]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/hp/common/sba_iommu.c
Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / hp / common / sba_iommu.c
1 /*
2 ** IA64 System Bus Adapter (SBA) I/O MMU manager
3 **
4 ** (c) Copyright 2002-2005 Alex Williamson
5 ** (c) Copyright 2002-2003 Grant Grundler
6 ** (c) Copyright 2002-2005 Hewlett-Packard Company
7 **
8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 ** This program is free software; you can redistribute it and/or modify
12 ** it under the terms of the GNU General Public License as published by
13 ** the Free Software Foundation; either version 2 of the License, or
14 ** (at your option) any later version.
15 **
16 **
17 ** This module initializes the IOC (I/O Controller) found on HP
18 ** McKinley machines and their successors.
19 **
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/acpi.h>
34 #include <linux/efi.h>
35 #include <linux/nodemask.h>
36 #include <linux/bitops.h> /* hweight64() */
37 #include <linux/crash_dump.h>
38 #include <linux/iommu-helper.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/prefetch.h>
41
42 #include <asm/delay.h> /* ia64_get_itc() */
43 #include <asm/io.h>
44 #include <asm/page.h> /* PAGE_OFFSET */
45 #include <asm/dma.h>
46
47 #include <asm/acpi-ext.h>
48
49 extern int swiotlb_late_init_with_default_size (size_t size);
50
51 #define PFX "IOC: "
52
53 /*
54 ** Enabling timing search of the pdir resource map. Output in /proc.
55 ** Disabled by default to optimize performance.
56 */
57 #undef PDIR_SEARCH_TIMING
58
59 /*
60 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
61 ** not defined, all DMA will be 32bit and go through the TLB.
62 ** There's potentially a conflict in the bio merge code with us
63 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
64 ** appears to give more performance than bio-level virtual merging, we'll
65 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
66 ** completely restrict DMA to the IOMMU.
67 */
68 #define ALLOW_IOV_BYPASS
69
70 /*
71 ** This option specifically allows/disallows bypassing scatterlists with
72 ** multiple entries. Coalescing these entries can allow better DMA streaming
73 ** and in some cases shows better performance than entirely bypassing the
74 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
75 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
76 */
77 #undef ALLOW_IOV_BYPASS_SG
78
79 /*
80 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
81 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
82 ** disconnect on 4k boundaries and prevent such issues. If the device is
83 ** particularly aggressive, this option will keep the entire pdir valid such
84 ** that prefetching will hit a valid address. This could severely impact
85 ** error containment, and is therefore off by default. The page that is
86 ** used for spill-over is poisoned, so that should help debugging somewhat.
87 */
88 #undef FULL_VALID_PDIR
89
90 #define ENABLE_MARK_CLEAN
91
92 /*
93 ** The number of debug flags is a clue - this code is fragile. NOTE: since
94 ** tightening the use of res_lock the resource bitmap and actual pdir are no
95 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
96 ** like that.
97 */
98 #undef DEBUG_SBA_INIT
99 #undef DEBUG_SBA_RUN
100 #undef DEBUG_SBA_RUN_SG
101 #undef DEBUG_SBA_RESOURCE
102 #undef ASSERT_PDIR_SANITY
103 #undef DEBUG_LARGE_SG_ENTRIES
104 #undef DEBUG_BYPASS
105
106 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
107 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
108 #endif
109
110 #define SBA_INLINE __inline__
111 /* #define SBA_INLINE */
112
113 #ifdef DEBUG_SBA_INIT
114 #define DBG_INIT(x...) printk(x)
115 #else
116 #define DBG_INIT(x...)
117 #endif
118
119 #ifdef DEBUG_SBA_RUN
120 #define DBG_RUN(x...) printk(x)
121 #else
122 #define DBG_RUN(x...)
123 #endif
124
125 #ifdef DEBUG_SBA_RUN_SG
126 #define DBG_RUN_SG(x...) printk(x)
127 #else
128 #define DBG_RUN_SG(x...)
129 #endif
130
131
132 #ifdef DEBUG_SBA_RESOURCE
133 #define DBG_RES(x...) printk(x)
134 #else
135 #define DBG_RES(x...)
136 #endif
137
138 #ifdef DEBUG_BYPASS
139 #define DBG_BYPASS(x...) printk(x)
140 #else
141 #define DBG_BYPASS(x...)
142 #endif
143
144 #ifdef ASSERT_PDIR_SANITY
145 #define ASSERT(expr) \
146 if(!(expr)) { \
147 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
148 panic(#expr); \
149 }
150 #else
151 #define ASSERT(expr)
152 #endif
153
154 /*
155 ** The number of pdir entries to "free" before issuing
156 ** a read to PCOM register to flush out PCOM writes.
157 ** Interacts with allocation granularity (ie 4 or 8 entries
158 ** allocated and free'd/purged at a time might make this
159 ** less interesting).
160 */
161 #define DELAYED_RESOURCE_CNT 64
162
163 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
164
165 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
167 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
168 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
169 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
170
171 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
172
173 #define IOC_FUNC_ID 0x000
174 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
175 #define IOC_IBASE 0x300 /* IO TLB */
176 #define IOC_IMASK 0x308
177 #define IOC_PCOM 0x310
178 #define IOC_TCNFG 0x318
179 #define IOC_PDIR_BASE 0x320
180
181 #define IOC_ROPE0_CFG 0x500
182 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
183
184
185 /* AGP GART driver looks for this */
186 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
187
188 /*
189 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
190 **
191 ** Some IOCs (sx1000) can run at the above pages sizes, but are
192 ** really only supported using the IOC at a 4k page size.
193 **
194 ** iovp_size could only be greater than PAGE_SIZE if we are
195 ** confident the drivers really only touch the next physical
196 ** page iff that driver instance owns it.
197 */
198 static unsigned long iovp_size;
199 static unsigned long iovp_shift;
200 static unsigned long iovp_mask;
201
202 struct ioc {
203 void __iomem *ioc_hpa; /* I/O MMU base address */
204 char *res_map; /* resource map, bit == pdir entry */
205 u64 *pdir_base; /* physical base address */
206 unsigned long ibase; /* pdir IOV Space base */
207 unsigned long imask; /* pdir IOV Space mask */
208
209 unsigned long *res_hint; /* next avail IOVP - circular search */
210 unsigned long dma_mask;
211 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
212 /* clearing pdir to prevent races with allocations. */
213 unsigned int res_bitshift; /* from the RIGHT! */
214 unsigned int res_size; /* size of resource map in bytes */
215 #ifdef CONFIG_NUMA
216 unsigned int node; /* node where this IOC lives */
217 #endif
218 #if DELAYED_RESOURCE_CNT > 0
219 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
220 /* than res_lock for bigger systems. */
221 int saved_cnt;
222 struct sba_dma_pair {
223 dma_addr_t iova;
224 size_t size;
225 } saved[DELAYED_RESOURCE_CNT];
226 #endif
227
228 #ifdef PDIR_SEARCH_TIMING
229 #define SBA_SEARCH_SAMPLE 0x100
230 unsigned long avg_search[SBA_SEARCH_SAMPLE];
231 unsigned long avg_idx; /* current index into avg_search */
232 #endif
233
234 /* Stuff we don't need in performance path */
235 struct ioc *next; /* list of IOC's in system */
236 acpi_handle handle; /* for multiple IOC's */
237 const char *name;
238 unsigned int func_id;
239 unsigned int rev; /* HW revision of chip */
240 u32 iov_size;
241 unsigned int pdir_size; /* in bytes, determined by IOV Space size */
242 struct pci_dev *sac_only_dev;
243 };
244
245 static struct ioc *ioc_list;
246 static int reserve_sba_gart = 1;
247
248 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
249 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
250
251 #define sba_sg_address(sg) sg_virt((sg))
252
253 #ifdef FULL_VALID_PDIR
254 static u64 prefetch_spill_page;
255 #endif
256
257 #ifdef CONFIG_PCI
258 # define GET_IOC(dev) ((dev_is_pci(dev)) \
259 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
260 #else
261 # define GET_IOC(dev) NULL
262 #endif
263
264 /*
265 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
266 ** (or rather not merge) DMAs into manageable chunks.
267 ** On parisc, this is more of the software/tuning constraint
268 ** rather than the HW. I/O MMU allocation algorithms can be
269 ** faster with smaller sizes (to some degree).
270 */
271 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
272
273 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
274
275 /************************************
276 ** SBA register read and write support
277 **
278 ** BE WARNED: register writes are posted.
279 ** (ie follow writes which must reach HW with a read)
280 **
281 */
282 #define READ_REG(addr) __raw_readq(addr)
283 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
284
285 #ifdef DEBUG_SBA_INIT
286
287 /**
288 * sba_dump_tlb - debugging only - print IOMMU operating parameters
289 * @hpa: base address of the IOMMU
290 *
291 * Print the size/location of the IO MMU PDIR.
292 */
293 static void
294 sba_dump_tlb(char *hpa)
295 {
296 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
297 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
298 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
299 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
300 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
301 DBG_INIT("\n");
302 }
303 #endif
304
305
306 #ifdef ASSERT_PDIR_SANITY
307
308 /**
309 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
310 * @ioc: IO MMU structure which owns the pdir we are interested in.
311 * @msg: text to print ont the output line.
312 * @pide: pdir index.
313 *
314 * Print one entry of the IO MMU PDIR in human readable form.
315 */
316 static void
317 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
318 {
319 /* start printing from lowest pde in rval */
320 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
321 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
322 uint rcnt;
323
324 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
325 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
326
327 rcnt = 0;
328 while (rcnt < BITS_PER_LONG) {
329 printk(KERN_DEBUG "%s %2d %p %016Lx\n",
330 (rcnt == (pide & (BITS_PER_LONG - 1)))
331 ? " -->" : " ",
332 rcnt, ptr, (unsigned long long) *ptr );
333 rcnt++;
334 ptr++;
335 }
336 printk(KERN_DEBUG "%s", msg);
337 }
338
339
340 /**
341 * sba_check_pdir - debugging only - consistency checker
342 * @ioc: IO MMU structure which owns the pdir we are interested in.
343 * @msg: text to print ont the output line.
344 *
345 * Verify the resource map and pdir state is consistent
346 */
347 static int
348 sba_check_pdir(struct ioc *ioc, char *msg)
349 {
350 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
351 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
352 u64 *pptr = ioc->pdir_base; /* pdir ptr */
353 uint pide = 0;
354
355 while (rptr < rptr_end) {
356 u64 rval;
357 int rcnt; /* number of bits we might check */
358
359 rval = *rptr;
360 rcnt = 64;
361
362 while (rcnt) {
363 /* Get last byte and highest bit from that */
364 u32 pde = ((u32)((*pptr >> (63)) & 0x1));
365 if ((rval & 0x1) ^ pde)
366 {
367 /*
368 ** BUMMER! -- res_map != pdir --
369 ** Dump rval and matching pdir entries
370 */
371 sba_dump_pdir_entry(ioc, msg, pide);
372 return(1);
373 }
374 rcnt--;
375 rval >>= 1; /* try the next bit */
376 pptr++;
377 pide++;
378 }
379 rptr++; /* look at next word of res_map */
380 }
381 /* It'd be nice if we always got here :^) */
382 return 0;
383 }
384
385
386 /**
387 * sba_dump_sg - debugging only - print Scatter-Gather list
388 * @ioc: IO MMU structure which owns the pdir we are interested in.
389 * @startsg: head of the SG list
390 * @nents: number of entries in SG list
391 *
392 * print the SG list so we can verify it's correct by hand.
393 */
394 static void
395 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
396 {
397 while (nents-- > 0) {
398 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
399 startsg->dma_address, startsg->dma_length,
400 sba_sg_address(startsg));
401 startsg = sg_next(startsg);
402 }
403 }
404
405 static void
406 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
407 {
408 struct scatterlist *the_sg = startsg;
409 int the_nents = nents;
410
411 while (the_nents-- > 0) {
412 if (sba_sg_address(the_sg) == 0x0UL)
413 sba_dump_sg(NULL, startsg, nents);
414 the_sg = sg_next(the_sg);
415 }
416 }
417
418 #endif /* ASSERT_PDIR_SANITY */
419
420
421
422
423 /**************************************************************
424 *
425 * I/O Pdir Resource Management
426 *
427 * Bits set in the resource map are in use.
428 * Each bit can represent a number of pages.
429 * LSbs represent lower addresses (IOVA's).
430 *
431 ***************************************************************/
432 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
433
434 /* Convert from IOVP to IOVA and vice versa. */
435 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
436 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
437
438 #define PDIR_ENTRY_SIZE sizeof(u64)
439
440 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
441
442 #define RESMAP_MASK(n) ~(~0UL << (n))
443 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
444
445
446 /**
447 * For most cases the normal get_order is sufficient, however it limits us
448 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
449 * It only incurs about 1 clock cycle to use this one with the static variable
450 * and makes the code more intuitive.
451 */
452 static SBA_INLINE int
453 get_iovp_order (unsigned long size)
454 {
455 long double d = size - 1;
456 long order;
457
458 order = ia64_getf_exp(d);
459 order = order - iovp_shift - 0xffff + 1;
460 if (order < 0)
461 order = 0;
462 return order;
463 }
464
465 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
466 unsigned int bitshiftcnt)
467 {
468 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
469 + bitshiftcnt;
470 }
471
472 /**
473 * sba_search_bitmap - find free space in IO PDIR resource bitmap
474 * @ioc: IO MMU structure which owns the pdir we are interested in.
475 * @bits_wanted: number of entries we need.
476 * @use_hint: use res_hint to indicate where to start looking
477 *
478 * Find consecutive free bits in resource bitmap.
479 * Each bit represents one entry in the IO Pdir.
480 * Cool perf optimization: search for log2(size) bits at a time.
481 */
482 static SBA_INLINE unsigned long
483 sba_search_bitmap(struct ioc *ioc, struct device *dev,
484 unsigned long bits_wanted, int use_hint)
485 {
486 unsigned long *res_ptr;
487 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
488 unsigned long flags, pide = ~0UL, tpide;
489 unsigned long boundary_size;
490 unsigned long shift;
491 int ret;
492
493 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
494 ASSERT(res_ptr < res_end);
495
496 boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
497 boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
498
499 BUG_ON(ioc->ibase & ~iovp_mask);
500 shift = ioc->ibase >> iovp_shift;
501
502 spin_lock_irqsave(&ioc->res_lock, flags);
503
504 /* Allow caller to force a search through the entire resource space */
505 if (likely(use_hint)) {
506 res_ptr = ioc->res_hint;
507 } else {
508 res_ptr = (ulong *)ioc->res_map;
509 ioc->res_bitshift = 0;
510 }
511
512 /*
513 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
514 * if a TLB entry is purged while in use. sba_mark_invalid()
515 * purges IOTLB entries in power-of-two sizes, so we also
516 * allocate IOVA space in power-of-two sizes.
517 */
518 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
519
520 if (likely(bits_wanted == 1)) {
521 unsigned int bitshiftcnt;
522 for(; res_ptr < res_end ; res_ptr++) {
523 if (likely(*res_ptr != ~0UL)) {
524 bitshiftcnt = ffz(*res_ptr);
525 *res_ptr |= (1UL << bitshiftcnt);
526 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
527 ioc->res_bitshift = bitshiftcnt + bits_wanted;
528 goto found_it;
529 }
530 }
531 goto not_found;
532
533 }
534
535 if (likely(bits_wanted <= BITS_PER_LONG/2)) {
536 /*
537 ** Search the resource bit map on well-aligned values.
538 ** "o" is the alignment.
539 ** We need the alignment to invalidate I/O TLB using
540 ** SBA HW features in the unmap path.
541 */
542 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
543 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
544 unsigned long mask, base_mask;
545
546 base_mask = RESMAP_MASK(bits_wanted);
547 mask = base_mask << bitshiftcnt;
548
549 DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
550 for(; res_ptr < res_end ; res_ptr++)
551 {
552 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
553 ASSERT(0 != mask);
554 for (; mask ; mask <<= o, bitshiftcnt += o) {
555 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
556 ret = iommu_is_span_boundary(tpide, bits_wanted,
557 shift,
558 boundary_size);
559 if ((0 == ((*res_ptr) & mask)) && !ret) {
560 *res_ptr |= mask; /* mark resources busy! */
561 pide = tpide;
562 ioc->res_bitshift = bitshiftcnt + bits_wanted;
563 goto found_it;
564 }
565 }
566
567 bitshiftcnt = 0;
568 mask = base_mask;
569
570 }
571
572 } else {
573 int qwords, bits, i;
574 unsigned long *end;
575
576 qwords = bits_wanted >> 6; /* /64 */
577 bits = bits_wanted - (qwords * BITS_PER_LONG);
578
579 end = res_end - qwords;
580
581 for (; res_ptr < end; res_ptr++) {
582 tpide = ptr_to_pide(ioc, res_ptr, 0);
583 ret = iommu_is_span_boundary(tpide, bits_wanted,
584 shift, boundary_size);
585 if (ret)
586 goto next_ptr;
587 for (i = 0 ; i < qwords ; i++) {
588 if (res_ptr[i] != 0)
589 goto next_ptr;
590 }
591 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
592 continue;
593
594 /* Found it, mark it */
595 for (i = 0 ; i < qwords ; i++)
596 res_ptr[i] = ~0UL;
597 res_ptr[i] |= RESMAP_MASK(bits);
598
599 pide = tpide;
600 res_ptr += qwords;
601 ioc->res_bitshift = bits;
602 goto found_it;
603 next_ptr:
604 ;
605 }
606 }
607
608 not_found:
609 prefetch(ioc->res_map);
610 ioc->res_hint = (unsigned long *) ioc->res_map;
611 ioc->res_bitshift = 0;
612 spin_unlock_irqrestore(&ioc->res_lock, flags);
613 return (pide);
614
615 found_it:
616 ioc->res_hint = res_ptr;
617 spin_unlock_irqrestore(&ioc->res_lock, flags);
618 return (pide);
619 }
620
621
622 /**
623 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
624 * @ioc: IO MMU structure which owns the pdir we are interested in.
625 * @size: number of bytes to create a mapping for
626 *
627 * Given a size, find consecutive unmarked and then mark those bits in the
628 * resource bit map.
629 */
630 static int
631 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
632 {
633 unsigned int pages_needed = size >> iovp_shift;
634 #ifdef PDIR_SEARCH_TIMING
635 unsigned long itc_start;
636 #endif
637 unsigned long pide;
638
639 ASSERT(pages_needed);
640 ASSERT(0 == (size & ~iovp_mask));
641
642 #ifdef PDIR_SEARCH_TIMING
643 itc_start = ia64_get_itc();
644 #endif
645 /*
646 ** "seek and ye shall find"...praying never hurts either...
647 */
648 pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
649 if (unlikely(pide >= (ioc->res_size << 3))) {
650 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
651 if (unlikely(pide >= (ioc->res_size << 3))) {
652 #if DELAYED_RESOURCE_CNT > 0
653 unsigned long flags;
654
655 /*
656 ** With delayed resource freeing, we can give this one more shot. We're
657 ** getting close to being in trouble here, so do what we can to make this
658 ** one count.
659 */
660 spin_lock_irqsave(&ioc->saved_lock, flags);
661 if (ioc->saved_cnt > 0) {
662 struct sba_dma_pair *d;
663 int cnt = ioc->saved_cnt;
664
665 d = &(ioc->saved[ioc->saved_cnt - 1]);
666
667 spin_lock(&ioc->res_lock);
668 while (cnt--) {
669 sba_mark_invalid(ioc, d->iova, d->size);
670 sba_free_range(ioc, d->iova, d->size);
671 d--;
672 }
673 ioc->saved_cnt = 0;
674 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
675 spin_unlock(&ioc->res_lock);
676 }
677 spin_unlock_irqrestore(&ioc->saved_lock, flags);
678
679 pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
680 if (unlikely(pide >= (ioc->res_size << 3))) {
681 printk(KERN_WARNING "%s: I/O MMU @ %p is"
682 "out of mapping resources, %u %u %lx\n",
683 __func__, ioc->ioc_hpa, ioc->res_size,
684 pages_needed, dma_get_seg_boundary(dev));
685 return -1;
686 }
687 #else
688 printk(KERN_WARNING "%s: I/O MMU @ %p is"
689 "out of mapping resources, %u %u %lx\n",
690 __func__, ioc->ioc_hpa, ioc->res_size,
691 pages_needed, dma_get_seg_boundary(dev));
692 return -1;
693 #endif
694 }
695 }
696
697 #ifdef PDIR_SEARCH_TIMING
698 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
699 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
700 #endif
701
702 prefetchw(&(ioc->pdir_base[pide]));
703
704 #ifdef ASSERT_PDIR_SANITY
705 /* verify the first enable bit is clear */
706 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
707 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
708 }
709 #endif
710
711 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
712 __func__, size, pages_needed, pide,
713 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
714 ioc->res_bitshift );
715
716 return (pide);
717 }
718
719
720 /**
721 * sba_free_range - unmark bits in IO PDIR resource bitmap
722 * @ioc: IO MMU structure which owns the pdir we are interested in.
723 * @iova: IO virtual address which was previously allocated.
724 * @size: number of bytes to create a mapping for
725 *
726 * clear bits in the ioc's resource map
727 */
728 static SBA_INLINE void
729 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
730 {
731 unsigned long iovp = SBA_IOVP(ioc, iova);
732 unsigned int pide = PDIR_INDEX(iovp);
733 unsigned int ridx = pide >> 3; /* convert bit to byte address */
734 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
735 int bits_not_wanted = size >> iovp_shift;
736 unsigned long m;
737
738 /* Round up to power-of-two size: see AR2305 note above */
739 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
740 for (; bits_not_wanted > 0 ; res_ptr++) {
741
742 if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
743
744 /* these mappings start 64bit aligned */
745 *res_ptr = 0UL;
746 bits_not_wanted -= BITS_PER_LONG;
747 pide += BITS_PER_LONG;
748
749 } else {
750
751 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
752 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
753 bits_not_wanted = 0;
754
755 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
756 bits_not_wanted, m, pide, res_ptr, *res_ptr);
757
758 ASSERT(m != 0);
759 ASSERT(bits_not_wanted);
760 ASSERT((*res_ptr & m) == m); /* verify same bits are set */
761 *res_ptr &= ~m;
762 }
763 }
764 }
765
766
767 /**************************************************************
768 *
769 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
770 *
771 ***************************************************************/
772
773 /**
774 * sba_io_pdir_entry - fill in one IO PDIR entry
775 * @pdir_ptr: pointer to IO PDIR entry
776 * @vba: Virtual CPU address of buffer to map
777 *
778 * SBA Mapping Routine
779 *
780 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
781 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
782 * Each IO Pdir entry consists of 8 bytes as shown below
783 * (LSB == bit 0):
784 *
785 * 63 40 11 7 0
786 * +-+---------------------+----------------------------------+----+--------+
787 * |V| U | PPN[39:12] | U | FF |
788 * +-+---------------------+----------------------------------+----+--------+
789 *
790 * V == Valid Bit
791 * U == Unused
792 * PPN == Physical Page Number
793 *
794 * The physical address fields are filled with the results of virt_to_phys()
795 * on the vba.
796 */
797
798 #if 1
799 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
800 | 0x8000000000000000ULL)
801 #else
802 void SBA_INLINE
803 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
804 {
805 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
806 }
807 #endif
808
809 #ifdef ENABLE_MARK_CLEAN
810 /**
811 * Since DMA is i-cache coherent, any (complete) pages that were written via
812 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
813 * flush them when they get mapped into an executable vm-area.
814 */
815 static void
816 mark_clean (void *addr, size_t size)
817 {
818 unsigned long pg_addr, end;
819
820 pg_addr = PAGE_ALIGN((unsigned long) addr);
821 end = (unsigned long) addr + size;
822 while (pg_addr + PAGE_SIZE <= end) {
823 struct page *page = virt_to_page((void *)pg_addr);
824 set_bit(PG_arch_1, &page->flags);
825 pg_addr += PAGE_SIZE;
826 }
827 }
828 #endif
829
830 /**
831 * sba_mark_invalid - invalidate one or more IO PDIR entries
832 * @ioc: IO MMU structure which owns the pdir we are interested in.
833 * @iova: IO Virtual Address mapped earlier
834 * @byte_cnt: number of bytes this mapping covers.
835 *
836 * Marking the IO PDIR entry(ies) as Invalid and invalidate
837 * corresponding IO TLB entry. The PCOM (Purge Command Register)
838 * is to purge stale entries in the IO TLB when unmapping entries.
839 *
840 * The PCOM register supports purging of multiple pages, with a minium
841 * of 1 page and a maximum of 2GB. Hardware requires the address be
842 * aligned to the size of the range being purged. The size of the range
843 * must be a power of 2. The "Cool perf optimization" in the
844 * allocation routine helps keep that true.
845 */
846 static SBA_INLINE void
847 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
848 {
849 u32 iovp = (u32) SBA_IOVP(ioc,iova);
850
851 int off = PDIR_INDEX(iovp);
852
853 /* Must be non-zero and rounded up */
854 ASSERT(byte_cnt > 0);
855 ASSERT(0 == (byte_cnt & ~iovp_mask));
856
857 #ifdef ASSERT_PDIR_SANITY
858 /* Assert first pdir entry is set */
859 if (!(ioc->pdir_base[off] >> 60)) {
860 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
861 }
862 #endif
863
864 if (byte_cnt <= iovp_size)
865 {
866 ASSERT(off < ioc->pdir_size);
867
868 iovp |= iovp_shift; /* set "size" field for PCOM */
869
870 #ifndef FULL_VALID_PDIR
871 /*
872 ** clear I/O PDIR entry "valid" bit
873 ** Do NOT clear the rest - save it for debugging.
874 ** We should only clear bits that have previously
875 ** been enabled.
876 */
877 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
878 #else
879 /*
880 ** If we want to maintain the PDIR as valid, put in
881 ** the spill page so devices prefetching won't
882 ** cause a hard fail.
883 */
884 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
885 #endif
886 } else {
887 u32 t = get_iovp_order(byte_cnt) + iovp_shift;
888
889 iovp |= t;
890 ASSERT(t <= 31); /* 2GB! Max value of "size" field */
891
892 do {
893 /* verify this pdir entry is enabled */
894 ASSERT(ioc->pdir_base[off] >> 63);
895 #ifndef FULL_VALID_PDIR
896 /* clear I/O Pdir entry "valid" bit first */
897 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
898 #else
899 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
900 #endif
901 off++;
902 byte_cnt -= iovp_size;
903 } while (byte_cnt > 0);
904 }
905
906 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
907 }
908
909 /**
910 * sba_map_single_attrs - map one buffer and return IOVA for DMA
911 * @dev: instance of PCI owned by the driver that's asking.
912 * @addr: driver buffer to map.
913 * @size: number of bytes to map in driver buffer.
914 * @dir: R/W or both.
915 * @attrs: optional dma attributes
916 *
917 * See Documentation/DMA-API-HOWTO.txt
918 */
919 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
920 unsigned long poff, size_t size,
921 enum dma_data_direction dir,
922 struct dma_attrs *attrs)
923 {
924 struct ioc *ioc;
925 void *addr = page_address(page) + poff;
926 dma_addr_t iovp;
927 dma_addr_t offset;
928 u64 *pdir_start;
929 int pide;
930 #ifdef ASSERT_PDIR_SANITY
931 unsigned long flags;
932 #endif
933 #ifdef ALLOW_IOV_BYPASS
934 unsigned long pci_addr = virt_to_phys(addr);
935 #endif
936
937 #ifdef ALLOW_IOV_BYPASS
938 ASSERT(to_pci_dev(dev)->dma_mask);
939 /*
940 ** Check if the PCI device can DMA to ptr... if so, just return ptr
941 */
942 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
943 /*
944 ** Device is bit capable of DMA'ing to the buffer...
945 ** just return the PCI address of ptr
946 */
947 DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: "
948 "0x%lx/0x%lx\n",
949 to_pci_dev(dev)->dma_mask, pci_addr);
950 return pci_addr;
951 }
952 #endif
953 ioc = GET_IOC(dev);
954 ASSERT(ioc);
955
956 prefetch(ioc->res_hint);
957
958 ASSERT(size > 0);
959 ASSERT(size <= DMA_CHUNK_SIZE);
960
961 /* save offset bits */
962 offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
963
964 /* round up to nearest iovp_size */
965 size = (size + offset + ~iovp_mask) & iovp_mask;
966
967 #ifdef ASSERT_PDIR_SANITY
968 spin_lock_irqsave(&ioc->res_lock, flags);
969 if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()"))
970 panic("Sanity check failed");
971 spin_unlock_irqrestore(&ioc->res_lock, flags);
972 #endif
973
974 pide = sba_alloc_range(ioc, dev, size);
975 if (pide < 0)
976 return 0;
977
978 iovp = (dma_addr_t) pide << iovp_shift;
979
980 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
981
982 pdir_start = &(ioc->pdir_base[pide]);
983
984 while (size > 0) {
985 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
986 sba_io_pdir_entry(pdir_start, (unsigned long) addr);
987
988 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
989
990 addr += iovp_size;
991 size -= iovp_size;
992 pdir_start++;
993 }
994 /* force pdir update */
995 wmb();
996
997 /* form complete address */
998 #ifdef ASSERT_PDIR_SANITY
999 spin_lock_irqsave(&ioc->res_lock, flags);
1000 sba_check_pdir(ioc,"Check after sba_map_single_attrs()");
1001 spin_unlock_irqrestore(&ioc->res_lock, flags);
1002 #endif
1003 return SBA_IOVA(ioc, iovp, offset);
1004 }
1005
1006 static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr,
1007 size_t size, enum dma_data_direction dir,
1008 struct dma_attrs *attrs)
1009 {
1010 return sba_map_page(dev, virt_to_page(addr),
1011 (unsigned long)addr & ~PAGE_MASK, size, dir, attrs);
1012 }
1013
1014 #ifdef ENABLE_MARK_CLEAN
1015 static SBA_INLINE void
1016 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1017 {
1018 u32 iovp = (u32) SBA_IOVP(ioc,iova);
1019 int off = PDIR_INDEX(iovp);
1020 void *addr;
1021
1022 if (size <= iovp_size) {
1023 addr = phys_to_virt(ioc->pdir_base[off] &
1024 ~0xE000000000000FFFULL);
1025 mark_clean(addr, size);
1026 } else {
1027 do {
1028 addr = phys_to_virt(ioc->pdir_base[off] &
1029 ~0xE000000000000FFFULL);
1030 mark_clean(addr, min(size, iovp_size));
1031 off++;
1032 size -= iovp_size;
1033 } while (size > 0);
1034 }
1035 }
1036 #endif
1037
1038 /**
1039 * sba_unmap_single_attrs - unmap one IOVA and free resources
1040 * @dev: instance of PCI owned by the driver that's asking.
1041 * @iova: IOVA of driver buffer previously mapped.
1042 * @size: number of bytes mapped in driver buffer.
1043 * @dir: R/W or both.
1044 * @attrs: optional dma attributes
1045 *
1046 * See Documentation/DMA-API-HOWTO.txt
1047 */
1048 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1049 enum dma_data_direction dir, struct dma_attrs *attrs)
1050 {
1051 struct ioc *ioc;
1052 #if DELAYED_RESOURCE_CNT > 0
1053 struct sba_dma_pair *d;
1054 #endif
1055 unsigned long flags;
1056 dma_addr_t offset;
1057
1058 ioc = GET_IOC(dev);
1059 ASSERT(ioc);
1060
1061 #ifdef ALLOW_IOV_BYPASS
1062 if (likely((iova & ioc->imask) != ioc->ibase)) {
1063 /*
1064 ** Address does not fall w/in IOVA, must be bypassing
1065 */
1066 DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n",
1067 iova);
1068
1069 #ifdef ENABLE_MARK_CLEAN
1070 if (dir == DMA_FROM_DEVICE) {
1071 mark_clean(phys_to_virt(iova), size);
1072 }
1073 #endif
1074 return;
1075 }
1076 #endif
1077 offset = iova & ~iovp_mask;
1078
1079 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1080
1081 iova ^= offset; /* clear offset bits */
1082 size += offset;
1083 size = ROUNDUP(size, iovp_size);
1084
1085 #ifdef ENABLE_MARK_CLEAN
1086 if (dir == DMA_FROM_DEVICE)
1087 sba_mark_clean(ioc, iova, size);
1088 #endif
1089
1090 #if DELAYED_RESOURCE_CNT > 0
1091 spin_lock_irqsave(&ioc->saved_lock, flags);
1092 d = &(ioc->saved[ioc->saved_cnt]);
1093 d->iova = iova;
1094 d->size = size;
1095 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1096 int cnt = ioc->saved_cnt;
1097 spin_lock(&ioc->res_lock);
1098 while (cnt--) {
1099 sba_mark_invalid(ioc, d->iova, d->size);
1100 sba_free_range(ioc, d->iova, d->size);
1101 d--;
1102 }
1103 ioc->saved_cnt = 0;
1104 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1105 spin_unlock(&ioc->res_lock);
1106 }
1107 spin_unlock_irqrestore(&ioc->saved_lock, flags);
1108 #else /* DELAYED_RESOURCE_CNT == 0 */
1109 spin_lock_irqsave(&ioc->res_lock, flags);
1110 sba_mark_invalid(ioc, iova, size);
1111 sba_free_range(ioc, iova, size);
1112 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1113 spin_unlock_irqrestore(&ioc->res_lock, flags);
1114 #endif /* DELAYED_RESOURCE_CNT == 0 */
1115 }
1116
1117 void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size,
1118 enum dma_data_direction dir, struct dma_attrs *attrs)
1119 {
1120 sba_unmap_page(dev, iova, size, dir, attrs);
1121 }
1122
1123 /**
1124 * sba_alloc_coherent - allocate/map shared mem for DMA
1125 * @dev: instance of PCI owned by the driver that's asking.
1126 * @size: number of bytes mapped in driver buffer.
1127 * @dma_handle: IOVA of new buffer.
1128 *
1129 * See Documentation/DMA-API-HOWTO.txt
1130 */
1131 static void *
1132 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1133 gfp_t flags, struct dma_attrs *attrs)
1134 {
1135 struct ioc *ioc;
1136 void *addr;
1137
1138 ioc = GET_IOC(dev);
1139 ASSERT(ioc);
1140
1141 #ifdef CONFIG_NUMA
1142 {
1143 int node = ioc->node;
1144 struct page *page;
1145
1146 if (node == NUMA_NO_NODE)
1147 node = numa_node_id();
1148
1149 page = alloc_pages_exact_node(node, flags, get_order(size));
1150 if (unlikely(!page))
1151 return NULL;
1152
1153 addr = page_address(page);
1154 }
1155 #else
1156 addr = (void *) __get_free_pages(flags, get_order(size));
1157 #endif
1158 if (unlikely(!addr))
1159 return NULL;
1160
1161 memset(addr, 0, size);
1162 *dma_handle = virt_to_phys(addr);
1163
1164 #ifdef ALLOW_IOV_BYPASS
1165 ASSERT(dev->coherent_dma_mask);
1166 /*
1167 ** Check if the PCI device can DMA to ptr... if so, just return ptr
1168 */
1169 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1170 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1171 dev->coherent_dma_mask, *dma_handle);
1172
1173 return addr;
1174 }
1175 #endif
1176
1177 /*
1178 * If device can't bypass or bypass is disabled, pass the 32bit fake
1179 * device to map single to get an iova mapping.
1180 */
1181 *dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr,
1182 size, 0, NULL);
1183
1184 return addr;
1185 }
1186
1187
1188 /**
1189 * sba_free_coherent - free/unmap shared mem for DMA
1190 * @dev: instance of PCI owned by the driver that's asking.
1191 * @size: number of bytes mapped in driver buffer.
1192 * @vaddr: virtual address IOVA of "consistent" buffer.
1193 * @dma_handler: IO virtual address of "consistent" buffer.
1194 *
1195 * See Documentation/DMA-API-HOWTO.txt
1196 */
1197 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1198 dma_addr_t dma_handle, struct dma_attrs *attrs)
1199 {
1200 sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL);
1201 free_pages((unsigned long) vaddr, get_order(size));
1202 }
1203
1204
1205 /*
1206 ** Since 0 is a valid pdir_base index value, can't use that
1207 ** to determine if a value is valid or not. Use a flag to indicate
1208 ** the SG list entry contains a valid pdir index.
1209 */
1210 #define PIDE_FLAG 0x1UL
1211
1212 #ifdef DEBUG_LARGE_SG_ENTRIES
1213 int dump_run_sg = 0;
1214 #endif
1215
1216
1217 /**
1218 * sba_fill_pdir - write allocated SG entries into IO PDIR
1219 * @ioc: IO MMU structure which owns the pdir we are interested in.
1220 * @startsg: list of IOVA/size pairs
1221 * @nents: number of entries in startsg list
1222 *
1223 * Take preprocessed SG list and write corresponding entries
1224 * in the IO PDIR.
1225 */
1226
1227 static SBA_INLINE int
1228 sba_fill_pdir(
1229 struct ioc *ioc,
1230 struct scatterlist *startsg,
1231 int nents)
1232 {
1233 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1234 int n_mappings = 0;
1235 u64 *pdirp = NULL;
1236 unsigned long dma_offset = 0;
1237
1238 while (nents-- > 0) {
1239 int cnt = startsg->dma_length;
1240 startsg->dma_length = 0;
1241
1242 #ifdef DEBUG_LARGE_SG_ENTRIES
1243 if (dump_run_sg)
1244 printk(" %2d : %08lx/%05x %p\n",
1245 nents, startsg->dma_address, cnt,
1246 sba_sg_address(startsg));
1247 #else
1248 DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1249 nents, startsg->dma_address, cnt,
1250 sba_sg_address(startsg));
1251 #endif
1252 /*
1253 ** Look for the start of a new DMA stream
1254 */
1255 if (startsg->dma_address & PIDE_FLAG) {
1256 u32 pide = startsg->dma_address & ~PIDE_FLAG;
1257 dma_offset = (unsigned long) pide & ~iovp_mask;
1258 startsg->dma_address = 0;
1259 if (n_mappings)
1260 dma_sg = sg_next(dma_sg);
1261 dma_sg->dma_address = pide | ioc->ibase;
1262 pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1263 n_mappings++;
1264 }
1265
1266 /*
1267 ** Look for a VCONTIG chunk
1268 */
1269 if (cnt) {
1270 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1271 ASSERT(pdirp);
1272
1273 /* Since multiple Vcontig blocks could make up
1274 ** one DMA stream, *add* cnt to dma_len.
1275 */
1276 dma_sg->dma_length += cnt;
1277 cnt += dma_offset;
1278 dma_offset=0; /* only want offset on first chunk */
1279 cnt = ROUNDUP(cnt, iovp_size);
1280 do {
1281 sba_io_pdir_entry(pdirp, vaddr);
1282 vaddr += iovp_size;
1283 cnt -= iovp_size;
1284 pdirp++;
1285 } while (cnt > 0);
1286 }
1287 startsg = sg_next(startsg);
1288 }
1289 /* force pdir update */
1290 wmb();
1291
1292 #ifdef DEBUG_LARGE_SG_ENTRIES
1293 dump_run_sg = 0;
1294 #endif
1295 return(n_mappings);
1296 }
1297
1298
1299 /*
1300 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1301 ** "start of next" are both on an IOV page boundary.
1302 **
1303 ** (shift left is a quick trick to mask off upper bits)
1304 */
1305 #define DMA_CONTIG(__X, __Y) \
1306 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1307
1308
1309 /**
1310 * sba_coalesce_chunks - preprocess the SG list
1311 * @ioc: IO MMU structure which owns the pdir we are interested in.
1312 * @startsg: list of IOVA/size pairs
1313 * @nents: number of entries in startsg list
1314 *
1315 * First pass is to walk the SG list and determine where the breaks are
1316 * in the DMA stream. Allocates PDIR entries but does not fill them.
1317 * Returns the number of DMA chunks.
1318 *
1319 * Doing the fill separate from the coalescing/allocation keeps the
1320 * code simpler. Future enhancement could make one pass through
1321 * the sglist do both.
1322 */
1323 static SBA_INLINE int
1324 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1325 struct scatterlist *startsg,
1326 int nents)
1327 {
1328 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1329 unsigned long vcontig_len; /* len of VCONTIG chunk */
1330 unsigned long vcontig_end;
1331 struct scatterlist *dma_sg; /* next DMA stream head */
1332 unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1333 int n_mappings = 0;
1334 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1335 int idx;
1336
1337 while (nents > 0) {
1338 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1339
1340 /*
1341 ** Prepare for first/next DMA stream
1342 */
1343 dma_sg = vcontig_sg = startsg;
1344 dma_len = vcontig_len = vcontig_end = startsg->length;
1345 vcontig_end += vaddr;
1346 dma_offset = vaddr & ~iovp_mask;
1347
1348 /* PARANOID: clear entries */
1349 startsg->dma_address = startsg->dma_length = 0;
1350
1351 /*
1352 ** This loop terminates one iteration "early" since
1353 ** it's always looking one "ahead".
1354 */
1355 while (--nents > 0) {
1356 unsigned long vaddr; /* tmp */
1357
1358 startsg = sg_next(startsg);
1359
1360 /* PARANOID */
1361 startsg->dma_address = startsg->dma_length = 0;
1362
1363 /* catch brokenness in SCSI layer */
1364 ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1365
1366 /*
1367 ** First make sure current dma stream won't
1368 ** exceed DMA_CHUNK_SIZE if we coalesce the
1369 ** next entry.
1370 */
1371 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1372 > DMA_CHUNK_SIZE)
1373 break;
1374
1375 if (dma_len + startsg->length > max_seg_size)
1376 break;
1377
1378 /*
1379 ** Then look for virtually contiguous blocks.
1380 **
1381 ** append the next transaction?
1382 */
1383 vaddr = (unsigned long) sba_sg_address(startsg);
1384 if (vcontig_end == vaddr)
1385 {
1386 vcontig_len += startsg->length;
1387 vcontig_end += startsg->length;
1388 dma_len += startsg->length;
1389 continue;
1390 }
1391
1392 #ifdef DEBUG_LARGE_SG_ENTRIES
1393 dump_run_sg = (vcontig_len > iovp_size);
1394 #endif
1395
1396 /*
1397 ** Not virtually contiguous.
1398 ** Terminate prev chunk.
1399 ** Start a new chunk.
1400 **
1401 ** Once we start a new VCONTIG chunk, dma_offset
1402 ** can't change. And we need the offset from the first
1403 ** chunk - not the last one. Ergo Successive chunks
1404 ** must start on page boundaries and dove tail
1405 ** with it's predecessor.
1406 */
1407 vcontig_sg->dma_length = vcontig_len;
1408
1409 vcontig_sg = startsg;
1410 vcontig_len = startsg->length;
1411
1412 /*
1413 ** 3) do the entries end/start on page boundaries?
1414 ** Don't update vcontig_end until we've checked.
1415 */
1416 if (DMA_CONTIG(vcontig_end, vaddr))
1417 {
1418 vcontig_end = vcontig_len + vaddr;
1419 dma_len += vcontig_len;
1420 continue;
1421 } else {
1422 break;
1423 }
1424 }
1425
1426 /*
1427 ** End of DMA Stream
1428 ** Terminate last VCONTIG block.
1429 ** Allocate space for DMA stream.
1430 */
1431 vcontig_sg->dma_length = vcontig_len;
1432 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1433 ASSERT(dma_len <= DMA_CHUNK_SIZE);
1434 idx = sba_alloc_range(ioc, dev, dma_len);
1435 if (idx < 0) {
1436 dma_sg->dma_length = 0;
1437 return -1;
1438 }
1439 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1440 | dma_offset);
1441 n_mappings++;
1442 }
1443
1444 return n_mappings;
1445 }
1446
1447 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1448 int nents, enum dma_data_direction dir,
1449 struct dma_attrs *attrs);
1450 /**
1451 * sba_map_sg - map Scatter/Gather list
1452 * @dev: instance of PCI owned by the driver that's asking.
1453 * @sglist: array of buffer/length pairs
1454 * @nents: number of entries in list
1455 * @dir: R/W or both.
1456 * @attrs: optional dma attributes
1457 *
1458 * See Documentation/DMA-API-HOWTO.txt
1459 */
1460 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1461 int nents, enum dma_data_direction dir,
1462 struct dma_attrs *attrs)
1463 {
1464 struct ioc *ioc;
1465 int coalesced, filled = 0;
1466 #ifdef ASSERT_PDIR_SANITY
1467 unsigned long flags;
1468 #endif
1469 #ifdef ALLOW_IOV_BYPASS_SG
1470 struct scatterlist *sg;
1471 #endif
1472
1473 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1474 ioc = GET_IOC(dev);
1475 ASSERT(ioc);
1476
1477 #ifdef ALLOW_IOV_BYPASS_SG
1478 ASSERT(to_pci_dev(dev)->dma_mask);
1479 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1480 for_each_sg(sglist, sg, nents, filled) {
1481 sg->dma_length = sg->length;
1482 sg->dma_address = virt_to_phys(sba_sg_address(sg));
1483 }
1484 return filled;
1485 }
1486 #endif
1487 /* Fast path single entry scatterlists. */
1488 if (nents == 1) {
1489 sglist->dma_length = sglist->length;
1490 sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs);
1491 return 1;
1492 }
1493
1494 #ifdef ASSERT_PDIR_SANITY
1495 spin_lock_irqsave(&ioc->res_lock, flags);
1496 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1497 {
1498 sba_dump_sg(ioc, sglist, nents);
1499 panic("Check before sba_map_sg_attrs()");
1500 }
1501 spin_unlock_irqrestore(&ioc->res_lock, flags);
1502 #endif
1503
1504 prefetch(ioc->res_hint);
1505
1506 /*
1507 ** First coalesce the chunks and allocate I/O pdir space
1508 **
1509 ** If this is one DMA stream, we can properly map using the
1510 ** correct virtual address associated with each DMA page.
1511 ** w/o this association, we wouldn't have coherent DMA!
1512 ** Access to the virtual address is what forces a two pass algorithm.
1513 */
1514 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1515 if (coalesced < 0) {
1516 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1517 return 0;
1518 }
1519
1520 /*
1521 ** Program the I/O Pdir
1522 **
1523 ** map the virtual addresses to the I/O Pdir
1524 ** o dma_address will contain the pdir index
1525 ** o dma_len will contain the number of bytes to map
1526 ** o address contains the virtual address.
1527 */
1528 filled = sba_fill_pdir(ioc, sglist, nents);
1529
1530 #ifdef ASSERT_PDIR_SANITY
1531 spin_lock_irqsave(&ioc->res_lock, flags);
1532 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1533 {
1534 sba_dump_sg(ioc, sglist, nents);
1535 panic("Check after sba_map_sg_attrs()\n");
1536 }
1537 spin_unlock_irqrestore(&ioc->res_lock, flags);
1538 #endif
1539
1540 ASSERT(coalesced == filled);
1541 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1542
1543 return filled;
1544 }
1545
1546 /**
1547 * sba_unmap_sg_attrs - unmap Scatter/Gather list
1548 * @dev: instance of PCI owned by the driver that's asking.
1549 * @sglist: array of buffer/length pairs
1550 * @nents: number of entries in list
1551 * @dir: R/W or both.
1552 * @attrs: optional dma attributes
1553 *
1554 * See Documentation/DMA-API-HOWTO.txt
1555 */
1556 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1557 int nents, enum dma_data_direction dir,
1558 struct dma_attrs *attrs)
1559 {
1560 #ifdef ASSERT_PDIR_SANITY
1561 struct ioc *ioc;
1562 unsigned long flags;
1563 #endif
1564
1565 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1566 __func__, nents, sba_sg_address(sglist), sglist->length);
1567
1568 #ifdef ASSERT_PDIR_SANITY
1569 ioc = GET_IOC(dev);
1570 ASSERT(ioc);
1571
1572 spin_lock_irqsave(&ioc->res_lock, flags);
1573 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1574 spin_unlock_irqrestore(&ioc->res_lock, flags);
1575 #endif
1576
1577 while (nents && sglist->dma_length) {
1578
1579 sba_unmap_single_attrs(dev, sglist->dma_address,
1580 sglist->dma_length, dir, attrs);
1581 sglist = sg_next(sglist);
1582 nents--;
1583 }
1584
1585 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1586
1587 #ifdef ASSERT_PDIR_SANITY
1588 spin_lock_irqsave(&ioc->res_lock, flags);
1589 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1590 spin_unlock_irqrestore(&ioc->res_lock, flags);
1591 #endif
1592
1593 }
1594
1595 /**************************************************************
1596 *
1597 * Initialization and claim
1598 *
1599 ***************************************************************/
1600
1601 static void
1602 ioc_iova_init(struct ioc *ioc)
1603 {
1604 int tcnfg;
1605 int agp_found = 0;
1606 struct pci_dev *device = NULL;
1607 #ifdef FULL_VALID_PDIR
1608 unsigned long index;
1609 #endif
1610
1611 /*
1612 ** Firmware programs the base and size of a "safe IOVA space"
1613 ** (one that doesn't overlap memory or LMMIO space) in the
1614 ** IBASE and IMASK registers.
1615 */
1616 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1617 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1618
1619 ioc->iov_size = ~ioc->imask + 1;
1620
1621 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1622 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1623 ioc->iov_size >> 20);
1624
1625 switch (iovp_size) {
1626 case 4*1024: tcnfg = 0; break;
1627 case 8*1024: tcnfg = 1; break;
1628 case 16*1024: tcnfg = 2; break;
1629 case 64*1024: tcnfg = 3; break;
1630 default:
1631 panic(PFX "Unsupported IOTLB page size %ldK",
1632 iovp_size >> 10);
1633 break;
1634 }
1635 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1636
1637 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1638 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1639 get_order(ioc->pdir_size));
1640 if (!ioc->pdir_base)
1641 panic(PFX "Couldn't allocate I/O Page Table\n");
1642
1643 memset(ioc->pdir_base, 0, ioc->pdir_size);
1644
1645 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1646 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1647
1648 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1649 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1650
1651 /*
1652 ** If an AGP device is present, only use half of the IOV space
1653 ** for PCI DMA. Unfortunately we can't know ahead of time
1654 ** whether GART support will actually be used, for now we
1655 ** can just key on an AGP device found in the system.
1656 ** We program the next pdir index after we stop w/ a key for
1657 ** the GART code to handshake on.
1658 */
1659 for_each_pci_dev(device)
1660 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1661
1662 if (agp_found && reserve_sba_gart) {
1663 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1664 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1665 ioc->pdir_size /= 2;
1666 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1667 }
1668 #ifdef FULL_VALID_PDIR
1669 /*
1670 ** Check to see if the spill page has been allocated, we don't need more than
1671 ** one across multiple SBAs.
1672 */
1673 if (!prefetch_spill_page) {
1674 char *spill_poison = "SBAIOMMU POISON";
1675 int poison_size = 16;
1676 void *poison_addr, *addr;
1677
1678 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1679 if (!addr)
1680 panic(PFX "Couldn't allocate PDIR spill page\n");
1681
1682 poison_addr = addr;
1683 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1684 memcpy(poison_addr, spill_poison, poison_size);
1685
1686 prefetch_spill_page = virt_to_phys(addr);
1687
1688 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1689 }
1690 /*
1691 ** Set all the PDIR entries valid w/ the spill page as the target
1692 */
1693 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1694 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1695 #endif
1696
1697 /* Clear I/O TLB of any possible entries */
1698 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1699 READ_REG(ioc->ioc_hpa + IOC_PCOM);
1700
1701 /* Enable IOVA translation */
1702 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1703 READ_REG(ioc->ioc_hpa + IOC_IBASE);
1704 }
1705
1706 static void __init
1707 ioc_resource_init(struct ioc *ioc)
1708 {
1709 spin_lock_init(&ioc->res_lock);
1710 #if DELAYED_RESOURCE_CNT > 0
1711 spin_lock_init(&ioc->saved_lock);
1712 #endif
1713
1714 /* resource map size dictated by pdir_size */
1715 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1716 ioc->res_size >>= 3; /* convert bit count to byte count */
1717 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1718
1719 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1720 get_order(ioc->res_size));
1721 if (!ioc->res_map)
1722 panic(PFX "Couldn't allocate resource map\n");
1723
1724 memset(ioc->res_map, 0, ioc->res_size);
1725 /* next available IOVP - circular search */
1726 ioc->res_hint = (unsigned long *) ioc->res_map;
1727
1728 #ifdef ASSERT_PDIR_SANITY
1729 /* Mark first bit busy - ie no IOVA 0 */
1730 ioc->res_map[0] = 0x1;
1731 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1732 #endif
1733 #ifdef FULL_VALID_PDIR
1734 /* Mark the last resource used so we don't prefetch beyond IOVA space */
1735 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1736 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1737 | prefetch_spill_page);
1738 #endif
1739
1740 DBG_INIT("%s() res_map %x %p\n", __func__,
1741 ioc->res_size, (void *) ioc->res_map);
1742 }
1743
1744 static void __init
1745 ioc_sac_init(struct ioc *ioc)
1746 {
1747 struct pci_dev *sac = NULL;
1748 struct pci_controller *controller = NULL;
1749
1750 /*
1751 * pci_alloc_coherent() must return a DMA address which is
1752 * SAC (single address cycle) addressable, so allocate a
1753 * pseudo-device to enforce that.
1754 */
1755 sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1756 if (!sac)
1757 panic(PFX "Couldn't allocate struct pci_dev");
1758
1759 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1760 if (!controller)
1761 panic(PFX "Couldn't allocate struct pci_controller");
1762
1763 controller->iommu = ioc;
1764 sac->sysdata = controller;
1765 sac->dma_mask = 0xFFFFFFFFUL;
1766 #ifdef CONFIG_PCI
1767 sac->dev.bus = &pci_bus_type;
1768 #endif
1769 ioc->sac_only_dev = sac;
1770 }
1771
1772 static void __init
1773 ioc_zx1_init(struct ioc *ioc)
1774 {
1775 unsigned long rope_config;
1776 unsigned int i;
1777
1778 if (ioc->rev < 0x20)
1779 panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1780
1781 /* 38 bit memory controller + extra bit for range displaced by MMIO */
1782 ioc->dma_mask = (0x1UL << 39) - 1;
1783
1784 /*
1785 ** Clear ROPE(N)_CONFIG AO bit.
1786 ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1787 ** Overrides bit 1 in DMA Hint Sets.
1788 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1789 */
1790 for (i=0; i<(8*8); i+=8) {
1791 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1792 rope_config &= ~IOC_ROPE_AO;
1793 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1794 }
1795 }
1796
1797 typedef void (initfunc)(struct ioc *);
1798
1799 struct ioc_iommu {
1800 u32 func_id;
1801 char *name;
1802 initfunc *init;
1803 };
1804
1805 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1806 { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1807 { ZX2_IOC_ID, "zx2", NULL },
1808 { SX1000_IOC_ID, "sx1000", NULL },
1809 { SX2000_IOC_ID, "sx2000", NULL },
1810 };
1811
1812 static struct ioc *
1813 ioc_init(unsigned long hpa, void *handle)
1814 {
1815 struct ioc *ioc;
1816 struct ioc_iommu *info;
1817
1818 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1819 if (!ioc)
1820 return NULL;
1821
1822 ioc->next = ioc_list;
1823 ioc_list = ioc;
1824
1825 ioc->handle = handle;
1826 ioc->ioc_hpa = ioremap(hpa, 0x1000);
1827
1828 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1829 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1830 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1831
1832 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1833 if (ioc->func_id == info->func_id) {
1834 ioc->name = info->name;
1835 if (info->init)
1836 (info->init)(ioc);
1837 }
1838 }
1839
1840 iovp_size = (1 << iovp_shift);
1841 iovp_mask = ~(iovp_size - 1);
1842
1843 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1844 PAGE_SIZE >> 10, iovp_size >> 10);
1845
1846 if (!ioc->name) {
1847 ioc->name = kmalloc(24, GFP_KERNEL);
1848 if (ioc->name)
1849 sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1850 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1851 else
1852 ioc->name = "Unknown";
1853 }
1854
1855 ioc_iova_init(ioc);
1856 ioc_resource_init(ioc);
1857 ioc_sac_init(ioc);
1858
1859 if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1860 ia64_max_iommu_merge_mask = ~iovp_mask;
1861
1862 printk(KERN_INFO PFX
1863 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1864 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1865 hpa, ioc->iov_size >> 20, ioc->ibase);
1866
1867 return ioc;
1868 }
1869
1870
1871
1872 /**************************************************************************
1873 **
1874 ** SBA initialization code (HW and SW)
1875 **
1876 ** o identify SBA chip itself
1877 ** o FIXME: initialize DMA hints for reasonable defaults
1878 **
1879 **************************************************************************/
1880
1881 #ifdef CONFIG_PROC_FS
1882 static void *
1883 ioc_start(struct seq_file *s, loff_t *pos)
1884 {
1885 struct ioc *ioc;
1886 loff_t n = *pos;
1887
1888 for (ioc = ioc_list; ioc; ioc = ioc->next)
1889 if (!n--)
1890 return ioc;
1891
1892 return NULL;
1893 }
1894
1895 static void *
1896 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1897 {
1898 struct ioc *ioc = v;
1899
1900 ++*pos;
1901 return ioc->next;
1902 }
1903
1904 static void
1905 ioc_stop(struct seq_file *s, void *v)
1906 {
1907 }
1908
1909 static int
1910 ioc_show(struct seq_file *s, void *v)
1911 {
1912 struct ioc *ioc = v;
1913 unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1914 int i, used = 0;
1915
1916 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1917 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1918 #ifdef CONFIG_NUMA
1919 if (ioc->node != NUMA_NO_NODE)
1920 seq_printf(s, "NUMA node : %d\n", ioc->node);
1921 #endif
1922 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1923 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1924
1925 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1926 used += hweight64(*res_ptr);
1927
1928 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1929 seq_printf(s, "PDIR used : %d entries\n", used);
1930
1931 #ifdef PDIR_SEARCH_TIMING
1932 {
1933 unsigned long i = 0, avg = 0, min, max;
1934 min = max = ioc->avg_search[0];
1935 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1936 avg += ioc->avg_search[i];
1937 if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1938 if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1939 }
1940 avg /= SBA_SEARCH_SAMPLE;
1941 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1942 min, avg, max);
1943 }
1944 #endif
1945 #ifndef ALLOW_IOV_BYPASS
1946 seq_printf(s, "IOVA bypass disabled\n");
1947 #endif
1948 return 0;
1949 }
1950
1951 static const struct seq_operations ioc_seq_ops = {
1952 .start = ioc_start,
1953 .next = ioc_next,
1954 .stop = ioc_stop,
1955 .show = ioc_show
1956 };
1957
1958 static int
1959 ioc_open(struct inode *inode, struct file *file)
1960 {
1961 return seq_open(file, &ioc_seq_ops);
1962 }
1963
1964 static const struct file_operations ioc_fops = {
1965 .open = ioc_open,
1966 .read = seq_read,
1967 .llseek = seq_lseek,
1968 .release = seq_release
1969 };
1970
1971 static void __init
1972 ioc_proc_init(void)
1973 {
1974 struct proc_dir_entry *dir;
1975
1976 dir = proc_mkdir("bus/mckinley", NULL);
1977 if (!dir)
1978 return;
1979
1980 proc_create(ioc_list->name, 0, dir, &ioc_fops);
1981 }
1982 #endif
1983
1984 static void
1985 sba_connect_bus(struct pci_bus *bus)
1986 {
1987 acpi_handle handle, parent;
1988 acpi_status status;
1989 struct ioc *ioc;
1990
1991 if (!PCI_CONTROLLER(bus))
1992 panic(PFX "no sysdata on bus %d!\n", bus->number);
1993
1994 if (PCI_CONTROLLER(bus)->iommu)
1995 return;
1996
1997 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1998 if (!handle)
1999 return;
2000
2001 /*
2002 * The IOC scope encloses PCI root bridges in the ACPI
2003 * namespace, so work our way out until we find an IOC we
2004 * claimed previously.
2005 */
2006 do {
2007 for (ioc = ioc_list; ioc; ioc = ioc->next)
2008 if (ioc->handle == handle) {
2009 PCI_CONTROLLER(bus)->iommu = ioc;
2010 return;
2011 }
2012
2013 status = acpi_get_parent(handle, &parent);
2014 handle = parent;
2015 } while (ACPI_SUCCESS(status));
2016
2017 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
2018 }
2019
2020 static void __init
2021 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
2022 {
2023 #ifdef CONFIG_NUMA
2024 unsigned int node;
2025
2026 node = acpi_get_node(handle);
2027 if (node != NUMA_NO_NODE && !node_online(node))
2028 node = NUMA_NO_NODE;
2029
2030 ioc->node = node;
2031 #endif
2032 }
2033
2034 static int
2035 acpi_sba_ioc_add(struct acpi_device *device,
2036 const struct acpi_device_id *not_used)
2037 {
2038 struct ioc *ioc;
2039 acpi_status status;
2040 u64 hpa, length;
2041 struct acpi_device_info *adi;
2042
2043 status = hp_acpi_csr_space(device->handle, &hpa, &length);
2044 if (ACPI_FAILURE(status))
2045 return 1;
2046
2047 status = acpi_get_object_info(device->handle, &adi);
2048 if (ACPI_FAILURE(status))
2049 return 1;
2050
2051 /*
2052 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
2053 * root bridges, and its CSR space includes the IOC function.
2054 */
2055 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2056 hpa += ZX1_IOC_OFFSET;
2057 /* zx1 based systems default to kernel page size iommu pages */
2058 if (!iovp_shift)
2059 iovp_shift = min(PAGE_SHIFT, 16);
2060 }
2061 kfree(adi);
2062
2063 /*
2064 * default anything not caught above or specified on cmdline to 4k
2065 * iommu page size
2066 */
2067 if (!iovp_shift)
2068 iovp_shift = 12;
2069
2070 ioc = ioc_init(hpa, device->handle);
2071 if (!ioc)
2072 return 1;
2073
2074 /* setup NUMA node association */
2075 sba_map_ioc_to_node(ioc, device->handle);
2076 return 0;
2077 }
2078
2079 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2080 {"HWP0001", 0},
2081 {"HWP0004", 0},
2082 {"", 0},
2083 };
2084 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2085 .ids = hp_ioc_iommu_device_ids,
2086 .attach = acpi_sba_ioc_add,
2087 };
2088
2089 static int __init acpi_sba_ioc_init_acpi(void)
2090 {
2091 return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2092 }
2093 /* This has to run before acpi_scan_init(). */
2094 arch_initcall(acpi_sba_ioc_init_acpi);
2095
2096 extern struct dma_map_ops swiotlb_dma_ops;
2097
2098 static int __init
2099 sba_init(void)
2100 {
2101 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2102 return 0;
2103
2104 #if defined(CONFIG_IA64_GENERIC)
2105 /* If we are booting a kdump kernel, the sba_iommu will
2106 * cause devices that were not shutdown properly to MCA
2107 * as soon as they are turned back on. Our only option for
2108 * a successful kdump kernel boot is to use the swiotlb.
2109 */
2110 if (is_kdump_kernel()) {
2111 dma_ops = &swiotlb_dma_ops;
2112 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2113 panic("Unable to initialize software I/O TLB:"
2114 " Try machvec=dig boot option");
2115 machvec_init("dig");
2116 return 0;
2117 }
2118 #endif
2119
2120 /*
2121 * ioc_list should be populated by the acpi_sba_ioc_handler's .attach()
2122 * routine, but that only happens if acpi_scan_init() has already run.
2123 */
2124 if (!ioc_list) {
2125 #ifdef CONFIG_IA64_GENERIC
2126 /*
2127 * If we didn't find something sba_iommu can claim, we
2128 * need to setup the swiotlb and switch to the dig machvec.
2129 */
2130 dma_ops = &swiotlb_dma_ops;
2131 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2132 panic("Unable to find SBA IOMMU or initialize "
2133 "software I/O TLB: Try machvec=dig boot option");
2134 machvec_init("dig");
2135 #else
2136 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2137 #endif
2138 return 0;
2139 }
2140
2141 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2142 /*
2143 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2144 * buffer setup to support devices with smaller DMA masks than
2145 * sba_iommu can handle.
2146 */
2147 if (ia64_platform_is("hpzx1_swiotlb")) {
2148 extern void hwsw_init(void);
2149
2150 hwsw_init();
2151 }
2152 #endif
2153
2154 #ifdef CONFIG_PCI
2155 {
2156 struct pci_bus *b = NULL;
2157 while ((b = pci_find_next_bus(b)) != NULL)
2158 sba_connect_bus(b);
2159 }
2160 #endif
2161
2162 #ifdef CONFIG_PROC_FS
2163 ioc_proc_init();
2164 #endif
2165 return 0;
2166 }
2167
2168 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2169
2170 static int __init
2171 nosbagart(char *str)
2172 {
2173 reserve_sba_gart = 0;
2174 return 1;
2175 }
2176
2177 static int sba_dma_supported (struct device *dev, u64 mask)
2178 {
2179 /* make sure it's at least 32bit capable */
2180 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2181 }
2182
2183 static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
2184 {
2185 return 0;
2186 }
2187
2188 __setup("nosbagart", nosbagart);
2189
2190 static int __init
2191 sba_page_override(char *str)
2192 {
2193 unsigned long page_size;
2194
2195 page_size = memparse(str, &str);
2196 switch (page_size) {
2197 case 4096:
2198 case 8192:
2199 case 16384:
2200 case 65536:
2201 iovp_shift = ffs(page_size) - 1;
2202 break;
2203 default:
2204 printk("%s: unknown/unsupported iommu page size %ld\n",
2205 __func__, page_size);
2206 }
2207
2208 return 1;
2209 }
2210
2211 __setup("sbapagesize=",sba_page_override);
2212
2213 struct dma_map_ops sba_dma_ops = {
2214 .alloc = sba_alloc_coherent,
2215 .free = sba_free_coherent,
2216 .map_page = sba_map_page,
2217 .unmap_page = sba_unmap_page,
2218 .map_sg = sba_map_sg_attrs,
2219 .unmap_sg = sba_unmap_sg_attrs,
2220 .sync_single_for_cpu = machvec_dma_sync_single,
2221 .sync_sg_for_cpu = machvec_dma_sync_sg,
2222 .sync_single_for_device = machvec_dma_sync_single,
2223 .sync_sg_for_device = machvec_dma_sync_sg,
2224 .dma_supported = sba_dma_supported,
2225 .mapping_error = sba_dma_mapping_error,
2226 };
2227
2228 void sba_dma_init(void)
2229 {
2230 dma_ops = &sba_dma_ops;
2231 }