]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/ia64/hp/common/sba_iommu.c
Merge branches 'release', 'ejd', 'sony' and 'wmi' into release
[mirror_ubuntu-kernels.git] / arch / ia64 / hp / common / sba_iommu.c
1 /*
2 ** IA64 System Bus Adapter (SBA) I/O MMU manager
3 **
4 ** (c) Copyright 2002-2005 Alex Williamson
5 ** (c) Copyright 2002-2003 Grant Grundler
6 ** (c) Copyright 2002-2005 Hewlett-Packard Company
7 **
8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 ** This program is free software; you can redistribute it and/or modify
12 ** it under the terms of the GNU General Public License as published by
13 ** the Free Software Foundation; either version 2 of the License, or
14 ** (at your option) any later version.
15 **
16 **
17 ** This module initializes the IOC (I/O Controller) found on HP
18 ** McKinley machines and their successors.
19 **
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/acpi.h>
34 #include <linux/efi.h>
35 #include <linux/nodemask.h>
36 #include <linux/bitops.h> /* hweight64() */
37 #include <linux/crash_dump.h>
38
39 #include <asm/delay.h> /* ia64_get_itc() */
40 #include <asm/io.h>
41 #include <asm/page.h> /* PAGE_OFFSET */
42 #include <asm/dma.h>
43 #include <asm/system.h> /* wmb() */
44
45 #include <asm/acpi-ext.h>
46
47 extern int swiotlb_late_init_with_default_size (size_t size);
48
49 #define PFX "IOC: "
50
51 /*
52 ** Enabling timing search of the pdir resource map. Output in /proc.
53 ** Disabled by default to optimize performance.
54 */
55 #undef PDIR_SEARCH_TIMING
56
57 /*
58 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
59 ** not defined, all DMA will be 32bit and go through the TLB.
60 ** There's potentially a conflict in the bio merge code with us
61 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
62 ** appears to give more performance than bio-level virtual merging, we'll
63 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
64 ** completely restrict DMA to the IOMMU.
65 */
66 #define ALLOW_IOV_BYPASS
67
68 /*
69 ** This option specifically allows/disallows bypassing scatterlists with
70 ** multiple entries. Coalescing these entries can allow better DMA streaming
71 ** and in some cases shows better performance than entirely bypassing the
72 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
73 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
74 */
75 #undef ALLOW_IOV_BYPASS_SG
76
77 /*
78 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
79 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
80 ** disconnect on 4k boundaries and prevent such issues. If the device is
81 ** particularly aggressive, this option will keep the entire pdir valid such
82 ** that prefetching will hit a valid address. This could severely impact
83 ** error containment, and is therefore off by default. The page that is
84 ** used for spill-over is poisoned, so that should help debugging somewhat.
85 */
86 #undef FULL_VALID_PDIR
87
88 #define ENABLE_MARK_CLEAN
89
90 /*
91 ** The number of debug flags is a clue - this code is fragile. NOTE: since
92 ** tightening the use of res_lock the resource bitmap and actual pdir are no
93 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
94 ** like that.
95 */
96 #undef DEBUG_SBA_INIT
97 #undef DEBUG_SBA_RUN
98 #undef DEBUG_SBA_RUN_SG
99 #undef DEBUG_SBA_RESOURCE
100 #undef ASSERT_PDIR_SANITY
101 #undef DEBUG_LARGE_SG_ENTRIES
102 #undef DEBUG_BYPASS
103
104 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
105 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
106 #endif
107
108 #define SBA_INLINE __inline__
109 /* #define SBA_INLINE */
110
111 #ifdef DEBUG_SBA_INIT
112 #define DBG_INIT(x...) printk(x)
113 #else
114 #define DBG_INIT(x...)
115 #endif
116
117 #ifdef DEBUG_SBA_RUN
118 #define DBG_RUN(x...) printk(x)
119 #else
120 #define DBG_RUN(x...)
121 #endif
122
123 #ifdef DEBUG_SBA_RUN_SG
124 #define DBG_RUN_SG(x...) printk(x)
125 #else
126 #define DBG_RUN_SG(x...)
127 #endif
128
129
130 #ifdef DEBUG_SBA_RESOURCE
131 #define DBG_RES(x...) printk(x)
132 #else
133 #define DBG_RES(x...)
134 #endif
135
136 #ifdef DEBUG_BYPASS
137 #define DBG_BYPASS(x...) printk(x)
138 #else
139 #define DBG_BYPASS(x...)
140 #endif
141
142 #ifdef ASSERT_PDIR_SANITY
143 #define ASSERT(expr) \
144 if(!(expr)) { \
145 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
146 panic(#expr); \
147 }
148 #else
149 #define ASSERT(expr)
150 #endif
151
152 /*
153 ** The number of pdir entries to "free" before issuing
154 ** a read to PCOM register to flush out PCOM writes.
155 ** Interacts with allocation granularity (ie 4 or 8 entries
156 ** allocated and free'd/purged at a time might make this
157 ** less interesting).
158 */
159 #define DELAYED_RESOURCE_CNT 64
160
161 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
162
163 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
167 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
168
169 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
170
171 #define IOC_FUNC_ID 0x000
172 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
173 #define IOC_IBASE 0x300 /* IO TLB */
174 #define IOC_IMASK 0x308
175 #define IOC_PCOM 0x310
176 #define IOC_TCNFG 0x318
177 #define IOC_PDIR_BASE 0x320
178
179 #define IOC_ROPE0_CFG 0x500
180 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
181
182
183 /* AGP GART driver looks for this */
184 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
185
186 /*
187 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
188 **
189 ** Some IOCs (sx1000) can run at the above pages sizes, but are
190 ** really only supported using the IOC at a 4k page size.
191 **
192 ** iovp_size could only be greater than PAGE_SIZE if we are
193 ** confident the drivers really only touch the next physical
194 ** page iff that driver instance owns it.
195 */
196 static unsigned long iovp_size;
197 static unsigned long iovp_shift;
198 static unsigned long iovp_mask;
199
200 struct ioc {
201 void __iomem *ioc_hpa; /* I/O MMU base address */
202 char *res_map; /* resource map, bit == pdir entry */
203 u64 *pdir_base; /* physical base address */
204 unsigned long ibase; /* pdir IOV Space base */
205 unsigned long imask; /* pdir IOV Space mask */
206
207 unsigned long *res_hint; /* next avail IOVP - circular search */
208 unsigned long dma_mask;
209 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
210 /* clearing pdir to prevent races with allocations. */
211 unsigned int res_bitshift; /* from the RIGHT! */
212 unsigned int res_size; /* size of resource map in bytes */
213 #ifdef CONFIG_NUMA
214 unsigned int node; /* node where this IOC lives */
215 #endif
216 #if DELAYED_RESOURCE_CNT > 0
217 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
218 /* than res_lock for bigger systems. */
219 int saved_cnt;
220 struct sba_dma_pair {
221 dma_addr_t iova;
222 size_t size;
223 } saved[DELAYED_RESOURCE_CNT];
224 #endif
225
226 #ifdef PDIR_SEARCH_TIMING
227 #define SBA_SEARCH_SAMPLE 0x100
228 unsigned long avg_search[SBA_SEARCH_SAMPLE];
229 unsigned long avg_idx; /* current index into avg_search */
230 #endif
231
232 /* Stuff we don't need in performance path */
233 struct ioc *next; /* list of IOC's in system */
234 acpi_handle handle; /* for multiple IOC's */
235 const char *name;
236 unsigned int func_id;
237 unsigned int rev; /* HW revision of chip */
238 u32 iov_size;
239 unsigned int pdir_size; /* in bytes, determined by IOV Space size */
240 struct pci_dev *sac_only_dev;
241 };
242
243 static struct ioc *ioc_list;
244 static int reserve_sba_gart = 1;
245
246 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
247 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
248
249 #define sba_sg_address(sg) sg_virt((sg))
250
251 #ifdef FULL_VALID_PDIR
252 static u64 prefetch_spill_page;
253 #endif
254
255 #ifdef CONFIG_PCI
256 # define GET_IOC(dev) (((dev)->bus == &pci_bus_type) \
257 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
258 #else
259 # define GET_IOC(dev) NULL
260 #endif
261
262 /*
263 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
264 ** (or rather not merge) DMAs into manageable chunks.
265 ** On parisc, this is more of the software/tuning constraint
266 ** rather than the HW. I/O MMU allocation algorithms can be
267 ** faster with smaller sizes (to some degree).
268 */
269 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
270
271 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
272
273 /************************************
274 ** SBA register read and write support
275 **
276 ** BE WARNED: register writes are posted.
277 ** (ie follow writes which must reach HW with a read)
278 **
279 */
280 #define READ_REG(addr) __raw_readq(addr)
281 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
282
283 #ifdef DEBUG_SBA_INIT
284
285 /**
286 * sba_dump_tlb - debugging only - print IOMMU operating parameters
287 * @hpa: base address of the IOMMU
288 *
289 * Print the size/location of the IO MMU PDIR.
290 */
291 static void
292 sba_dump_tlb(char *hpa)
293 {
294 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
295 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
296 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
297 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
298 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
299 DBG_INIT("\n");
300 }
301 #endif
302
303
304 #ifdef ASSERT_PDIR_SANITY
305
306 /**
307 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
308 * @ioc: IO MMU structure which owns the pdir we are interested in.
309 * @msg: text to print ont the output line.
310 * @pide: pdir index.
311 *
312 * Print one entry of the IO MMU PDIR in human readable form.
313 */
314 static void
315 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
316 {
317 /* start printing from lowest pde in rval */
318 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
319 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
320 uint rcnt;
321
322 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
323 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
324
325 rcnt = 0;
326 while (rcnt < BITS_PER_LONG) {
327 printk(KERN_DEBUG "%s %2d %p %016Lx\n",
328 (rcnt == (pide & (BITS_PER_LONG - 1)))
329 ? " -->" : " ",
330 rcnt, ptr, (unsigned long long) *ptr );
331 rcnt++;
332 ptr++;
333 }
334 printk(KERN_DEBUG "%s", msg);
335 }
336
337
338 /**
339 * sba_check_pdir - debugging only - consistency checker
340 * @ioc: IO MMU structure which owns the pdir we are interested in.
341 * @msg: text to print ont the output line.
342 *
343 * Verify the resource map and pdir state is consistent
344 */
345 static int
346 sba_check_pdir(struct ioc *ioc, char *msg)
347 {
348 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
349 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
350 u64 *pptr = ioc->pdir_base; /* pdir ptr */
351 uint pide = 0;
352
353 while (rptr < rptr_end) {
354 u64 rval;
355 int rcnt; /* number of bits we might check */
356
357 rval = *rptr;
358 rcnt = 64;
359
360 while (rcnt) {
361 /* Get last byte and highest bit from that */
362 u32 pde = ((u32)((*pptr >> (63)) & 0x1));
363 if ((rval & 0x1) ^ pde)
364 {
365 /*
366 ** BUMMER! -- res_map != pdir --
367 ** Dump rval and matching pdir entries
368 */
369 sba_dump_pdir_entry(ioc, msg, pide);
370 return(1);
371 }
372 rcnt--;
373 rval >>= 1; /* try the next bit */
374 pptr++;
375 pide++;
376 }
377 rptr++; /* look at next word of res_map */
378 }
379 /* It'd be nice if we always got here :^) */
380 return 0;
381 }
382
383
384 /**
385 * sba_dump_sg - debugging only - print Scatter-Gather list
386 * @ioc: IO MMU structure which owns the pdir we are interested in.
387 * @startsg: head of the SG list
388 * @nents: number of entries in SG list
389 *
390 * print the SG list so we can verify it's correct by hand.
391 */
392 static void
393 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
394 {
395 while (nents-- > 0) {
396 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
397 startsg->dma_address, startsg->dma_length,
398 sba_sg_address(startsg));
399 startsg = sg_next(startsg);
400 }
401 }
402
403 static void
404 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
405 {
406 struct scatterlist *the_sg = startsg;
407 int the_nents = nents;
408
409 while (the_nents-- > 0) {
410 if (sba_sg_address(the_sg) == 0x0UL)
411 sba_dump_sg(NULL, startsg, nents);
412 the_sg = sg_next(the_sg);
413 }
414 }
415
416 #endif /* ASSERT_PDIR_SANITY */
417
418
419
420
421 /**************************************************************
422 *
423 * I/O Pdir Resource Management
424 *
425 * Bits set in the resource map are in use.
426 * Each bit can represent a number of pages.
427 * LSbs represent lower addresses (IOVA's).
428 *
429 ***************************************************************/
430 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
431
432 /* Convert from IOVP to IOVA and vice versa. */
433 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
434 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
435
436 #define PDIR_ENTRY_SIZE sizeof(u64)
437
438 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
439
440 #define RESMAP_MASK(n) ~(~0UL << (n))
441 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
442
443
444 /**
445 * For most cases the normal get_order is sufficient, however it limits us
446 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
447 * It only incurs about 1 clock cycle to use this one with the static variable
448 * and makes the code more intuitive.
449 */
450 static SBA_INLINE int
451 get_iovp_order (unsigned long size)
452 {
453 long double d = size - 1;
454 long order;
455
456 order = ia64_getf_exp(d);
457 order = order - iovp_shift - 0xffff + 1;
458 if (order < 0)
459 order = 0;
460 return order;
461 }
462
463 /**
464 * sba_search_bitmap - find free space in IO PDIR resource bitmap
465 * @ioc: IO MMU structure which owns the pdir we are interested in.
466 * @bits_wanted: number of entries we need.
467 * @use_hint: use res_hint to indicate where to start looking
468 *
469 * Find consecutive free bits in resource bitmap.
470 * Each bit represents one entry in the IO Pdir.
471 * Cool perf optimization: search for log2(size) bits at a time.
472 */
473 static SBA_INLINE unsigned long
474 sba_search_bitmap(struct ioc *ioc, unsigned long bits_wanted, int use_hint)
475 {
476 unsigned long *res_ptr;
477 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
478 unsigned long flags, pide = ~0UL;
479
480 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
481 ASSERT(res_ptr < res_end);
482
483 spin_lock_irqsave(&ioc->res_lock, flags);
484
485 /* Allow caller to force a search through the entire resource space */
486 if (likely(use_hint)) {
487 res_ptr = ioc->res_hint;
488 } else {
489 res_ptr = (ulong *)ioc->res_map;
490 ioc->res_bitshift = 0;
491 }
492
493 /*
494 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
495 * if a TLB entry is purged while in use. sba_mark_invalid()
496 * purges IOTLB entries in power-of-two sizes, so we also
497 * allocate IOVA space in power-of-two sizes.
498 */
499 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
500
501 if (likely(bits_wanted == 1)) {
502 unsigned int bitshiftcnt;
503 for(; res_ptr < res_end ; res_ptr++) {
504 if (likely(*res_ptr != ~0UL)) {
505 bitshiftcnt = ffz(*res_ptr);
506 *res_ptr |= (1UL << bitshiftcnt);
507 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
508 pide <<= 3; /* convert to bit address */
509 pide += bitshiftcnt;
510 ioc->res_bitshift = bitshiftcnt + bits_wanted;
511 goto found_it;
512 }
513 }
514 goto not_found;
515
516 }
517
518 if (likely(bits_wanted <= BITS_PER_LONG/2)) {
519 /*
520 ** Search the resource bit map on well-aligned values.
521 ** "o" is the alignment.
522 ** We need the alignment to invalidate I/O TLB using
523 ** SBA HW features in the unmap path.
524 */
525 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
526 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
527 unsigned long mask, base_mask;
528
529 base_mask = RESMAP_MASK(bits_wanted);
530 mask = base_mask << bitshiftcnt;
531
532 DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
533 for(; res_ptr < res_end ; res_ptr++)
534 {
535 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
536 ASSERT(0 != mask);
537 for (; mask ; mask <<= o, bitshiftcnt += o) {
538 if(0 == ((*res_ptr) & mask)) {
539 *res_ptr |= mask; /* mark resources busy! */
540 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
541 pide <<= 3; /* convert to bit address */
542 pide += bitshiftcnt;
543 ioc->res_bitshift = bitshiftcnt + bits_wanted;
544 goto found_it;
545 }
546 }
547
548 bitshiftcnt = 0;
549 mask = base_mask;
550
551 }
552
553 } else {
554 int qwords, bits, i;
555 unsigned long *end;
556
557 qwords = bits_wanted >> 6; /* /64 */
558 bits = bits_wanted - (qwords * BITS_PER_LONG);
559
560 end = res_end - qwords;
561
562 for (; res_ptr < end; res_ptr++) {
563 for (i = 0 ; i < qwords ; i++) {
564 if (res_ptr[i] != 0)
565 goto next_ptr;
566 }
567 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
568 continue;
569
570 /* Found it, mark it */
571 for (i = 0 ; i < qwords ; i++)
572 res_ptr[i] = ~0UL;
573 res_ptr[i] |= RESMAP_MASK(bits);
574
575 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
576 pide <<= 3; /* convert to bit address */
577 res_ptr += qwords;
578 ioc->res_bitshift = bits;
579 goto found_it;
580 next_ptr:
581 ;
582 }
583 }
584
585 not_found:
586 prefetch(ioc->res_map);
587 ioc->res_hint = (unsigned long *) ioc->res_map;
588 ioc->res_bitshift = 0;
589 spin_unlock_irqrestore(&ioc->res_lock, flags);
590 return (pide);
591
592 found_it:
593 ioc->res_hint = res_ptr;
594 spin_unlock_irqrestore(&ioc->res_lock, flags);
595 return (pide);
596 }
597
598
599 /**
600 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
601 * @ioc: IO MMU structure which owns the pdir we are interested in.
602 * @size: number of bytes to create a mapping for
603 *
604 * Given a size, find consecutive unmarked and then mark those bits in the
605 * resource bit map.
606 */
607 static int
608 sba_alloc_range(struct ioc *ioc, size_t size)
609 {
610 unsigned int pages_needed = size >> iovp_shift;
611 #ifdef PDIR_SEARCH_TIMING
612 unsigned long itc_start;
613 #endif
614 unsigned long pide;
615
616 ASSERT(pages_needed);
617 ASSERT(0 == (size & ~iovp_mask));
618
619 #ifdef PDIR_SEARCH_TIMING
620 itc_start = ia64_get_itc();
621 #endif
622 /*
623 ** "seek and ye shall find"...praying never hurts either...
624 */
625 pide = sba_search_bitmap(ioc, pages_needed, 1);
626 if (unlikely(pide >= (ioc->res_size << 3))) {
627 pide = sba_search_bitmap(ioc, pages_needed, 0);
628 if (unlikely(pide >= (ioc->res_size << 3))) {
629 #if DELAYED_RESOURCE_CNT > 0
630 unsigned long flags;
631
632 /*
633 ** With delayed resource freeing, we can give this one more shot. We're
634 ** getting close to being in trouble here, so do what we can to make this
635 ** one count.
636 */
637 spin_lock_irqsave(&ioc->saved_lock, flags);
638 if (ioc->saved_cnt > 0) {
639 struct sba_dma_pair *d;
640 int cnt = ioc->saved_cnt;
641
642 d = &(ioc->saved[ioc->saved_cnt - 1]);
643
644 spin_lock(&ioc->res_lock);
645 while (cnt--) {
646 sba_mark_invalid(ioc, d->iova, d->size);
647 sba_free_range(ioc, d->iova, d->size);
648 d--;
649 }
650 ioc->saved_cnt = 0;
651 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
652 spin_unlock(&ioc->res_lock);
653 }
654 spin_unlock_irqrestore(&ioc->saved_lock, flags);
655
656 pide = sba_search_bitmap(ioc, pages_needed, 0);
657 if (unlikely(pide >= (ioc->res_size << 3)))
658 panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n",
659 ioc->ioc_hpa);
660 #else
661 panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n",
662 ioc->ioc_hpa);
663 #endif
664 }
665 }
666
667 #ifdef PDIR_SEARCH_TIMING
668 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
669 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
670 #endif
671
672 prefetchw(&(ioc->pdir_base[pide]));
673
674 #ifdef ASSERT_PDIR_SANITY
675 /* verify the first enable bit is clear */
676 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
677 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
678 }
679 #endif
680
681 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
682 __func__, size, pages_needed, pide,
683 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
684 ioc->res_bitshift );
685
686 return (pide);
687 }
688
689
690 /**
691 * sba_free_range - unmark bits in IO PDIR resource bitmap
692 * @ioc: IO MMU structure which owns the pdir we are interested in.
693 * @iova: IO virtual address which was previously allocated.
694 * @size: number of bytes to create a mapping for
695 *
696 * clear bits in the ioc's resource map
697 */
698 static SBA_INLINE void
699 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
700 {
701 unsigned long iovp = SBA_IOVP(ioc, iova);
702 unsigned int pide = PDIR_INDEX(iovp);
703 unsigned int ridx = pide >> 3; /* convert bit to byte address */
704 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
705 int bits_not_wanted = size >> iovp_shift;
706 unsigned long m;
707
708 /* Round up to power-of-two size: see AR2305 note above */
709 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
710 for (; bits_not_wanted > 0 ; res_ptr++) {
711
712 if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
713
714 /* these mappings start 64bit aligned */
715 *res_ptr = 0UL;
716 bits_not_wanted -= BITS_PER_LONG;
717 pide += BITS_PER_LONG;
718
719 } else {
720
721 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
722 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
723 bits_not_wanted = 0;
724
725 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
726 bits_not_wanted, m, pide, res_ptr, *res_ptr);
727
728 ASSERT(m != 0);
729 ASSERT(bits_not_wanted);
730 ASSERT((*res_ptr & m) == m); /* verify same bits are set */
731 *res_ptr &= ~m;
732 }
733 }
734 }
735
736
737 /**************************************************************
738 *
739 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
740 *
741 ***************************************************************/
742
743 /**
744 * sba_io_pdir_entry - fill in one IO PDIR entry
745 * @pdir_ptr: pointer to IO PDIR entry
746 * @vba: Virtual CPU address of buffer to map
747 *
748 * SBA Mapping Routine
749 *
750 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
751 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
752 * Each IO Pdir entry consists of 8 bytes as shown below
753 * (LSB == bit 0):
754 *
755 * 63 40 11 7 0
756 * +-+---------------------+----------------------------------+----+--------+
757 * |V| U | PPN[39:12] | U | FF |
758 * +-+---------------------+----------------------------------+----+--------+
759 *
760 * V == Valid Bit
761 * U == Unused
762 * PPN == Physical Page Number
763 *
764 * The physical address fields are filled with the results of virt_to_phys()
765 * on the vba.
766 */
767
768 #if 1
769 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
770 | 0x8000000000000000ULL)
771 #else
772 void SBA_INLINE
773 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
774 {
775 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
776 }
777 #endif
778
779 #ifdef ENABLE_MARK_CLEAN
780 /**
781 * Since DMA is i-cache coherent, any (complete) pages that were written via
782 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
783 * flush them when they get mapped into an executable vm-area.
784 */
785 static void
786 mark_clean (void *addr, size_t size)
787 {
788 unsigned long pg_addr, end;
789
790 pg_addr = PAGE_ALIGN((unsigned long) addr);
791 end = (unsigned long) addr + size;
792 while (pg_addr + PAGE_SIZE <= end) {
793 struct page *page = virt_to_page((void *)pg_addr);
794 set_bit(PG_arch_1, &page->flags);
795 pg_addr += PAGE_SIZE;
796 }
797 }
798 #endif
799
800 /**
801 * sba_mark_invalid - invalidate one or more IO PDIR entries
802 * @ioc: IO MMU structure which owns the pdir we are interested in.
803 * @iova: IO Virtual Address mapped earlier
804 * @byte_cnt: number of bytes this mapping covers.
805 *
806 * Marking the IO PDIR entry(ies) as Invalid and invalidate
807 * corresponding IO TLB entry. The PCOM (Purge Command Register)
808 * is to purge stale entries in the IO TLB when unmapping entries.
809 *
810 * The PCOM register supports purging of multiple pages, with a minium
811 * of 1 page and a maximum of 2GB. Hardware requires the address be
812 * aligned to the size of the range being purged. The size of the range
813 * must be a power of 2. The "Cool perf optimization" in the
814 * allocation routine helps keep that true.
815 */
816 static SBA_INLINE void
817 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
818 {
819 u32 iovp = (u32) SBA_IOVP(ioc,iova);
820
821 int off = PDIR_INDEX(iovp);
822
823 /* Must be non-zero and rounded up */
824 ASSERT(byte_cnt > 0);
825 ASSERT(0 == (byte_cnt & ~iovp_mask));
826
827 #ifdef ASSERT_PDIR_SANITY
828 /* Assert first pdir entry is set */
829 if (!(ioc->pdir_base[off] >> 60)) {
830 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
831 }
832 #endif
833
834 if (byte_cnt <= iovp_size)
835 {
836 ASSERT(off < ioc->pdir_size);
837
838 iovp |= iovp_shift; /* set "size" field for PCOM */
839
840 #ifndef FULL_VALID_PDIR
841 /*
842 ** clear I/O PDIR entry "valid" bit
843 ** Do NOT clear the rest - save it for debugging.
844 ** We should only clear bits that have previously
845 ** been enabled.
846 */
847 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
848 #else
849 /*
850 ** If we want to maintain the PDIR as valid, put in
851 ** the spill page so devices prefetching won't
852 ** cause a hard fail.
853 */
854 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
855 #endif
856 } else {
857 u32 t = get_iovp_order(byte_cnt) + iovp_shift;
858
859 iovp |= t;
860 ASSERT(t <= 31); /* 2GB! Max value of "size" field */
861
862 do {
863 /* verify this pdir entry is enabled */
864 ASSERT(ioc->pdir_base[off] >> 63);
865 #ifndef FULL_VALID_PDIR
866 /* clear I/O Pdir entry "valid" bit first */
867 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
868 #else
869 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
870 #endif
871 off++;
872 byte_cnt -= iovp_size;
873 } while (byte_cnt > 0);
874 }
875
876 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
877 }
878
879 /**
880 * sba_map_single - map one buffer and return IOVA for DMA
881 * @dev: instance of PCI owned by the driver that's asking.
882 * @addr: driver buffer to map.
883 * @size: number of bytes to map in driver buffer.
884 * @dir: R/W or both.
885 *
886 * See Documentation/DMA-mapping.txt
887 */
888 dma_addr_t
889 sba_map_single(struct device *dev, void *addr, size_t size, int dir)
890 {
891 struct ioc *ioc;
892 dma_addr_t iovp;
893 dma_addr_t offset;
894 u64 *pdir_start;
895 int pide;
896 #ifdef ASSERT_PDIR_SANITY
897 unsigned long flags;
898 #endif
899 #ifdef ALLOW_IOV_BYPASS
900 unsigned long pci_addr = virt_to_phys(addr);
901 #endif
902
903 #ifdef ALLOW_IOV_BYPASS
904 ASSERT(to_pci_dev(dev)->dma_mask);
905 /*
906 ** Check if the PCI device can DMA to ptr... if so, just return ptr
907 */
908 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
909 /*
910 ** Device is bit capable of DMA'ing to the buffer...
911 ** just return the PCI address of ptr
912 */
913 DBG_BYPASS("sba_map_single() bypass mask/addr: 0x%lx/0x%lx\n",
914 to_pci_dev(dev)->dma_mask, pci_addr);
915 return pci_addr;
916 }
917 #endif
918 ioc = GET_IOC(dev);
919 ASSERT(ioc);
920
921 prefetch(ioc->res_hint);
922
923 ASSERT(size > 0);
924 ASSERT(size <= DMA_CHUNK_SIZE);
925
926 /* save offset bits */
927 offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
928
929 /* round up to nearest iovp_size */
930 size = (size + offset + ~iovp_mask) & iovp_mask;
931
932 #ifdef ASSERT_PDIR_SANITY
933 spin_lock_irqsave(&ioc->res_lock, flags);
934 if (sba_check_pdir(ioc,"Check before sba_map_single()"))
935 panic("Sanity check failed");
936 spin_unlock_irqrestore(&ioc->res_lock, flags);
937 #endif
938
939 pide = sba_alloc_range(ioc, size);
940
941 iovp = (dma_addr_t) pide << iovp_shift;
942
943 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
944
945 pdir_start = &(ioc->pdir_base[pide]);
946
947 while (size > 0) {
948 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
949 sba_io_pdir_entry(pdir_start, (unsigned long) addr);
950
951 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
952
953 addr += iovp_size;
954 size -= iovp_size;
955 pdir_start++;
956 }
957 /* force pdir update */
958 wmb();
959
960 /* form complete address */
961 #ifdef ASSERT_PDIR_SANITY
962 spin_lock_irqsave(&ioc->res_lock, flags);
963 sba_check_pdir(ioc,"Check after sba_map_single()");
964 spin_unlock_irqrestore(&ioc->res_lock, flags);
965 #endif
966 return SBA_IOVA(ioc, iovp, offset);
967 }
968
969 #ifdef ENABLE_MARK_CLEAN
970 static SBA_INLINE void
971 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
972 {
973 u32 iovp = (u32) SBA_IOVP(ioc,iova);
974 int off = PDIR_INDEX(iovp);
975 void *addr;
976
977 if (size <= iovp_size) {
978 addr = phys_to_virt(ioc->pdir_base[off] &
979 ~0xE000000000000FFFULL);
980 mark_clean(addr, size);
981 } else {
982 do {
983 addr = phys_to_virt(ioc->pdir_base[off] &
984 ~0xE000000000000FFFULL);
985 mark_clean(addr, min(size, iovp_size));
986 off++;
987 size -= iovp_size;
988 } while (size > 0);
989 }
990 }
991 #endif
992
993 /**
994 * sba_unmap_single - unmap one IOVA and free resources
995 * @dev: instance of PCI owned by the driver that's asking.
996 * @iova: IOVA of driver buffer previously mapped.
997 * @size: number of bytes mapped in driver buffer.
998 * @dir: R/W or both.
999 *
1000 * See Documentation/DMA-mapping.txt
1001 */
1002 void sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size, int dir)
1003 {
1004 struct ioc *ioc;
1005 #if DELAYED_RESOURCE_CNT > 0
1006 struct sba_dma_pair *d;
1007 #endif
1008 unsigned long flags;
1009 dma_addr_t offset;
1010
1011 ioc = GET_IOC(dev);
1012 ASSERT(ioc);
1013
1014 #ifdef ALLOW_IOV_BYPASS
1015 if (likely((iova & ioc->imask) != ioc->ibase)) {
1016 /*
1017 ** Address does not fall w/in IOVA, must be bypassing
1018 */
1019 DBG_BYPASS("sba_unmap_single() bypass addr: 0x%lx\n", iova);
1020
1021 #ifdef ENABLE_MARK_CLEAN
1022 if (dir == DMA_FROM_DEVICE) {
1023 mark_clean(phys_to_virt(iova), size);
1024 }
1025 #endif
1026 return;
1027 }
1028 #endif
1029 offset = iova & ~iovp_mask;
1030
1031 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1032
1033 iova ^= offset; /* clear offset bits */
1034 size += offset;
1035 size = ROUNDUP(size, iovp_size);
1036
1037 #ifdef ENABLE_MARK_CLEAN
1038 if (dir == DMA_FROM_DEVICE)
1039 sba_mark_clean(ioc, iova, size);
1040 #endif
1041
1042 #if DELAYED_RESOURCE_CNT > 0
1043 spin_lock_irqsave(&ioc->saved_lock, flags);
1044 d = &(ioc->saved[ioc->saved_cnt]);
1045 d->iova = iova;
1046 d->size = size;
1047 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1048 int cnt = ioc->saved_cnt;
1049 spin_lock(&ioc->res_lock);
1050 while (cnt--) {
1051 sba_mark_invalid(ioc, d->iova, d->size);
1052 sba_free_range(ioc, d->iova, d->size);
1053 d--;
1054 }
1055 ioc->saved_cnt = 0;
1056 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1057 spin_unlock(&ioc->res_lock);
1058 }
1059 spin_unlock_irqrestore(&ioc->saved_lock, flags);
1060 #else /* DELAYED_RESOURCE_CNT == 0 */
1061 spin_lock_irqsave(&ioc->res_lock, flags);
1062 sba_mark_invalid(ioc, iova, size);
1063 sba_free_range(ioc, iova, size);
1064 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1065 spin_unlock_irqrestore(&ioc->res_lock, flags);
1066 #endif /* DELAYED_RESOURCE_CNT == 0 */
1067 }
1068
1069
1070 /**
1071 * sba_alloc_coherent - allocate/map shared mem for DMA
1072 * @dev: instance of PCI owned by the driver that's asking.
1073 * @size: number of bytes mapped in driver buffer.
1074 * @dma_handle: IOVA of new buffer.
1075 *
1076 * See Documentation/DMA-mapping.txt
1077 */
1078 void *
1079 sba_alloc_coherent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags)
1080 {
1081 struct ioc *ioc;
1082 void *addr;
1083
1084 ioc = GET_IOC(dev);
1085 ASSERT(ioc);
1086
1087 #ifdef CONFIG_NUMA
1088 {
1089 struct page *page;
1090 page = alloc_pages_node(ioc->node == MAX_NUMNODES ?
1091 numa_node_id() : ioc->node, flags,
1092 get_order(size));
1093
1094 if (unlikely(!page))
1095 return NULL;
1096
1097 addr = page_address(page);
1098 }
1099 #else
1100 addr = (void *) __get_free_pages(flags, get_order(size));
1101 #endif
1102 if (unlikely(!addr))
1103 return NULL;
1104
1105 memset(addr, 0, size);
1106 *dma_handle = virt_to_phys(addr);
1107
1108 #ifdef ALLOW_IOV_BYPASS
1109 ASSERT(dev->coherent_dma_mask);
1110 /*
1111 ** Check if the PCI device can DMA to ptr... if so, just return ptr
1112 */
1113 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1114 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1115 dev->coherent_dma_mask, *dma_handle);
1116
1117 return addr;
1118 }
1119 #endif
1120
1121 /*
1122 * If device can't bypass or bypass is disabled, pass the 32bit fake
1123 * device to map single to get an iova mapping.
1124 */
1125 *dma_handle = sba_map_single(&ioc->sac_only_dev->dev, addr, size, 0);
1126
1127 return addr;
1128 }
1129
1130
1131 /**
1132 * sba_free_coherent - free/unmap shared mem for DMA
1133 * @dev: instance of PCI owned by the driver that's asking.
1134 * @size: number of bytes mapped in driver buffer.
1135 * @vaddr: virtual address IOVA of "consistent" buffer.
1136 * @dma_handler: IO virtual address of "consistent" buffer.
1137 *
1138 * See Documentation/DMA-mapping.txt
1139 */
1140 void sba_free_coherent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
1141 {
1142 sba_unmap_single(dev, dma_handle, size, 0);
1143 free_pages((unsigned long) vaddr, get_order(size));
1144 }
1145
1146
1147 /*
1148 ** Since 0 is a valid pdir_base index value, can't use that
1149 ** to determine if a value is valid or not. Use a flag to indicate
1150 ** the SG list entry contains a valid pdir index.
1151 */
1152 #define PIDE_FLAG 0x1UL
1153
1154 #ifdef DEBUG_LARGE_SG_ENTRIES
1155 int dump_run_sg = 0;
1156 #endif
1157
1158
1159 /**
1160 * sba_fill_pdir - write allocated SG entries into IO PDIR
1161 * @ioc: IO MMU structure which owns the pdir we are interested in.
1162 * @startsg: list of IOVA/size pairs
1163 * @nents: number of entries in startsg list
1164 *
1165 * Take preprocessed SG list and write corresponding entries
1166 * in the IO PDIR.
1167 */
1168
1169 static SBA_INLINE int
1170 sba_fill_pdir(
1171 struct ioc *ioc,
1172 struct scatterlist *startsg,
1173 int nents)
1174 {
1175 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1176 int n_mappings = 0;
1177 u64 *pdirp = NULL;
1178 unsigned long dma_offset = 0;
1179
1180 while (nents-- > 0) {
1181 int cnt = startsg->dma_length;
1182 startsg->dma_length = 0;
1183
1184 #ifdef DEBUG_LARGE_SG_ENTRIES
1185 if (dump_run_sg)
1186 printk(" %2d : %08lx/%05x %p\n",
1187 nents, startsg->dma_address, cnt,
1188 sba_sg_address(startsg));
1189 #else
1190 DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1191 nents, startsg->dma_address, cnt,
1192 sba_sg_address(startsg));
1193 #endif
1194 /*
1195 ** Look for the start of a new DMA stream
1196 */
1197 if (startsg->dma_address & PIDE_FLAG) {
1198 u32 pide = startsg->dma_address & ~PIDE_FLAG;
1199 dma_offset = (unsigned long) pide & ~iovp_mask;
1200 startsg->dma_address = 0;
1201 if (n_mappings)
1202 dma_sg = sg_next(dma_sg);
1203 dma_sg->dma_address = pide | ioc->ibase;
1204 pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1205 n_mappings++;
1206 }
1207
1208 /*
1209 ** Look for a VCONTIG chunk
1210 */
1211 if (cnt) {
1212 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1213 ASSERT(pdirp);
1214
1215 /* Since multiple Vcontig blocks could make up
1216 ** one DMA stream, *add* cnt to dma_len.
1217 */
1218 dma_sg->dma_length += cnt;
1219 cnt += dma_offset;
1220 dma_offset=0; /* only want offset on first chunk */
1221 cnt = ROUNDUP(cnt, iovp_size);
1222 do {
1223 sba_io_pdir_entry(pdirp, vaddr);
1224 vaddr += iovp_size;
1225 cnt -= iovp_size;
1226 pdirp++;
1227 } while (cnt > 0);
1228 }
1229 startsg = sg_next(startsg);
1230 }
1231 /* force pdir update */
1232 wmb();
1233
1234 #ifdef DEBUG_LARGE_SG_ENTRIES
1235 dump_run_sg = 0;
1236 #endif
1237 return(n_mappings);
1238 }
1239
1240
1241 /*
1242 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1243 ** "start of next" are both on an IOV page boundary.
1244 **
1245 ** (shift left is a quick trick to mask off upper bits)
1246 */
1247 #define DMA_CONTIG(__X, __Y) \
1248 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1249
1250
1251 /**
1252 * sba_coalesce_chunks - preprocess the SG list
1253 * @ioc: IO MMU structure which owns the pdir we are interested in.
1254 * @startsg: list of IOVA/size pairs
1255 * @nents: number of entries in startsg list
1256 *
1257 * First pass is to walk the SG list and determine where the breaks are
1258 * in the DMA stream. Allocates PDIR entries but does not fill them.
1259 * Returns the number of DMA chunks.
1260 *
1261 * Doing the fill separate from the coalescing/allocation keeps the
1262 * code simpler. Future enhancement could make one pass through
1263 * the sglist do both.
1264 */
1265 static SBA_INLINE int
1266 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1267 struct scatterlist *startsg,
1268 int nents)
1269 {
1270 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1271 unsigned long vcontig_len; /* len of VCONTIG chunk */
1272 unsigned long vcontig_end;
1273 struct scatterlist *dma_sg; /* next DMA stream head */
1274 unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1275 int n_mappings = 0;
1276 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1277
1278 while (nents > 0) {
1279 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1280
1281 /*
1282 ** Prepare for first/next DMA stream
1283 */
1284 dma_sg = vcontig_sg = startsg;
1285 dma_len = vcontig_len = vcontig_end = startsg->length;
1286 vcontig_end += vaddr;
1287 dma_offset = vaddr & ~iovp_mask;
1288
1289 /* PARANOID: clear entries */
1290 startsg->dma_address = startsg->dma_length = 0;
1291
1292 /*
1293 ** This loop terminates one iteration "early" since
1294 ** it's always looking one "ahead".
1295 */
1296 while (--nents > 0) {
1297 unsigned long vaddr; /* tmp */
1298
1299 startsg = sg_next(startsg);
1300
1301 /* PARANOID */
1302 startsg->dma_address = startsg->dma_length = 0;
1303
1304 /* catch brokenness in SCSI layer */
1305 ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1306
1307 /*
1308 ** First make sure current dma stream won't
1309 ** exceed DMA_CHUNK_SIZE if we coalesce the
1310 ** next entry.
1311 */
1312 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1313 > DMA_CHUNK_SIZE)
1314 break;
1315
1316 if (dma_len + startsg->length > max_seg_size)
1317 break;
1318
1319 /*
1320 ** Then look for virtually contiguous blocks.
1321 **
1322 ** append the next transaction?
1323 */
1324 vaddr = (unsigned long) sba_sg_address(startsg);
1325 if (vcontig_end == vaddr)
1326 {
1327 vcontig_len += startsg->length;
1328 vcontig_end += startsg->length;
1329 dma_len += startsg->length;
1330 continue;
1331 }
1332
1333 #ifdef DEBUG_LARGE_SG_ENTRIES
1334 dump_run_sg = (vcontig_len > iovp_size);
1335 #endif
1336
1337 /*
1338 ** Not virtually contigous.
1339 ** Terminate prev chunk.
1340 ** Start a new chunk.
1341 **
1342 ** Once we start a new VCONTIG chunk, dma_offset
1343 ** can't change. And we need the offset from the first
1344 ** chunk - not the last one. Ergo Successive chunks
1345 ** must start on page boundaries and dove tail
1346 ** with it's predecessor.
1347 */
1348 vcontig_sg->dma_length = vcontig_len;
1349
1350 vcontig_sg = startsg;
1351 vcontig_len = startsg->length;
1352
1353 /*
1354 ** 3) do the entries end/start on page boundaries?
1355 ** Don't update vcontig_end until we've checked.
1356 */
1357 if (DMA_CONTIG(vcontig_end, vaddr))
1358 {
1359 vcontig_end = vcontig_len + vaddr;
1360 dma_len += vcontig_len;
1361 continue;
1362 } else {
1363 break;
1364 }
1365 }
1366
1367 /*
1368 ** End of DMA Stream
1369 ** Terminate last VCONTIG block.
1370 ** Allocate space for DMA stream.
1371 */
1372 vcontig_sg->dma_length = vcontig_len;
1373 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1374 ASSERT(dma_len <= DMA_CHUNK_SIZE);
1375 dma_sg->dma_address = (dma_addr_t) (PIDE_FLAG
1376 | (sba_alloc_range(ioc, dma_len) << iovp_shift)
1377 | dma_offset);
1378 n_mappings++;
1379 }
1380
1381 return n_mappings;
1382 }
1383
1384
1385 /**
1386 * sba_map_sg - map Scatter/Gather list
1387 * @dev: instance of PCI owned by the driver that's asking.
1388 * @sglist: array of buffer/length pairs
1389 * @nents: number of entries in list
1390 * @dir: R/W or both.
1391 *
1392 * See Documentation/DMA-mapping.txt
1393 */
1394 int sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents, int dir)
1395 {
1396 struct ioc *ioc;
1397 int coalesced, filled = 0;
1398 #ifdef ASSERT_PDIR_SANITY
1399 unsigned long flags;
1400 #endif
1401 #ifdef ALLOW_IOV_BYPASS_SG
1402 struct scatterlist *sg;
1403 #endif
1404
1405 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1406 ioc = GET_IOC(dev);
1407 ASSERT(ioc);
1408
1409 #ifdef ALLOW_IOV_BYPASS_SG
1410 ASSERT(to_pci_dev(dev)->dma_mask);
1411 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1412 for_each_sg(sglist, sg, nents, filled) {
1413 sg->dma_length = sg->length;
1414 sg->dma_address = virt_to_phys(sba_sg_address(sg));
1415 }
1416 return filled;
1417 }
1418 #endif
1419 /* Fast path single entry scatterlists. */
1420 if (nents == 1) {
1421 sglist->dma_length = sglist->length;
1422 sglist->dma_address = sba_map_single(dev, sba_sg_address(sglist), sglist->length, dir);
1423 return 1;
1424 }
1425
1426 #ifdef ASSERT_PDIR_SANITY
1427 spin_lock_irqsave(&ioc->res_lock, flags);
1428 if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
1429 {
1430 sba_dump_sg(ioc, sglist, nents);
1431 panic("Check before sba_map_sg()");
1432 }
1433 spin_unlock_irqrestore(&ioc->res_lock, flags);
1434 #endif
1435
1436 prefetch(ioc->res_hint);
1437
1438 /*
1439 ** First coalesce the chunks and allocate I/O pdir space
1440 **
1441 ** If this is one DMA stream, we can properly map using the
1442 ** correct virtual address associated with each DMA page.
1443 ** w/o this association, we wouldn't have coherent DMA!
1444 ** Access to the virtual address is what forces a two pass algorithm.
1445 */
1446 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1447
1448 /*
1449 ** Program the I/O Pdir
1450 **
1451 ** map the virtual addresses to the I/O Pdir
1452 ** o dma_address will contain the pdir index
1453 ** o dma_len will contain the number of bytes to map
1454 ** o address contains the virtual address.
1455 */
1456 filled = sba_fill_pdir(ioc, sglist, nents);
1457
1458 #ifdef ASSERT_PDIR_SANITY
1459 spin_lock_irqsave(&ioc->res_lock, flags);
1460 if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
1461 {
1462 sba_dump_sg(ioc, sglist, nents);
1463 panic("Check after sba_map_sg()\n");
1464 }
1465 spin_unlock_irqrestore(&ioc->res_lock, flags);
1466 #endif
1467
1468 ASSERT(coalesced == filled);
1469 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1470
1471 return filled;
1472 }
1473
1474
1475 /**
1476 * sba_unmap_sg - unmap Scatter/Gather list
1477 * @dev: instance of PCI owned by the driver that's asking.
1478 * @sglist: array of buffer/length pairs
1479 * @nents: number of entries in list
1480 * @dir: R/W or both.
1481 *
1482 * See Documentation/DMA-mapping.txt
1483 */
1484 void sba_unmap_sg (struct device *dev, struct scatterlist *sglist, int nents, int dir)
1485 {
1486 #ifdef ASSERT_PDIR_SANITY
1487 struct ioc *ioc;
1488 unsigned long flags;
1489 #endif
1490
1491 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1492 __func__, nents, sba_sg_address(sglist), sglist->length);
1493
1494 #ifdef ASSERT_PDIR_SANITY
1495 ioc = GET_IOC(dev);
1496 ASSERT(ioc);
1497
1498 spin_lock_irqsave(&ioc->res_lock, flags);
1499 sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1500 spin_unlock_irqrestore(&ioc->res_lock, flags);
1501 #endif
1502
1503 while (nents && sglist->dma_length) {
1504
1505 sba_unmap_single(dev, sglist->dma_address, sglist->dma_length, dir);
1506 sglist = sg_next(sglist);
1507 nents--;
1508 }
1509
1510 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1511
1512 #ifdef ASSERT_PDIR_SANITY
1513 spin_lock_irqsave(&ioc->res_lock, flags);
1514 sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1515 spin_unlock_irqrestore(&ioc->res_lock, flags);
1516 #endif
1517
1518 }
1519
1520 /**************************************************************
1521 *
1522 * Initialization and claim
1523 *
1524 ***************************************************************/
1525
1526 static void __init
1527 ioc_iova_init(struct ioc *ioc)
1528 {
1529 int tcnfg;
1530 int agp_found = 0;
1531 struct pci_dev *device = NULL;
1532 #ifdef FULL_VALID_PDIR
1533 unsigned long index;
1534 #endif
1535
1536 /*
1537 ** Firmware programs the base and size of a "safe IOVA space"
1538 ** (one that doesn't overlap memory or LMMIO space) in the
1539 ** IBASE and IMASK registers.
1540 */
1541 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1542 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1543
1544 ioc->iov_size = ~ioc->imask + 1;
1545
1546 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1547 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1548 ioc->iov_size >> 20);
1549
1550 switch (iovp_size) {
1551 case 4*1024: tcnfg = 0; break;
1552 case 8*1024: tcnfg = 1; break;
1553 case 16*1024: tcnfg = 2; break;
1554 case 64*1024: tcnfg = 3; break;
1555 default:
1556 panic(PFX "Unsupported IOTLB page size %ldK",
1557 iovp_size >> 10);
1558 break;
1559 }
1560 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1561
1562 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1563 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1564 get_order(ioc->pdir_size));
1565 if (!ioc->pdir_base)
1566 panic(PFX "Couldn't allocate I/O Page Table\n");
1567
1568 memset(ioc->pdir_base, 0, ioc->pdir_size);
1569
1570 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1571 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1572
1573 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1574 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1575
1576 /*
1577 ** If an AGP device is present, only use half of the IOV space
1578 ** for PCI DMA. Unfortunately we can't know ahead of time
1579 ** whether GART support will actually be used, for now we
1580 ** can just key on an AGP device found in the system.
1581 ** We program the next pdir index after we stop w/ a key for
1582 ** the GART code to handshake on.
1583 */
1584 for_each_pci_dev(device)
1585 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1586
1587 if (agp_found && reserve_sba_gart) {
1588 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1589 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1590 ioc->pdir_size /= 2;
1591 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1592 }
1593 #ifdef FULL_VALID_PDIR
1594 /*
1595 ** Check to see if the spill page has been allocated, we don't need more than
1596 ** one across multiple SBAs.
1597 */
1598 if (!prefetch_spill_page) {
1599 char *spill_poison = "SBAIOMMU POISON";
1600 int poison_size = 16;
1601 void *poison_addr, *addr;
1602
1603 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1604 if (!addr)
1605 panic(PFX "Couldn't allocate PDIR spill page\n");
1606
1607 poison_addr = addr;
1608 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1609 memcpy(poison_addr, spill_poison, poison_size);
1610
1611 prefetch_spill_page = virt_to_phys(addr);
1612
1613 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1614 }
1615 /*
1616 ** Set all the PDIR entries valid w/ the spill page as the target
1617 */
1618 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1619 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1620 #endif
1621
1622 /* Clear I/O TLB of any possible entries */
1623 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1624 READ_REG(ioc->ioc_hpa + IOC_PCOM);
1625
1626 /* Enable IOVA translation */
1627 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1628 READ_REG(ioc->ioc_hpa + IOC_IBASE);
1629 }
1630
1631 static void __init
1632 ioc_resource_init(struct ioc *ioc)
1633 {
1634 spin_lock_init(&ioc->res_lock);
1635 #if DELAYED_RESOURCE_CNT > 0
1636 spin_lock_init(&ioc->saved_lock);
1637 #endif
1638
1639 /* resource map size dictated by pdir_size */
1640 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1641 ioc->res_size >>= 3; /* convert bit count to byte count */
1642 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1643
1644 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1645 get_order(ioc->res_size));
1646 if (!ioc->res_map)
1647 panic(PFX "Couldn't allocate resource map\n");
1648
1649 memset(ioc->res_map, 0, ioc->res_size);
1650 /* next available IOVP - circular search */
1651 ioc->res_hint = (unsigned long *) ioc->res_map;
1652
1653 #ifdef ASSERT_PDIR_SANITY
1654 /* Mark first bit busy - ie no IOVA 0 */
1655 ioc->res_map[0] = 0x1;
1656 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1657 #endif
1658 #ifdef FULL_VALID_PDIR
1659 /* Mark the last resource used so we don't prefetch beyond IOVA space */
1660 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1661 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1662 | prefetch_spill_page);
1663 #endif
1664
1665 DBG_INIT("%s() res_map %x %p\n", __func__,
1666 ioc->res_size, (void *) ioc->res_map);
1667 }
1668
1669 static void __init
1670 ioc_sac_init(struct ioc *ioc)
1671 {
1672 struct pci_dev *sac = NULL;
1673 struct pci_controller *controller = NULL;
1674
1675 /*
1676 * pci_alloc_coherent() must return a DMA address which is
1677 * SAC (single address cycle) addressable, so allocate a
1678 * pseudo-device to enforce that.
1679 */
1680 sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1681 if (!sac)
1682 panic(PFX "Couldn't allocate struct pci_dev");
1683
1684 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1685 if (!controller)
1686 panic(PFX "Couldn't allocate struct pci_controller");
1687
1688 controller->iommu = ioc;
1689 sac->sysdata = controller;
1690 sac->dma_mask = 0xFFFFFFFFUL;
1691 #ifdef CONFIG_PCI
1692 sac->dev.bus = &pci_bus_type;
1693 #endif
1694 ioc->sac_only_dev = sac;
1695 }
1696
1697 static void __init
1698 ioc_zx1_init(struct ioc *ioc)
1699 {
1700 unsigned long rope_config;
1701 unsigned int i;
1702
1703 if (ioc->rev < 0x20)
1704 panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1705
1706 /* 38 bit memory controller + extra bit for range displaced by MMIO */
1707 ioc->dma_mask = (0x1UL << 39) - 1;
1708
1709 /*
1710 ** Clear ROPE(N)_CONFIG AO bit.
1711 ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1712 ** Overrides bit 1 in DMA Hint Sets.
1713 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1714 */
1715 for (i=0; i<(8*8); i+=8) {
1716 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1717 rope_config &= ~IOC_ROPE_AO;
1718 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1719 }
1720 }
1721
1722 typedef void (initfunc)(struct ioc *);
1723
1724 struct ioc_iommu {
1725 u32 func_id;
1726 char *name;
1727 initfunc *init;
1728 };
1729
1730 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1731 { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1732 { ZX2_IOC_ID, "zx2", NULL },
1733 { SX1000_IOC_ID, "sx1000", NULL },
1734 { SX2000_IOC_ID, "sx2000", NULL },
1735 };
1736
1737 static struct ioc * __init
1738 ioc_init(u64 hpa, void *handle)
1739 {
1740 struct ioc *ioc;
1741 struct ioc_iommu *info;
1742
1743 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1744 if (!ioc)
1745 return NULL;
1746
1747 ioc->next = ioc_list;
1748 ioc_list = ioc;
1749
1750 ioc->handle = handle;
1751 ioc->ioc_hpa = ioremap(hpa, 0x1000);
1752
1753 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1754 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1755 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1756
1757 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1758 if (ioc->func_id == info->func_id) {
1759 ioc->name = info->name;
1760 if (info->init)
1761 (info->init)(ioc);
1762 }
1763 }
1764
1765 iovp_size = (1 << iovp_shift);
1766 iovp_mask = ~(iovp_size - 1);
1767
1768 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1769 PAGE_SIZE >> 10, iovp_size >> 10);
1770
1771 if (!ioc->name) {
1772 ioc->name = kmalloc(24, GFP_KERNEL);
1773 if (ioc->name)
1774 sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1775 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1776 else
1777 ioc->name = "Unknown";
1778 }
1779
1780 ioc_iova_init(ioc);
1781 ioc_resource_init(ioc);
1782 ioc_sac_init(ioc);
1783
1784 if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1785 ia64_max_iommu_merge_mask = ~iovp_mask;
1786
1787 printk(KERN_INFO PFX
1788 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1789 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1790 hpa, ioc->iov_size >> 20, ioc->ibase);
1791
1792 return ioc;
1793 }
1794
1795
1796
1797 /**************************************************************************
1798 **
1799 ** SBA initialization code (HW and SW)
1800 **
1801 ** o identify SBA chip itself
1802 ** o FIXME: initialize DMA hints for reasonable defaults
1803 **
1804 **************************************************************************/
1805
1806 #ifdef CONFIG_PROC_FS
1807 static void *
1808 ioc_start(struct seq_file *s, loff_t *pos)
1809 {
1810 struct ioc *ioc;
1811 loff_t n = *pos;
1812
1813 for (ioc = ioc_list; ioc; ioc = ioc->next)
1814 if (!n--)
1815 return ioc;
1816
1817 return NULL;
1818 }
1819
1820 static void *
1821 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1822 {
1823 struct ioc *ioc = v;
1824
1825 ++*pos;
1826 return ioc->next;
1827 }
1828
1829 static void
1830 ioc_stop(struct seq_file *s, void *v)
1831 {
1832 }
1833
1834 static int
1835 ioc_show(struct seq_file *s, void *v)
1836 {
1837 struct ioc *ioc = v;
1838 unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1839 int i, used = 0;
1840
1841 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1842 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1843 #ifdef CONFIG_NUMA
1844 if (ioc->node != MAX_NUMNODES)
1845 seq_printf(s, "NUMA node : %d\n", ioc->node);
1846 #endif
1847 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1848 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1849
1850 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1851 used += hweight64(*res_ptr);
1852
1853 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1854 seq_printf(s, "PDIR used : %d entries\n", used);
1855
1856 #ifdef PDIR_SEARCH_TIMING
1857 {
1858 unsigned long i = 0, avg = 0, min, max;
1859 min = max = ioc->avg_search[0];
1860 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1861 avg += ioc->avg_search[i];
1862 if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1863 if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1864 }
1865 avg /= SBA_SEARCH_SAMPLE;
1866 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1867 min, avg, max);
1868 }
1869 #endif
1870 #ifndef ALLOW_IOV_BYPASS
1871 seq_printf(s, "IOVA bypass disabled\n");
1872 #endif
1873 return 0;
1874 }
1875
1876 static const struct seq_operations ioc_seq_ops = {
1877 .start = ioc_start,
1878 .next = ioc_next,
1879 .stop = ioc_stop,
1880 .show = ioc_show
1881 };
1882
1883 static int
1884 ioc_open(struct inode *inode, struct file *file)
1885 {
1886 return seq_open(file, &ioc_seq_ops);
1887 }
1888
1889 static const struct file_operations ioc_fops = {
1890 .open = ioc_open,
1891 .read = seq_read,
1892 .llseek = seq_lseek,
1893 .release = seq_release
1894 };
1895
1896 static void __init
1897 ioc_proc_init(void)
1898 {
1899 struct proc_dir_entry *dir, *entry;
1900
1901 dir = proc_mkdir("bus/mckinley", NULL);
1902 if (!dir)
1903 return;
1904
1905 entry = create_proc_entry(ioc_list->name, 0, dir);
1906 if (entry)
1907 entry->proc_fops = &ioc_fops;
1908 }
1909 #endif
1910
1911 static void
1912 sba_connect_bus(struct pci_bus *bus)
1913 {
1914 acpi_handle handle, parent;
1915 acpi_status status;
1916 struct ioc *ioc;
1917
1918 if (!PCI_CONTROLLER(bus))
1919 panic(PFX "no sysdata on bus %d!\n", bus->number);
1920
1921 if (PCI_CONTROLLER(bus)->iommu)
1922 return;
1923
1924 handle = PCI_CONTROLLER(bus)->acpi_handle;
1925 if (!handle)
1926 return;
1927
1928 /*
1929 * The IOC scope encloses PCI root bridges in the ACPI
1930 * namespace, so work our way out until we find an IOC we
1931 * claimed previously.
1932 */
1933 do {
1934 for (ioc = ioc_list; ioc; ioc = ioc->next)
1935 if (ioc->handle == handle) {
1936 PCI_CONTROLLER(bus)->iommu = ioc;
1937 return;
1938 }
1939
1940 status = acpi_get_parent(handle, &parent);
1941 handle = parent;
1942 } while (ACPI_SUCCESS(status));
1943
1944 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1945 }
1946
1947 #ifdef CONFIG_NUMA
1948 static void __init
1949 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1950 {
1951 unsigned int node;
1952 int pxm;
1953
1954 ioc->node = MAX_NUMNODES;
1955
1956 pxm = acpi_get_pxm(handle);
1957
1958 if (pxm < 0)
1959 return;
1960
1961 node = pxm_to_node(pxm);
1962
1963 if (node >= MAX_NUMNODES || !node_online(node))
1964 return;
1965
1966 ioc->node = node;
1967 return;
1968 }
1969 #else
1970 #define sba_map_ioc_to_node(ioc, handle)
1971 #endif
1972
1973 static int __init
1974 acpi_sba_ioc_add(struct acpi_device *device)
1975 {
1976 struct ioc *ioc;
1977 acpi_status status;
1978 u64 hpa, length;
1979 struct acpi_buffer buffer;
1980 struct acpi_device_info *dev_info;
1981
1982 status = hp_acpi_csr_space(device->handle, &hpa, &length);
1983 if (ACPI_FAILURE(status))
1984 return 1;
1985
1986 buffer.length = ACPI_ALLOCATE_LOCAL_BUFFER;
1987 status = acpi_get_object_info(device->handle, &buffer);
1988 if (ACPI_FAILURE(status))
1989 return 1;
1990 dev_info = buffer.pointer;
1991
1992 /*
1993 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
1994 * root bridges, and its CSR space includes the IOC function.
1995 */
1996 if (strncmp("HWP0001", dev_info->hardware_id.value, 7) == 0) {
1997 hpa += ZX1_IOC_OFFSET;
1998 /* zx1 based systems default to kernel page size iommu pages */
1999 if (!iovp_shift)
2000 iovp_shift = min(PAGE_SHIFT, 16);
2001 }
2002 kfree(dev_info);
2003
2004 /*
2005 * default anything not caught above or specified on cmdline to 4k
2006 * iommu page size
2007 */
2008 if (!iovp_shift)
2009 iovp_shift = 12;
2010
2011 ioc = ioc_init(hpa, device->handle);
2012 if (!ioc)
2013 return 1;
2014
2015 /* setup NUMA node association */
2016 sba_map_ioc_to_node(ioc, device->handle);
2017 return 0;
2018 }
2019
2020 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2021 {"HWP0001", 0},
2022 {"HWP0004", 0},
2023 {"", 0},
2024 };
2025 static struct acpi_driver acpi_sba_ioc_driver = {
2026 .name = "IOC IOMMU Driver",
2027 .ids = hp_ioc_iommu_device_ids,
2028 .ops = {
2029 .add = acpi_sba_ioc_add,
2030 },
2031 };
2032
2033 static int __init
2034 sba_init(void)
2035 {
2036 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2037 return 0;
2038
2039 #if defined(CONFIG_IA64_GENERIC) && defined(CONFIG_CRASH_DUMP) && \
2040 defined(CONFIG_PROC_FS)
2041 /* If we are booting a kdump kernel, the sba_iommu will
2042 * cause devices that were not shutdown properly to MCA
2043 * as soon as they are turned back on. Our only option for
2044 * a successful kdump kernel boot is to use the swiotlb.
2045 */
2046 if (elfcorehdr_addr < ELFCORE_ADDR_MAX) {
2047 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2048 panic("Unable to initialize software I/O TLB:"
2049 " Try machvec=dig boot option");
2050 machvec_init("dig");
2051 return 0;
2052 }
2053 #endif
2054
2055 acpi_bus_register_driver(&acpi_sba_ioc_driver);
2056 if (!ioc_list) {
2057 #ifdef CONFIG_IA64_GENERIC
2058 /*
2059 * If we didn't find something sba_iommu can claim, we
2060 * need to setup the swiotlb and switch to the dig machvec.
2061 */
2062 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2063 panic("Unable to find SBA IOMMU or initialize "
2064 "software I/O TLB: Try machvec=dig boot option");
2065 machvec_init("dig");
2066 #else
2067 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2068 #endif
2069 return 0;
2070 }
2071
2072 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2073 /*
2074 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2075 * buffer setup to support devices with smaller DMA masks than
2076 * sba_iommu can handle.
2077 */
2078 if (ia64_platform_is("hpzx1_swiotlb")) {
2079 extern void hwsw_init(void);
2080
2081 hwsw_init();
2082 }
2083 #endif
2084
2085 #ifdef CONFIG_PCI
2086 {
2087 struct pci_bus *b = NULL;
2088 while ((b = pci_find_next_bus(b)) != NULL)
2089 sba_connect_bus(b);
2090 }
2091 #endif
2092
2093 #ifdef CONFIG_PROC_FS
2094 ioc_proc_init();
2095 #endif
2096 return 0;
2097 }
2098
2099 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2100
2101 static int __init
2102 nosbagart(char *str)
2103 {
2104 reserve_sba_gart = 0;
2105 return 1;
2106 }
2107
2108 int
2109 sba_dma_supported (struct device *dev, u64 mask)
2110 {
2111 /* make sure it's at least 32bit capable */
2112 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2113 }
2114
2115 int
2116 sba_dma_mapping_error (dma_addr_t dma_addr)
2117 {
2118 return 0;
2119 }
2120
2121 __setup("nosbagart", nosbagart);
2122
2123 static int __init
2124 sba_page_override(char *str)
2125 {
2126 unsigned long page_size;
2127
2128 page_size = memparse(str, &str);
2129 switch (page_size) {
2130 case 4096:
2131 case 8192:
2132 case 16384:
2133 case 65536:
2134 iovp_shift = ffs(page_size) - 1;
2135 break;
2136 default:
2137 printk("%s: unknown/unsupported iommu page size %ld\n",
2138 __func__, page_size);
2139 }
2140
2141 return 1;
2142 }
2143
2144 __setup("sbapagesize=",sba_page_override);
2145
2146 EXPORT_SYMBOL(sba_dma_mapping_error);
2147 EXPORT_SYMBOL(sba_map_single);
2148 EXPORT_SYMBOL(sba_unmap_single);
2149 EXPORT_SYMBOL(sba_map_sg);
2150 EXPORT_SYMBOL(sba_unmap_sg);
2151 EXPORT_SYMBOL(sba_dma_supported);
2152 EXPORT_SYMBOL(sba_alloc_coherent);
2153 EXPORT_SYMBOL(sba_free_coherent);