unsigned int irq)
1694 {
1695 irq_desc_t *desc = irq_desc + irq;
1696
1697 _raw_spin_lock(&vic_irq_lock);
1698 {
1699 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1700 #ifdef VOYAGER_DEBUG
1701 __u16 isr;
1702 #endif
1703
1704 desc->status = status;
1705 if ((status & IRQ_DISABLED))
1706 disable_local_vic_irq(irq);
1707 #ifdef VOYAGER_DEBUG
1708 /* DEBUG: before we ack, check what's in progress */
1709 isr = vic_read_isr();
1710 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1711 int i;
1712 __u8 cpu = smp_processor_id();
1713 __u8 real_cpu;
1714 int mask; /* Um... initialize me??? --RR */
1715
1716 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1717 cpu, irq);
1718 for_each_possible_cpu(real_cpu, mask) {
1719
1720 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1721 VIC_PROCESSOR_ID);
1722 isr = vic_read_isr();
1723 if(isr & (1<<irq)) {
1724 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1725 real_cpu, irq);
1726 ack_vic_irq(irq);
1727 }
1728 outb(cpu, VIC_PROCESSOR_ID);
1729 }
1730 }
1731 #endif /* VOYAGER_DEBUG */
1732 /* as soon as we ack, the interrupt is eligible for
1733 * receipt by another CPU so everything must be in
1734 * order here */
1735 ack_vic_irq(irq);
1736 if(status & IRQ_REPLAY) {
1737 /* replay is set if we disable the interrupt
1738 * in the before_handle_vic_irq() routine, so
1739 * clear the in progress bit here to allow the
1740 * next CPU to handle this correctly */
1741 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1742 }
1743 #ifdef VOYAGER_DEBUG
1744 isr = vic_read_isr();
1745 if((isr & (1<<irq)) != 0)
1746 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1747 irq, isr);
1748 #endif /* VOYAGER_DEBUG */
1749 }
1750 _raw_spin_unlock(&vic_irq_lock);
1751
1752 /* All code after this point is out of the main path - the IRQ
1753 * may be intercepted by another CPU if reasserted */
1754 }
1755
1756
1757 /* Linux processor - interrupt affinity manipulations.
1758 *
1759 * For each processor, we maintain a 32 bit irq affinity mask.
1760 * Initially it is set to all 1's so every processor accepts every
1761 * interrupt. In this call, we change the processor's affinity mask:
1762 *
1763 * Change from enable to disable:
1764 *
1765 * If the interrupt ever comes in to the processor, we will disable it
1766 * and ack it to push it off to another CPU, so just accept the mask here.
1767 *
1768 * Change from disable to enable:
1769 *
1770 * change the mask and then do an interrupt enable CPI to re-enable on
1771 * the selected processors */
1772
1773 void
1774 set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1775 {
1776 /* Only extended processors handle interrupts */
1777 unsigned long real_mask;
1778 unsigned long irq_mask = 1 << irq;
1779 int cpu;
1780
1781 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1782
1783 if(cpus_addr(mask)[0] == 0)
1784 /* can't have no cpu's to accept the interrupt -- extremely
1785 * bad things will happen */
1786 return;
1787
1788 if(irq == 0)
1789 /* can't change the affinity of the timer IRQ. This
1790 * is due to the constraint in the voyager
1791 * architecture that the CPI also comes in on and IRQ
1792 * line and we have chosen IRQ0 for this. If you
1793 * raise the mask on this interrupt, the processor
1794 * will no-longer be able to accept VIC CPIs */
1795 return;
1796
1797 if(irq >= 32)
1798 /* You can only have 32 interrupts in a voyager system
1799 * (and 32 only if you have a secondary microchannel
1800 * bus) */
1801 return;
1802
1803 for_each_online_cpu(cpu) {
1804 unsigned long cpu_mask = 1 << cpu;
1805
1806 if(cpu_mask & real_mask) {
1807 /* enable the interrupt for this cpu */
1808 cpu_irq_affinity[cpu] |= irq_mask;
1809 } else {
1810 /* disable the interrupt for this cpu */
1811 cpu_irq_affinity[cpu] &= ~irq_mask;
1812 }
1813 }
1814 /* this is magic, we now have the correct affinity maps, so
1815 * enable the interrupt. This will send an enable CPI to
1816 * those cpu's who need to enable it in their local masks,
1817 * causing them to correct for the new affinity . If the
1818 * interrupt is currently globally disabled, it will simply be
1819 * disabled again as it comes in (voyager lazy disable). If
1820 * the affinity map is tightened to disable the interrupt on a
1821 * cpu, it will be pushed off when it comes in */
1822 enable_vic_irq(irq);
1823 }
1824
1825 static void
1826 ack_vic_irq(unsigned int irq)
1827 {
1828 if (irq & 8) {
1829 outb(0x62,0x20); /* Specific EOI to cascade */
1830 outb(0x60|(irq & 7),0xA0);
1831 } else {
1832 outb(0x60 | (irq & 7),0x20);
1833 }
1834 }
1835
1836 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1837 * but are not vectored by it. This means that the 8259 mask must be
1838 * lowered to receive them */
1839 static __init void
1840 vic_enable_cpi(void)
1841 {
1842 __u8 cpu = smp_processor_id();
1843
1844 /* just take a copy of the current mask (nop for boot cpu) */
1845 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1846
1847 enable_local_vic_irq(VIC_CPI_LEVEL0);
1848 enable_local_vic_irq(VIC_CPI_LEVEL1);
1849 /* for sys int and cmn int */
1850 enable_local_vic_irq(7);
1851
1852 if(is_cpu_quad()) {
1853 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1854 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1855 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1856 cpu, QIC_CPI_ENABLE));
1857 }
1858
1859 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1860 cpu, vic_irq_mask[cpu]));
1861 }
1862
1863 void
1864 voyager_smp_dump()
1865 {
1866 int old_cpu = smp_processor_id(), cpu;
1867
1868 /* dump the interrupt masks of each processor */
1869 for_each_online_cpu(cpu) {
1870 __u16 imr, isr, irr;
1871 unsigned long flags;
1872
1873 local_irq_save(flags);
1874 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1875 imr = (inb(0xa1) << 8) | inb(0x21);
1876 outb(0x0a, 0xa0);
1877 irr = inb(0xa0) << 8;
1878 outb(0x0a, 0x20);
1879 irr |= inb(0x20);
1880 outb(0x0b, 0xa0);
1881 isr = inb(0xa0) << 8;
1882 outb(0x0b, 0x20);
1883 isr |= inb(0x20);
1884 outb(old_cpu, VIC_PROCESSOR_ID);
1885 local_irq_restore(flags);
1886 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1887 cpu, vic_irq_mask[cpu], imr, irr, isr);
1888 #if 0
1889 /* These lines are put in to try to unstick an un ack'd irq */
1890 if(isr != 0) {
1891 int irq;
1892 for(irq=0; irq<16; irq++) {
1893 if(isr & (1<<irq)) {
1894 printk("\tCPU%d: ack irq %d\n",
1895 cpu, irq);
1896 local_irq_save(flags);
1897 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1898 VIC_PROCESSOR_ID);
1899 ack_vic_irq(irq);
1900 outb(old_cpu, VIC_PROCESSOR_ID);
1901 local_irq_restore(flags);
1902 }
1903 }
1904 }
1905 #endif
1906 }
1907 }
1908
1909 void
1910 smp_voyager_power_off(void *dummy)
1911 {
1912 if(smp_processor_id() == boot_cpu_id)
1913 voyager_power_off();
1914 else
1915 smp_stop_cpu_function(NULL);
1916 }
1917
1918 void __init
1919 smp_prepare_cpus(unsigned int max_cpus)
1920 {
1921 /* FIXME: ignore max_cpus for now */
1922 smp_boot_cpus();
1923 }
1924
1925 void __devinit smp_prepare_boot_cpu(void)
1926 {
1927 cpu_set(smp_processor_id(), cpu_online_map);
1928 cpu_set(smp_processor_id(), cpu_callout_map);
1929 cpu_set(smp_processor_id(), cpu_possible_map);
1930 cpu_set(smp_processor_id(), cpu_present_map);
1931 }
1932
1933 int __devinit
1934 __cpu_up(unsigned int cpu)
1935 {
1936 /* This only works at boot for x86. See "rewrite" above. */
1937 if (cpu_isset(cpu, smp_commenced_mask))
1938 return -ENOSYS;
1939
1940 /* In case one didn't come up */
1941 if (!cpu_isset(cpu, cpu_callin_map))
1942 return -EIO;
1943 /* Unleash the CPU! */
1944 cpu_set(cpu, smp_commenced_mask);
1945 while (!cpu_isset(cpu, cpu_online_map))
1946 mb();
1947 return 0;
1948 }
1949
1950 void __init
1951 smp_cpus_done(unsigned int max_cpus)
1952 {
1953 zap_low_mappings();
1954 }
1955
1956 void __init
1957 smp_setup_processor_id(void)
1958 {
1959 current_thread_info()->cpu = hard_smp_processor_id();
1960 }