]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/i386/mm/fault.c
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / arch / i386 / mm / fault.c
1 /*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24
25 #include <asm/system.h>
26 #include <asm/uaccess.h>
27 #include <asm/desc.h>
28 #include <asm/kdebug.h>
29
30 extern void die(const char *,struct pt_regs *,long);
31
32 /*
33 * Unlock any spinlocks which will prevent us from getting the
34 * message out
35 */
36 void bust_spinlocks(int yes)
37 {
38 int loglevel_save = console_loglevel;
39
40 if (yes) {
41 oops_in_progress = 1;
42 return;
43 }
44 #ifdef CONFIG_VT
45 unblank_screen();
46 #endif
47 oops_in_progress = 0;
48 /*
49 * OK, the message is on the console. Now we call printk()
50 * without oops_in_progress set so that printk will give klogd
51 * a poke. Hold onto your hats...
52 */
53 console_loglevel = 15; /* NMI oopser may have shut the console up */
54 printk(" ");
55 console_loglevel = loglevel_save;
56 }
57
58 /*
59 * Return EIP plus the CS segment base. The segment limit is also
60 * adjusted, clamped to the kernel/user address space (whichever is
61 * appropriate), and returned in *eip_limit.
62 *
63 * The segment is checked, because it might have been changed by another
64 * task between the original faulting instruction and here.
65 *
66 * If CS is no longer a valid code segment, or if EIP is beyond the
67 * limit, or if it is a kernel address when CS is not a kernel segment,
68 * then the returned value will be greater than *eip_limit.
69 *
70 * This is slow, but is very rarely executed.
71 */
72 static inline unsigned long get_segment_eip(struct pt_regs *regs,
73 unsigned long *eip_limit)
74 {
75 unsigned long eip = regs->eip;
76 unsigned seg = regs->xcs & 0xffff;
77 u32 seg_ar, seg_limit, base, *desc;
78
79 /* The standard kernel/user address space limit. */
80 *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
81
82 /* Unlikely, but must come before segment checks. */
83 if (unlikely((regs->eflags & VM_MASK) != 0))
84 return eip + (seg << 4);
85
86 /* By far the most common cases. */
87 if (likely(seg == __USER_CS || seg == __KERNEL_CS))
88 return eip;
89
90 /* Check the segment exists, is within the current LDT/GDT size,
91 that kernel/user (ring 0..3) has the appropriate privilege,
92 that it's a code segment, and get the limit. */
93 __asm__ ("larl %3,%0; lsll %3,%1"
94 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
95 if ((~seg_ar & 0x9800) || eip > seg_limit) {
96 *eip_limit = 0;
97 return 1; /* So that returned eip > *eip_limit. */
98 }
99
100 /* Get the GDT/LDT descriptor base.
101 When you look for races in this code remember that
102 LDT and other horrors are only used in user space. */
103 if (seg & (1<<2)) {
104 /* Must lock the LDT while reading it. */
105 down(&current->mm->context.sem);
106 desc = current->mm->context.ldt;
107 desc = (void *)desc + (seg & ~7);
108 } else {
109 /* Must disable preemption while reading the GDT. */
110 desc = (u32 *)&per_cpu(cpu_gdt_table, get_cpu());
111 desc = (void *)desc + (seg & ~7);
112 }
113
114 /* Decode the code segment base from the descriptor */
115 base = get_desc_base((unsigned long *)desc);
116
117 if (seg & (1<<2)) {
118 up(&current->mm->context.sem);
119 } else
120 put_cpu();
121
122 /* Adjust EIP and segment limit, and clamp at the kernel limit.
123 It's legitimate for segments to wrap at 0xffffffff. */
124 seg_limit += base;
125 if (seg_limit < *eip_limit && seg_limit >= base)
126 *eip_limit = seg_limit;
127 return eip + base;
128 }
129
130 /*
131 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
132 * Check that here and ignore it.
133 */
134 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
135 {
136 unsigned long limit;
137 unsigned long instr = get_segment_eip (regs, &limit);
138 int scan_more = 1;
139 int prefetch = 0;
140 int i;
141
142 for (i = 0; scan_more && i < 15; i++) {
143 unsigned char opcode;
144 unsigned char instr_hi;
145 unsigned char instr_lo;
146
147 if (instr > limit)
148 break;
149 if (__get_user(opcode, (unsigned char *) instr))
150 break;
151
152 instr_hi = opcode & 0xf0;
153 instr_lo = opcode & 0x0f;
154 instr++;
155
156 switch (instr_hi) {
157 case 0x20:
158 case 0x30:
159 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
160 scan_more = ((instr_lo & 7) == 0x6);
161 break;
162
163 case 0x60:
164 /* 0x64 thru 0x67 are valid prefixes in all modes. */
165 scan_more = (instr_lo & 0xC) == 0x4;
166 break;
167 case 0xF0:
168 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
169 scan_more = !instr_lo || (instr_lo>>1) == 1;
170 break;
171 case 0x00:
172 /* Prefetch instruction is 0x0F0D or 0x0F18 */
173 scan_more = 0;
174 if (instr > limit)
175 break;
176 if (__get_user(opcode, (unsigned char *) instr))
177 break;
178 prefetch = (instr_lo == 0xF) &&
179 (opcode == 0x0D || opcode == 0x18);
180 break;
181 default:
182 scan_more = 0;
183 break;
184 }
185 }
186 return prefetch;
187 }
188
189 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
190 unsigned long error_code)
191 {
192 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
193 boot_cpu_data.x86 >= 6)) {
194 /* Catch an obscure case of prefetch inside an NX page. */
195 if (nx_enabled && (error_code & 16))
196 return 0;
197 return __is_prefetch(regs, addr);
198 }
199 return 0;
200 }
201
202 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
203
204 /*
205 * This routine handles page faults. It determines the address,
206 * and the problem, and then passes it off to one of the appropriate
207 * routines.
208 *
209 * error_code:
210 * bit 0 == 0 means no page found, 1 means protection fault
211 * bit 1 == 0 means read, 1 means write
212 * bit 2 == 0 means kernel, 1 means user-mode
213 */
214 fastcall void do_page_fault(struct pt_regs *regs, unsigned long error_code)
215 {
216 struct task_struct *tsk;
217 struct mm_struct *mm;
218 struct vm_area_struct * vma;
219 unsigned long address;
220 unsigned long page;
221 int write;
222 siginfo_t info;
223
224 /* get the address */
225 __asm__("movl %%cr2,%0":"=r" (address));
226
227 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
228 SIGSEGV) == NOTIFY_STOP)
229 return;
230 /* It's safe to allow irq's after cr2 has been saved */
231 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
232 local_irq_enable();
233
234 tsk = current;
235
236 info.si_code = SEGV_MAPERR;
237
238 /*
239 * We fault-in kernel-space virtual memory on-demand. The
240 * 'reference' page table is init_mm.pgd.
241 *
242 * NOTE! We MUST NOT take any locks for this case. We may
243 * be in an interrupt or a critical region, and should
244 * only copy the information from the master page table,
245 * nothing more.
246 *
247 * This verifies that the fault happens in kernel space
248 * (error_code & 4) == 0, and that the fault was not a
249 * protection error (error_code & 1) == 0.
250 */
251 if (unlikely(address >= TASK_SIZE)) {
252 if (!(error_code & 5))
253 goto vmalloc_fault;
254 /*
255 * Don't take the mm semaphore here. If we fixup a prefetch
256 * fault we could otherwise deadlock.
257 */
258 goto bad_area_nosemaphore;
259 }
260
261 mm = tsk->mm;
262
263 /*
264 * If we're in an interrupt, have no user context or are running in an
265 * atomic region then we must not take the fault..
266 */
267 if (in_atomic() || !mm)
268 goto bad_area_nosemaphore;
269
270 /* When running in the kernel we expect faults to occur only to
271 * addresses in user space. All other faults represent errors in the
272 * kernel and should generate an OOPS. Unfortunatly, in the case of an
273 * erroneous fault occuring in a code path which already holds mmap_sem
274 * we will deadlock attempting to validate the fault against the
275 * address space. Luckily the kernel only validly references user
276 * space from well defined areas of code, which are listed in the
277 * exceptions table.
278 *
279 * As the vast majority of faults will be valid we will only perform
280 * the source reference check when there is a possibilty of a deadlock.
281 * Attempt to lock the address space, if we cannot we then validate the
282 * source. If this is invalid we can skip the address space check,
283 * thus avoiding the deadlock.
284 */
285 if (!down_read_trylock(&mm->mmap_sem)) {
286 if ((error_code & 4) == 0 &&
287 !search_exception_tables(regs->eip))
288 goto bad_area_nosemaphore;
289 down_read(&mm->mmap_sem);
290 }
291
292 vma = find_vma(mm, address);
293 if (!vma)
294 goto bad_area;
295 if (vma->vm_start <= address)
296 goto good_area;
297 if (!(vma->vm_flags & VM_GROWSDOWN))
298 goto bad_area;
299 if (error_code & 4) {
300 /*
301 * accessing the stack below %esp is always a bug.
302 * The "+ 32" is there due to some instructions (like
303 * pusha) doing post-decrement on the stack and that
304 * doesn't show up until later..
305 */
306 if (address + 32 < regs->esp)
307 goto bad_area;
308 }
309 if (expand_stack(vma, address))
310 goto bad_area;
311 /*
312 * Ok, we have a good vm_area for this memory access, so
313 * we can handle it..
314 */
315 good_area:
316 info.si_code = SEGV_ACCERR;
317 write = 0;
318 switch (error_code & 3) {
319 default: /* 3: write, present */
320 #ifdef TEST_VERIFY_AREA
321 if (regs->cs == KERNEL_CS)
322 printk("WP fault at %08lx\n", regs->eip);
323 #endif
324 /* fall through */
325 case 2: /* write, not present */
326 if (!(vma->vm_flags & VM_WRITE))
327 goto bad_area;
328 write++;
329 break;
330 case 1: /* read, present */
331 goto bad_area;
332 case 0: /* read, not present */
333 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
334 goto bad_area;
335 }
336
337 survive:
338 /*
339 * If for any reason at all we couldn't handle the fault,
340 * make sure we exit gracefully rather than endlessly redo
341 * the fault.
342 */
343 switch (handle_mm_fault(mm, vma, address, write)) {
344 case VM_FAULT_MINOR:
345 tsk->min_flt++;
346 break;
347 case VM_FAULT_MAJOR:
348 tsk->maj_flt++;
349 break;
350 case VM_FAULT_SIGBUS:
351 goto do_sigbus;
352 case VM_FAULT_OOM:
353 goto out_of_memory;
354 default:
355 BUG();
356 }
357
358 /*
359 * Did it hit the DOS screen memory VA from vm86 mode?
360 */
361 if (regs->eflags & VM_MASK) {
362 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
363 if (bit < 32)
364 tsk->thread.screen_bitmap |= 1 << bit;
365 }
366 up_read(&mm->mmap_sem);
367 return;
368
369 /*
370 * Something tried to access memory that isn't in our memory map..
371 * Fix it, but check if it's kernel or user first..
372 */
373 bad_area:
374 up_read(&mm->mmap_sem);
375
376 bad_area_nosemaphore:
377 /* User mode accesses just cause a SIGSEGV */
378 if (error_code & 4) {
379 /*
380 * Valid to do another page fault here because this one came
381 * from user space.
382 */
383 if (is_prefetch(regs, address, error_code))
384 return;
385
386 tsk->thread.cr2 = address;
387 /* Kernel addresses are always protection faults */
388 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
389 tsk->thread.trap_no = 14;
390 info.si_signo = SIGSEGV;
391 info.si_errno = 0;
392 /* info.si_code has been set above */
393 info.si_addr = (void __user *)address;
394 force_sig_info(SIGSEGV, &info, tsk);
395 return;
396 }
397
398 #ifdef CONFIG_X86_F00F_BUG
399 /*
400 * Pentium F0 0F C7 C8 bug workaround.
401 */
402 if (boot_cpu_data.f00f_bug) {
403 unsigned long nr;
404
405 nr = (address - idt_descr.address) >> 3;
406
407 if (nr == 6) {
408 do_invalid_op(regs, 0);
409 return;
410 }
411 }
412 #endif
413
414 no_context:
415 /* Are we prepared to handle this kernel fault? */
416 if (fixup_exception(regs))
417 return;
418
419 /*
420 * Valid to do another page fault here, because if this fault
421 * had been triggered by is_prefetch fixup_exception would have
422 * handled it.
423 */
424 if (is_prefetch(regs, address, error_code))
425 return;
426
427 /*
428 * Oops. The kernel tried to access some bad page. We'll have to
429 * terminate things with extreme prejudice.
430 */
431
432 bust_spinlocks(1);
433
434 #ifdef CONFIG_X86_PAE
435 if (error_code & 16) {
436 pte_t *pte = lookup_address(address);
437
438 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
439 printk(KERN_CRIT "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", current->uid);
440 }
441 #endif
442 if (address < PAGE_SIZE)
443 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
444 else
445 printk(KERN_ALERT "Unable to handle kernel paging request");
446 printk(" at virtual address %08lx\n",address);
447 printk(KERN_ALERT " printing eip:\n");
448 printk("%08lx\n", regs->eip);
449 asm("movl %%cr3,%0":"=r" (page));
450 page = ((unsigned long *) __va(page))[address >> 22];
451 printk(KERN_ALERT "*pde = %08lx\n", page);
452 /*
453 * We must not directly access the pte in the highpte
454 * case, the page table might be allocated in highmem.
455 * And lets rather not kmap-atomic the pte, just in case
456 * it's allocated already.
457 */
458 #ifndef CONFIG_HIGHPTE
459 if (page & 1) {
460 page &= PAGE_MASK;
461 address &= 0x003ff000;
462 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
463 printk(KERN_ALERT "*pte = %08lx\n", page);
464 }
465 #endif
466 die("Oops", regs, error_code);
467 bust_spinlocks(0);
468 do_exit(SIGKILL);
469
470 /*
471 * We ran out of memory, or some other thing happened to us that made
472 * us unable to handle the page fault gracefully.
473 */
474 out_of_memory:
475 up_read(&mm->mmap_sem);
476 if (tsk->pid == 1) {
477 yield();
478 down_read(&mm->mmap_sem);
479 goto survive;
480 }
481 printk("VM: killing process %s\n", tsk->comm);
482 if (error_code & 4)
483 do_exit(SIGKILL);
484 goto no_context;
485
486 do_sigbus:
487 up_read(&mm->mmap_sem);
488
489 /* Kernel mode? Handle exceptions or die */
490 if (!(error_code & 4))
491 goto no_context;
492
493 /* User space => ok to do another page fault */
494 if (is_prefetch(regs, address, error_code))
495 return;
496
497 tsk->thread.cr2 = address;
498 tsk->thread.error_code = error_code;
499 tsk->thread.trap_no = 14;
500 info.si_signo = SIGBUS;
501 info.si_errno = 0;
502 info.si_code = BUS_ADRERR;
503 info.si_addr = (void __user *)address;
504 force_sig_info(SIGBUS, &info, tsk);
505 return;
506
507 vmalloc_fault:
508 {
509 /*
510 * Synchronize this task's top level page-table
511 * with the 'reference' page table.
512 *
513 * Do _not_ use "tsk" here. We might be inside
514 * an interrupt in the middle of a task switch..
515 */
516 int index = pgd_index(address);
517 unsigned long pgd_paddr;
518 pgd_t *pgd, *pgd_k;
519 pud_t *pud, *pud_k;
520 pmd_t *pmd, *pmd_k;
521 pte_t *pte_k;
522
523 asm("movl %%cr3,%0":"=r" (pgd_paddr));
524 pgd = index + (pgd_t *)__va(pgd_paddr);
525 pgd_k = init_mm.pgd + index;
526
527 if (!pgd_present(*pgd_k))
528 goto no_context;
529
530 /*
531 * set_pgd(pgd, *pgd_k); here would be useless on PAE
532 * and redundant with the set_pmd() on non-PAE. As would
533 * set_pud.
534 */
535
536 pud = pud_offset(pgd, address);
537 pud_k = pud_offset(pgd_k, address);
538 if (!pud_present(*pud_k))
539 goto no_context;
540
541 pmd = pmd_offset(pud, address);
542 pmd_k = pmd_offset(pud_k, address);
543 if (!pmd_present(*pmd_k))
544 goto no_context;
545 set_pmd(pmd, *pmd_k);
546
547 pte_k = pte_offset_kernel(pmd_k, address);
548 if (!pte_present(*pte_k))
549 goto no_context;
550 return;
551 }
552 }