]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/hp/common/sba_iommu.c
[IA64] constify function pointer tables
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / hp / common / sba_iommu.c
1 /*
2 ** IA64 System Bus Adapter (SBA) I/O MMU manager
3 **
4 ** (c) Copyright 2002-2005 Alex Williamson
5 ** (c) Copyright 2002-2003 Grant Grundler
6 ** (c) Copyright 2002-2005 Hewlett-Packard Company
7 **
8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 ** This program is free software; you can redistribute it and/or modify
12 ** it under the terms of the GNU General Public License as published by
13 ** the Free Software Foundation; either version 2 of the License, or
14 ** (at your option) any later version.
15 **
16 **
17 ** This module initializes the IOC (I/O Controller) found on HP
18 ** McKinley machines and their successors.
19 **
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/acpi.h>
34 #include <linux/efi.h>
35 #include <linux/nodemask.h>
36 #include <linux/bitops.h> /* hweight64() */
37 #include <linux/crash_dump.h>
38
39 #include <asm/delay.h> /* ia64_get_itc() */
40 #include <asm/io.h>
41 #include <asm/page.h> /* PAGE_OFFSET */
42 #include <asm/dma.h>
43 #include <asm/system.h> /* wmb() */
44
45 #include <asm/acpi-ext.h>
46
47 extern int swiotlb_late_init_with_default_size (size_t size);
48
49 #define PFX "IOC: "
50
51 /*
52 ** Enabling timing search of the pdir resource map. Output in /proc.
53 ** Disabled by default to optimize performance.
54 */
55 #undef PDIR_SEARCH_TIMING
56
57 /*
58 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If
59 ** not defined, all DMA will be 32bit and go through the TLB.
60 ** There's potentially a conflict in the bio merge code with us
61 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing
62 ** appears to give more performance than bio-level virtual merging, we'll
63 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to
64 ** completely restrict DMA to the IOMMU.
65 */
66 #define ALLOW_IOV_BYPASS
67
68 /*
69 ** This option specifically allows/disallows bypassing scatterlists with
70 ** multiple entries. Coalescing these entries can allow better DMA streaming
71 ** and in some cases shows better performance than entirely bypassing the
72 ** IOMMU. Performance increase on the order of 1-2% sequential output/input
73 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
74 */
75 #undef ALLOW_IOV_BYPASS_SG
76
77 /*
78 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
79 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should
80 ** disconnect on 4k boundaries and prevent such issues. If the device is
81 ** particularly aggressive, this option will keep the entire pdir valid such
82 ** that prefetching will hit a valid address. This could severely impact
83 ** error containment, and is therefore off by default. The page that is
84 ** used for spill-over is poisoned, so that should help debugging somewhat.
85 */
86 #undef FULL_VALID_PDIR
87
88 #define ENABLE_MARK_CLEAN
89
90 /*
91 ** The number of debug flags is a clue - this code is fragile. NOTE: since
92 ** tightening the use of res_lock the resource bitmap and actual pdir are no
93 ** longer guaranteed to stay in sync. The sanity checking code isn't going to
94 ** like that.
95 */
96 #undef DEBUG_SBA_INIT
97 #undef DEBUG_SBA_RUN
98 #undef DEBUG_SBA_RUN_SG
99 #undef DEBUG_SBA_RESOURCE
100 #undef ASSERT_PDIR_SANITY
101 #undef DEBUG_LARGE_SG_ENTRIES
102 #undef DEBUG_BYPASS
103
104 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
105 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
106 #endif
107
108 #define SBA_INLINE __inline__
109 /* #define SBA_INLINE */
110
111 #ifdef DEBUG_SBA_INIT
112 #define DBG_INIT(x...) printk(x)
113 #else
114 #define DBG_INIT(x...)
115 #endif
116
117 #ifdef DEBUG_SBA_RUN
118 #define DBG_RUN(x...) printk(x)
119 #else
120 #define DBG_RUN(x...)
121 #endif
122
123 #ifdef DEBUG_SBA_RUN_SG
124 #define DBG_RUN_SG(x...) printk(x)
125 #else
126 #define DBG_RUN_SG(x...)
127 #endif
128
129
130 #ifdef DEBUG_SBA_RESOURCE
131 #define DBG_RES(x...) printk(x)
132 #else
133 #define DBG_RES(x...)
134 #endif
135
136 #ifdef DEBUG_BYPASS
137 #define DBG_BYPASS(x...) printk(x)
138 #else
139 #define DBG_BYPASS(x...)
140 #endif
141
142 #ifdef ASSERT_PDIR_SANITY
143 #define ASSERT(expr) \
144 if(!(expr)) { \
145 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
146 panic(#expr); \
147 }
148 #else
149 #define ASSERT(expr)
150 #endif
151
152 /*
153 ** The number of pdir entries to "free" before issuing
154 ** a read to PCOM register to flush out PCOM writes.
155 ** Interacts with allocation granularity (ie 4 or 8 entries
156 ** allocated and free'd/purged at a time might make this
157 ** less interesting).
158 */
159 #define DELAYED_RESOURCE_CNT 64
160
161 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec
162
163 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
167 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
168
169 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */
170
171 #define IOC_FUNC_ID 0x000
172 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */
173 #define IOC_IBASE 0x300 /* IO TLB */
174 #define IOC_IMASK 0x308
175 #define IOC_PCOM 0x310
176 #define IOC_TCNFG 0x318
177 #define IOC_PDIR_BASE 0x320
178
179 #define IOC_ROPE0_CFG 0x500
180 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */
181
182
183 /* AGP GART driver looks for this */
184 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
185
186 /*
187 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
188 **
189 ** Some IOCs (sx1000) can run at the above pages sizes, but are
190 ** really only supported using the IOC at a 4k page size.
191 **
192 ** iovp_size could only be greater than PAGE_SIZE if we are
193 ** confident the drivers really only touch the next physical
194 ** page iff that driver instance owns it.
195 */
196 static unsigned long iovp_size;
197 static unsigned long iovp_shift;
198 static unsigned long iovp_mask;
199
200 struct ioc {
201 void __iomem *ioc_hpa; /* I/O MMU base address */
202 char *res_map; /* resource map, bit == pdir entry */
203 u64 *pdir_base; /* physical base address */
204 unsigned long ibase; /* pdir IOV Space base */
205 unsigned long imask; /* pdir IOV Space mask */
206
207 unsigned long *res_hint; /* next avail IOVP - circular search */
208 unsigned long dma_mask;
209 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */
210 /* clearing pdir to prevent races with allocations. */
211 unsigned int res_bitshift; /* from the RIGHT! */
212 unsigned int res_size; /* size of resource map in bytes */
213 #ifdef CONFIG_NUMA
214 unsigned int node; /* node where this IOC lives */
215 #endif
216 #if DELAYED_RESOURCE_CNT > 0
217 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */
218 /* than res_lock for bigger systems. */
219 int saved_cnt;
220 struct sba_dma_pair {
221 dma_addr_t iova;
222 size_t size;
223 } saved[DELAYED_RESOURCE_CNT];
224 #endif
225
226 #ifdef PDIR_SEARCH_TIMING
227 #define SBA_SEARCH_SAMPLE 0x100
228 unsigned long avg_search[SBA_SEARCH_SAMPLE];
229 unsigned long avg_idx; /* current index into avg_search */
230 #endif
231
232 /* Stuff we don't need in performance path */
233 struct ioc *next; /* list of IOC's in system */
234 acpi_handle handle; /* for multiple IOC's */
235 const char *name;
236 unsigned int func_id;
237 unsigned int rev; /* HW revision of chip */
238 u32 iov_size;
239 unsigned int pdir_size; /* in bytes, determined by IOV Space size */
240 struct pci_dev *sac_only_dev;
241 };
242
243 static struct ioc *ioc_list;
244 static int reserve_sba_gart = 1;
245
246 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
247 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
248
249 #define sba_sg_address(sg) sg_virt((sg))
250
251 #ifdef FULL_VALID_PDIR
252 static u64 prefetch_spill_page;
253 #endif
254
255 #ifdef CONFIG_PCI
256 # define GET_IOC(dev) (((dev)->bus == &pci_bus_type) \
257 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
258 #else
259 # define GET_IOC(dev) NULL
260 #endif
261
262 /*
263 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
264 ** (or rather not merge) DMAs into manageable chunks.
265 ** On parisc, this is more of the software/tuning constraint
266 ** rather than the HW. I/O MMU allocation algorithms can be
267 ** faster with smaller sizes (to some degree).
268 */
269 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size)
270
271 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
272
273 /************************************
274 ** SBA register read and write support
275 **
276 ** BE WARNED: register writes are posted.
277 ** (ie follow writes which must reach HW with a read)
278 **
279 */
280 #define READ_REG(addr) __raw_readq(addr)
281 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
282
283 #ifdef DEBUG_SBA_INIT
284
285 /**
286 * sba_dump_tlb - debugging only - print IOMMU operating parameters
287 * @hpa: base address of the IOMMU
288 *
289 * Print the size/location of the IO MMU PDIR.
290 */
291 static void
292 sba_dump_tlb(char *hpa)
293 {
294 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
295 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE));
296 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK));
297 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG));
298 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
299 DBG_INIT("\n");
300 }
301 #endif
302
303
304 #ifdef ASSERT_PDIR_SANITY
305
306 /**
307 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
308 * @ioc: IO MMU structure which owns the pdir we are interested in.
309 * @msg: text to print ont the output line.
310 * @pide: pdir index.
311 *
312 * Print one entry of the IO MMU PDIR in human readable form.
313 */
314 static void
315 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
316 {
317 /* start printing from lowest pde in rval */
318 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)];
319 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
320 uint rcnt;
321
322 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
323 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
324
325 rcnt = 0;
326 while (rcnt < BITS_PER_LONG) {
327 printk(KERN_DEBUG "%s %2d %p %016Lx\n",
328 (rcnt == (pide & (BITS_PER_LONG - 1)))
329 ? " -->" : " ",
330 rcnt, ptr, (unsigned long long) *ptr );
331 rcnt++;
332 ptr++;
333 }
334 printk(KERN_DEBUG "%s", msg);
335 }
336
337
338 /**
339 * sba_check_pdir - debugging only - consistency checker
340 * @ioc: IO MMU structure which owns the pdir we are interested in.
341 * @msg: text to print ont the output line.
342 *
343 * Verify the resource map and pdir state is consistent
344 */
345 static int
346 sba_check_pdir(struct ioc *ioc, char *msg)
347 {
348 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
349 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */
350 u64 *pptr = ioc->pdir_base; /* pdir ptr */
351 uint pide = 0;
352
353 while (rptr < rptr_end) {
354 u64 rval;
355 int rcnt; /* number of bits we might check */
356
357 rval = *rptr;
358 rcnt = 64;
359
360 while (rcnt) {
361 /* Get last byte and highest bit from that */
362 u32 pde = ((u32)((*pptr >> (63)) & 0x1));
363 if ((rval & 0x1) ^ pde)
364 {
365 /*
366 ** BUMMER! -- res_map != pdir --
367 ** Dump rval and matching pdir entries
368 */
369 sba_dump_pdir_entry(ioc, msg, pide);
370 return(1);
371 }
372 rcnt--;
373 rval >>= 1; /* try the next bit */
374 pptr++;
375 pide++;
376 }
377 rptr++; /* look at next word of res_map */
378 }
379 /* It'd be nice if we always got here :^) */
380 return 0;
381 }
382
383
384 /**
385 * sba_dump_sg - debugging only - print Scatter-Gather list
386 * @ioc: IO MMU structure which owns the pdir we are interested in.
387 * @startsg: head of the SG list
388 * @nents: number of entries in SG list
389 *
390 * print the SG list so we can verify it's correct by hand.
391 */
392 static void
393 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
394 {
395 while (nents-- > 0) {
396 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
397 startsg->dma_address, startsg->dma_length,
398 sba_sg_address(startsg));
399 startsg = sg_next(startsg);
400 }
401 }
402
403 static void
404 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
405 {
406 struct scatterlist *the_sg = startsg;
407 int the_nents = nents;
408
409 while (the_nents-- > 0) {
410 if (sba_sg_address(the_sg) == 0x0UL)
411 sba_dump_sg(NULL, startsg, nents);
412 the_sg = sg_next(the_sg);
413 }
414 }
415
416 #endif /* ASSERT_PDIR_SANITY */
417
418
419
420
421 /**************************************************************
422 *
423 * I/O Pdir Resource Management
424 *
425 * Bits set in the resource map are in use.
426 * Each bit can represent a number of pages.
427 * LSbs represent lower addresses (IOVA's).
428 *
429 ***************************************************************/
430 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
431
432 /* Convert from IOVP to IOVA and vice versa. */
433 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
434 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
435
436 #define PDIR_ENTRY_SIZE sizeof(u64)
437
438 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift)
439
440 #define RESMAP_MASK(n) ~(~0UL << (n))
441 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
442
443
444 /**
445 * For most cases the normal get_order is sufficient, however it limits us
446 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
447 * It only incurs about 1 clock cycle to use this one with the static variable
448 * and makes the code more intuitive.
449 */
450 static SBA_INLINE int
451 get_iovp_order (unsigned long size)
452 {
453 long double d = size - 1;
454 long order;
455
456 order = ia64_getf_exp(d);
457 order = order - iovp_shift - 0xffff + 1;
458 if (order < 0)
459 order = 0;
460 return order;
461 }
462
463 /**
464 * sba_search_bitmap - find free space in IO PDIR resource bitmap
465 * @ioc: IO MMU structure which owns the pdir we are interested in.
466 * @bits_wanted: number of entries we need.
467 * @use_hint: use res_hint to indicate where to start looking
468 *
469 * Find consecutive free bits in resource bitmap.
470 * Each bit represents one entry in the IO Pdir.
471 * Cool perf optimization: search for log2(size) bits at a time.
472 */
473 static SBA_INLINE unsigned long
474 sba_search_bitmap(struct ioc *ioc, unsigned long bits_wanted, int use_hint)
475 {
476 unsigned long *res_ptr;
477 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
478 unsigned long flags, pide = ~0UL;
479
480 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
481 ASSERT(res_ptr < res_end);
482
483 spin_lock_irqsave(&ioc->res_lock, flags);
484
485 /* Allow caller to force a search through the entire resource space */
486 if (likely(use_hint)) {
487 res_ptr = ioc->res_hint;
488 } else {
489 res_ptr = (ulong *)ioc->res_map;
490 ioc->res_bitshift = 0;
491 }
492
493 /*
494 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts
495 * if a TLB entry is purged while in use. sba_mark_invalid()
496 * purges IOTLB entries in power-of-two sizes, so we also
497 * allocate IOVA space in power-of-two sizes.
498 */
499 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
500
501 if (likely(bits_wanted == 1)) {
502 unsigned int bitshiftcnt;
503 for(; res_ptr < res_end ; res_ptr++) {
504 if (likely(*res_ptr != ~0UL)) {
505 bitshiftcnt = ffz(*res_ptr);
506 *res_ptr |= (1UL << bitshiftcnt);
507 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
508 pide <<= 3; /* convert to bit address */
509 pide += bitshiftcnt;
510 ioc->res_bitshift = bitshiftcnt + bits_wanted;
511 goto found_it;
512 }
513 }
514 goto not_found;
515
516 }
517
518 if (likely(bits_wanted <= BITS_PER_LONG/2)) {
519 /*
520 ** Search the resource bit map on well-aligned values.
521 ** "o" is the alignment.
522 ** We need the alignment to invalidate I/O TLB using
523 ** SBA HW features in the unmap path.
524 */
525 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
526 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
527 unsigned long mask, base_mask;
528
529 base_mask = RESMAP_MASK(bits_wanted);
530 mask = base_mask << bitshiftcnt;
531
532 DBG_RES("%s() o %ld %p", __FUNCTION__, o, res_ptr);
533 for(; res_ptr < res_end ; res_ptr++)
534 {
535 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
536 ASSERT(0 != mask);
537 for (; mask ; mask <<= o, bitshiftcnt += o) {
538 if(0 == ((*res_ptr) & mask)) {
539 *res_ptr |= mask; /* mark resources busy! */
540 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
541 pide <<= 3; /* convert to bit address */
542 pide += bitshiftcnt;
543 ioc->res_bitshift = bitshiftcnt + bits_wanted;
544 goto found_it;
545 }
546 }
547
548 bitshiftcnt = 0;
549 mask = base_mask;
550
551 }
552
553 } else {
554 int qwords, bits, i;
555 unsigned long *end;
556
557 qwords = bits_wanted >> 6; /* /64 */
558 bits = bits_wanted - (qwords * BITS_PER_LONG);
559
560 end = res_end - qwords;
561
562 for (; res_ptr < end; res_ptr++) {
563 for (i = 0 ; i < qwords ; i++) {
564 if (res_ptr[i] != 0)
565 goto next_ptr;
566 }
567 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
568 continue;
569
570 /* Found it, mark it */
571 for (i = 0 ; i < qwords ; i++)
572 res_ptr[i] = ~0UL;
573 res_ptr[i] |= RESMAP_MASK(bits);
574
575 pide = ((unsigned long)res_ptr - (unsigned long)ioc->res_map);
576 pide <<= 3; /* convert to bit address */
577 res_ptr += qwords;
578 ioc->res_bitshift = bits;
579 goto found_it;
580 next_ptr:
581 ;
582 }
583 }
584
585 not_found:
586 prefetch(ioc->res_map);
587 ioc->res_hint = (unsigned long *) ioc->res_map;
588 ioc->res_bitshift = 0;
589 spin_unlock_irqrestore(&ioc->res_lock, flags);
590 return (pide);
591
592 found_it:
593 ioc->res_hint = res_ptr;
594 spin_unlock_irqrestore(&ioc->res_lock, flags);
595 return (pide);
596 }
597
598
599 /**
600 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
601 * @ioc: IO MMU structure which owns the pdir we are interested in.
602 * @size: number of bytes to create a mapping for
603 *
604 * Given a size, find consecutive unmarked and then mark those bits in the
605 * resource bit map.
606 */
607 static int
608 sba_alloc_range(struct ioc *ioc, size_t size)
609 {
610 unsigned int pages_needed = size >> iovp_shift;
611 #ifdef PDIR_SEARCH_TIMING
612 unsigned long itc_start;
613 #endif
614 unsigned long pide;
615
616 ASSERT(pages_needed);
617 ASSERT(0 == (size & ~iovp_mask));
618
619 #ifdef PDIR_SEARCH_TIMING
620 itc_start = ia64_get_itc();
621 #endif
622 /*
623 ** "seek and ye shall find"...praying never hurts either...
624 */
625 pide = sba_search_bitmap(ioc, pages_needed, 1);
626 if (unlikely(pide >= (ioc->res_size << 3))) {
627 pide = sba_search_bitmap(ioc, pages_needed, 0);
628 if (unlikely(pide >= (ioc->res_size << 3))) {
629 #if DELAYED_RESOURCE_CNT > 0
630 unsigned long flags;
631
632 /*
633 ** With delayed resource freeing, we can give this one more shot. We're
634 ** getting close to being in trouble here, so do what we can to make this
635 ** one count.
636 */
637 spin_lock_irqsave(&ioc->saved_lock, flags);
638 if (ioc->saved_cnt > 0) {
639 struct sba_dma_pair *d;
640 int cnt = ioc->saved_cnt;
641
642 d = &(ioc->saved[ioc->saved_cnt - 1]);
643
644 spin_lock(&ioc->res_lock);
645 while (cnt--) {
646 sba_mark_invalid(ioc, d->iova, d->size);
647 sba_free_range(ioc, d->iova, d->size);
648 d--;
649 }
650 ioc->saved_cnt = 0;
651 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
652 spin_unlock(&ioc->res_lock);
653 }
654 spin_unlock_irqrestore(&ioc->saved_lock, flags);
655
656 pide = sba_search_bitmap(ioc, pages_needed, 0);
657 if (unlikely(pide >= (ioc->res_size << 3)))
658 panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n",
659 ioc->ioc_hpa);
660 #else
661 panic(__FILE__ ": I/O MMU @ %p is out of mapping resources\n",
662 ioc->ioc_hpa);
663 #endif
664 }
665 }
666
667 #ifdef PDIR_SEARCH_TIMING
668 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
669 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
670 #endif
671
672 prefetchw(&(ioc->pdir_base[pide]));
673
674 #ifdef ASSERT_PDIR_SANITY
675 /* verify the first enable bit is clear */
676 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
677 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
678 }
679 #endif
680
681 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
682 __FUNCTION__, size, pages_needed, pide,
683 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
684 ioc->res_bitshift );
685
686 return (pide);
687 }
688
689
690 /**
691 * sba_free_range - unmark bits in IO PDIR resource bitmap
692 * @ioc: IO MMU structure which owns the pdir we are interested in.
693 * @iova: IO virtual address which was previously allocated.
694 * @size: number of bytes to create a mapping for
695 *
696 * clear bits in the ioc's resource map
697 */
698 static SBA_INLINE void
699 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
700 {
701 unsigned long iovp = SBA_IOVP(ioc, iova);
702 unsigned int pide = PDIR_INDEX(iovp);
703 unsigned int ridx = pide >> 3; /* convert bit to byte address */
704 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
705 int bits_not_wanted = size >> iovp_shift;
706 unsigned long m;
707
708 /* Round up to power-of-two size: see AR2305 note above */
709 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
710 for (; bits_not_wanted > 0 ; res_ptr++) {
711
712 if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
713
714 /* these mappings start 64bit aligned */
715 *res_ptr = 0UL;
716 bits_not_wanted -= BITS_PER_LONG;
717 pide += BITS_PER_LONG;
718
719 } else {
720
721 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
722 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
723 bits_not_wanted = 0;
724
725 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __FUNCTION__, (uint) iova, size,
726 bits_not_wanted, m, pide, res_ptr, *res_ptr);
727
728 ASSERT(m != 0);
729 ASSERT(bits_not_wanted);
730 ASSERT((*res_ptr & m) == m); /* verify same bits are set */
731 *res_ptr &= ~m;
732 }
733 }
734 }
735
736
737 /**************************************************************
738 *
739 * "Dynamic DMA Mapping" support (aka "Coherent I/O")
740 *
741 ***************************************************************/
742
743 /**
744 * sba_io_pdir_entry - fill in one IO PDIR entry
745 * @pdir_ptr: pointer to IO PDIR entry
746 * @vba: Virtual CPU address of buffer to map
747 *
748 * SBA Mapping Routine
749 *
750 * Given a virtual address (vba, arg1) sba_io_pdir_entry()
751 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
752 * Each IO Pdir entry consists of 8 bytes as shown below
753 * (LSB == bit 0):
754 *
755 * 63 40 11 7 0
756 * +-+---------------------+----------------------------------+----+--------+
757 * |V| U | PPN[39:12] | U | FF |
758 * +-+---------------------+----------------------------------+----+--------+
759 *
760 * V == Valid Bit
761 * U == Unused
762 * PPN == Physical Page Number
763 *
764 * The physical address fields are filled with the results of virt_to_phys()
765 * on the vba.
766 */
767
768 #if 1
769 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \
770 | 0x8000000000000000ULL)
771 #else
772 void SBA_INLINE
773 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
774 {
775 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
776 }
777 #endif
778
779 #ifdef ENABLE_MARK_CLEAN
780 /**
781 * Since DMA is i-cache coherent, any (complete) pages that were written via
782 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
783 * flush them when they get mapped into an executable vm-area.
784 */
785 static void
786 mark_clean (void *addr, size_t size)
787 {
788 unsigned long pg_addr, end;
789
790 pg_addr = PAGE_ALIGN((unsigned long) addr);
791 end = (unsigned long) addr + size;
792 while (pg_addr + PAGE_SIZE <= end) {
793 struct page *page = virt_to_page((void *)pg_addr);
794 set_bit(PG_arch_1, &page->flags);
795 pg_addr += PAGE_SIZE;
796 }
797 }
798 #endif
799
800 /**
801 * sba_mark_invalid - invalidate one or more IO PDIR entries
802 * @ioc: IO MMU structure which owns the pdir we are interested in.
803 * @iova: IO Virtual Address mapped earlier
804 * @byte_cnt: number of bytes this mapping covers.
805 *
806 * Marking the IO PDIR entry(ies) as Invalid and invalidate
807 * corresponding IO TLB entry. The PCOM (Purge Command Register)
808 * is to purge stale entries in the IO TLB when unmapping entries.
809 *
810 * The PCOM register supports purging of multiple pages, with a minium
811 * of 1 page and a maximum of 2GB. Hardware requires the address be
812 * aligned to the size of the range being purged. The size of the range
813 * must be a power of 2. The "Cool perf optimization" in the
814 * allocation routine helps keep that true.
815 */
816 static SBA_INLINE void
817 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
818 {
819 u32 iovp = (u32) SBA_IOVP(ioc,iova);
820
821 int off = PDIR_INDEX(iovp);
822
823 /* Must be non-zero and rounded up */
824 ASSERT(byte_cnt > 0);
825 ASSERT(0 == (byte_cnt & ~iovp_mask));
826
827 #ifdef ASSERT_PDIR_SANITY
828 /* Assert first pdir entry is set */
829 if (!(ioc->pdir_base[off] >> 60)) {
830 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
831 }
832 #endif
833
834 if (byte_cnt <= iovp_size)
835 {
836 ASSERT(off < ioc->pdir_size);
837
838 iovp |= iovp_shift; /* set "size" field for PCOM */
839
840 #ifndef FULL_VALID_PDIR
841 /*
842 ** clear I/O PDIR entry "valid" bit
843 ** Do NOT clear the rest - save it for debugging.
844 ** We should only clear bits that have previously
845 ** been enabled.
846 */
847 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
848 #else
849 /*
850 ** If we want to maintain the PDIR as valid, put in
851 ** the spill page so devices prefetching won't
852 ** cause a hard fail.
853 */
854 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
855 #endif
856 } else {
857 u32 t = get_iovp_order(byte_cnt) + iovp_shift;
858
859 iovp |= t;
860 ASSERT(t <= 31); /* 2GB! Max value of "size" field */
861
862 do {
863 /* verify this pdir entry is enabled */
864 ASSERT(ioc->pdir_base[off] >> 63);
865 #ifndef FULL_VALID_PDIR
866 /* clear I/O Pdir entry "valid" bit first */
867 ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
868 #else
869 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
870 #endif
871 off++;
872 byte_cnt -= iovp_size;
873 } while (byte_cnt > 0);
874 }
875
876 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
877 }
878
879 /**
880 * sba_map_single - map one buffer and return IOVA for DMA
881 * @dev: instance of PCI owned by the driver that's asking.
882 * @addr: driver buffer to map.
883 * @size: number of bytes to map in driver buffer.
884 * @dir: R/W or both.
885 *
886 * See Documentation/DMA-mapping.txt
887 */
888 dma_addr_t
889 sba_map_single(struct device *dev, void *addr, size_t size, int dir)
890 {
891 struct ioc *ioc;
892 dma_addr_t iovp;
893 dma_addr_t offset;
894 u64 *pdir_start;
895 int pide;
896 #ifdef ASSERT_PDIR_SANITY
897 unsigned long flags;
898 #endif
899 #ifdef ALLOW_IOV_BYPASS
900 unsigned long pci_addr = virt_to_phys(addr);
901 #endif
902
903 #ifdef ALLOW_IOV_BYPASS
904 ASSERT(to_pci_dev(dev)->dma_mask);
905 /*
906 ** Check if the PCI device can DMA to ptr... if so, just return ptr
907 */
908 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
909 /*
910 ** Device is bit capable of DMA'ing to the buffer...
911 ** just return the PCI address of ptr
912 */
913 DBG_BYPASS("sba_map_single() bypass mask/addr: 0x%lx/0x%lx\n",
914 to_pci_dev(dev)->dma_mask, pci_addr);
915 return pci_addr;
916 }
917 #endif
918 ioc = GET_IOC(dev);
919 ASSERT(ioc);
920
921 prefetch(ioc->res_hint);
922
923 ASSERT(size > 0);
924 ASSERT(size <= DMA_CHUNK_SIZE);
925
926 /* save offset bits */
927 offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
928
929 /* round up to nearest iovp_size */
930 size = (size + offset + ~iovp_mask) & iovp_mask;
931
932 #ifdef ASSERT_PDIR_SANITY
933 spin_lock_irqsave(&ioc->res_lock, flags);
934 if (sba_check_pdir(ioc,"Check before sba_map_single()"))
935 panic("Sanity check failed");
936 spin_unlock_irqrestore(&ioc->res_lock, flags);
937 #endif
938
939 pide = sba_alloc_range(ioc, size);
940
941 iovp = (dma_addr_t) pide << iovp_shift;
942
943 DBG_RUN("%s() 0x%p -> 0x%lx\n",
944 __FUNCTION__, addr, (long) iovp | offset);
945
946 pdir_start = &(ioc->pdir_base[pide]);
947
948 while (size > 0) {
949 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
950 sba_io_pdir_entry(pdir_start, (unsigned long) addr);
951
952 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start);
953
954 addr += iovp_size;
955 size -= iovp_size;
956 pdir_start++;
957 }
958 /* force pdir update */
959 wmb();
960
961 /* form complete address */
962 #ifdef ASSERT_PDIR_SANITY
963 spin_lock_irqsave(&ioc->res_lock, flags);
964 sba_check_pdir(ioc,"Check after sba_map_single()");
965 spin_unlock_irqrestore(&ioc->res_lock, flags);
966 #endif
967 return SBA_IOVA(ioc, iovp, offset);
968 }
969
970 #ifdef ENABLE_MARK_CLEAN
971 static SBA_INLINE void
972 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
973 {
974 u32 iovp = (u32) SBA_IOVP(ioc,iova);
975 int off = PDIR_INDEX(iovp);
976 void *addr;
977
978 if (size <= iovp_size) {
979 addr = phys_to_virt(ioc->pdir_base[off] &
980 ~0xE000000000000FFFULL);
981 mark_clean(addr, size);
982 } else {
983 do {
984 addr = phys_to_virt(ioc->pdir_base[off] &
985 ~0xE000000000000FFFULL);
986 mark_clean(addr, min(size, iovp_size));
987 off++;
988 size -= iovp_size;
989 } while (size > 0);
990 }
991 }
992 #endif
993
994 /**
995 * sba_unmap_single - unmap one IOVA and free resources
996 * @dev: instance of PCI owned by the driver that's asking.
997 * @iova: IOVA of driver buffer previously mapped.
998 * @size: number of bytes mapped in driver buffer.
999 * @dir: R/W or both.
1000 *
1001 * See Documentation/DMA-mapping.txt
1002 */
1003 void sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size, int dir)
1004 {
1005 struct ioc *ioc;
1006 #if DELAYED_RESOURCE_CNT > 0
1007 struct sba_dma_pair *d;
1008 #endif
1009 unsigned long flags;
1010 dma_addr_t offset;
1011
1012 ioc = GET_IOC(dev);
1013 ASSERT(ioc);
1014
1015 #ifdef ALLOW_IOV_BYPASS
1016 if (likely((iova & ioc->imask) != ioc->ibase)) {
1017 /*
1018 ** Address does not fall w/in IOVA, must be bypassing
1019 */
1020 DBG_BYPASS("sba_unmap_single() bypass addr: 0x%lx\n", iova);
1021
1022 #ifdef ENABLE_MARK_CLEAN
1023 if (dir == DMA_FROM_DEVICE) {
1024 mark_clean(phys_to_virt(iova), size);
1025 }
1026 #endif
1027 return;
1028 }
1029 #endif
1030 offset = iova & ~iovp_mask;
1031
1032 DBG_RUN("%s() iovp 0x%lx/%x\n",
1033 __FUNCTION__, (long) iova, size);
1034
1035 iova ^= offset; /* clear offset bits */
1036 size += offset;
1037 size = ROUNDUP(size, iovp_size);
1038
1039 #ifdef ENABLE_MARK_CLEAN
1040 if (dir == DMA_FROM_DEVICE)
1041 sba_mark_clean(ioc, iova, size);
1042 #endif
1043
1044 #if DELAYED_RESOURCE_CNT > 0
1045 spin_lock_irqsave(&ioc->saved_lock, flags);
1046 d = &(ioc->saved[ioc->saved_cnt]);
1047 d->iova = iova;
1048 d->size = size;
1049 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1050 int cnt = ioc->saved_cnt;
1051 spin_lock(&ioc->res_lock);
1052 while (cnt--) {
1053 sba_mark_invalid(ioc, d->iova, d->size);
1054 sba_free_range(ioc, d->iova, d->size);
1055 d--;
1056 }
1057 ioc->saved_cnt = 0;
1058 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1059 spin_unlock(&ioc->res_lock);
1060 }
1061 spin_unlock_irqrestore(&ioc->saved_lock, flags);
1062 #else /* DELAYED_RESOURCE_CNT == 0 */
1063 spin_lock_irqsave(&ioc->res_lock, flags);
1064 sba_mark_invalid(ioc, iova, size);
1065 sba_free_range(ioc, iova, size);
1066 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
1067 spin_unlock_irqrestore(&ioc->res_lock, flags);
1068 #endif /* DELAYED_RESOURCE_CNT == 0 */
1069 }
1070
1071
1072 /**
1073 * sba_alloc_coherent - allocate/map shared mem for DMA
1074 * @dev: instance of PCI owned by the driver that's asking.
1075 * @size: number of bytes mapped in driver buffer.
1076 * @dma_handle: IOVA of new buffer.
1077 *
1078 * See Documentation/DMA-mapping.txt
1079 */
1080 void *
1081 sba_alloc_coherent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags)
1082 {
1083 struct ioc *ioc;
1084 void *addr;
1085
1086 ioc = GET_IOC(dev);
1087 ASSERT(ioc);
1088
1089 #ifdef CONFIG_NUMA
1090 {
1091 struct page *page;
1092 page = alloc_pages_node(ioc->node == MAX_NUMNODES ?
1093 numa_node_id() : ioc->node, flags,
1094 get_order(size));
1095
1096 if (unlikely(!page))
1097 return NULL;
1098
1099 addr = page_address(page);
1100 }
1101 #else
1102 addr = (void *) __get_free_pages(flags, get_order(size));
1103 #endif
1104 if (unlikely(!addr))
1105 return NULL;
1106
1107 memset(addr, 0, size);
1108 *dma_handle = virt_to_phys(addr);
1109
1110 #ifdef ALLOW_IOV_BYPASS
1111 ASSERT(dev->coherent_dma_mask);
1112 /*
1113 ** Check if the PCI device can DMA to ptr... if so, just return ptr
1114 */
1115 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1116 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1117 dev->coherent_dma_mask, *dma_handle);
1118
1119 return addr;
1120 }
1121 #endif
1122
1123 /*
1124 * If device can't bypass or bypass is disabled, pass the 32bit fake
1125 * device to map single to get an iova mapping.
1126 */
1127 *dma_handle = sba_map_single(&ioc->sac_only_dev->dev, addr, size, 0);
1128
1129 return addr;
1130 }
1131
1132
1133 /**
1134 * sba_free_coherent - free/unmap shared mem for DMA
1135 * @dev: instance of PCI owned by the driver that's asking.
1136 * @size: number of bytes mapped in driver buffer.
1137 * @vaddr: virtual address IOVA of "consistent" buffer.
1138 * @dma_handler: IO virtual address of "consistent" buffer.
1139 *
1140 * See Documentation/DMA-mapping.txt
1141 */
1142 void sba_free_coherent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
1143 {
1144 sba_unmap_single(dev, dma_handle, size, 0);
1145 free_pages((unsigned long) vaddr, get_order(size));
1146 }
1147
1148
1149 /*
1150 ** Since 0 is a valid pdir_base index value, can't use that
1151 ** to determine if a value is valid or not. Use a flag to indicate
1152 ** the SG list entry contains a valid pdir index.
1153 */
1154 #define PIDE_FLAG 0x1UL
1155
1156 #ifdef DEBUG_LARGE_SG_ENTRIES
1157 int dump_run_sg = 0;
1158 #endif
1159
1160
1161 /**
1162 * sba_fill_pdir - write allocated SG entries into IO PDIR
1163 * @ioc: IO MMU structure which owns the pdir we are interested in.
1164 * @startsg: list of IOVA/size pairs
1165 * @nents: number of entries in startsg list
1166 *
1167 * Take preprocessed SG list and write corresponding entries
1168 * in the IO PDIR.
1169 */
1170
1171 static SBA_INLINE int
1172 sba_fill_pdir(
1173 struct ioc *ioc,
1174 struct scatterlist *startsg,
1175 int nents)
1176 {
1177 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */
1178 int n_mappings = 0;
1179 u64 *pdirp = NULL;
1180 unsigned long dma_offset = 0;
1181
1182 while (nents-- > 0) {
1183 int cnt = startsg->dma_length;
1184 startsg->dma_length = 0;
1185
1186 #ifdef DEBUG_LARGE_SG_ENTRIES
1187 if (dump_run_sg)
1188 printk(" %2d : %08lx/%05x %p\n",
1189 nents, startsg->dma_address, cnt,
1190 sba_sg_address(startsg));
1191 #else
1192 DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1193 nents, startsg->dma_address, cnt,
1194 sba_sg_address(startsg));
1195 #endif
1196 /*
1197 ** Look for the start of a new DMA stream
1198 */
1199 if (startsg->dma_address & PIDE_FLAG) {
1200 u32 pide = startsg->dma_address & ~PIDE_FLAG;
1201 dma_offset = (unsigned long) pide & ~iovp_mask;
1202 startsg->dma_address = 0;
1203 if (n_mappings)
1204 dma_sg = sg_next(dma_sg);
1205 dma_sg->dma_address = pide | ioc->ibase;
1206 pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1207 n_mappings++;
1208 }
1209
1210 /*
1211 ** Look for a VCONTIG chunk
1212 */
1213 if (cnt) {
1214 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1215 ASSERT(pdirp);
1216
1217 /* Since multiple Vcontig blocks could make up
1218 ** one DMA stream, *add* cnt to dma_len.
1219 */
1220 dma_sg->dma_length += cnt;
1221 cnt += dma_offset;
1222 dma_offset=0; /* only want offset on first chunk */
1223 cnt = ROUNDUP(cnt, iovp_size);
1224 do {
1225 sba_io_pdir_entry(pdirp, vaddr);
1226 vaddr += iovp_size;
1227 cnt -= iovp_size;
1228 pdirp++;
1229 } while (cnt > 0);
1230 }
1231 startsg = sg_next(startsg);
1232 }
1233 /* force pdir update */
1234 wmb();
1235
1236 #ifdef DEBUG_LARGE_SG_ENTRIES
1237 dump_run_sg = 0;
1238 #endif
1239 return(n_mappings);
1240 }
1241
1242
1243 /*
1244 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1245 ** "start of next" are both on an IOV page boundary.
1246 **
1247 ** (shift left is a quick trick to mask off upper bits)
1248 */
1249 #define DMA_CONTIG(__X, __Y) \
1250 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1251
1252
1253 /**
1254 * sba_coalesce_chunks - preprocess the SG list
1255 * @ioc: IO MMU structure which owns the pdir we are interested in.
1256 * @startsg: list of IOVA/size pairs
1257 * @nents: number of entries in startsg list
1258 *
1259 * First pass is to walk the SG list and determine where the breaks are
1260 * in the DMA stream. Allocates PDIR entries but does not fill them.
1261 * Returns the number of DMA chunks.
1262 *
1263 * Doing the fill separate from the coalescing/allocation keeps the
1264 * code simpler. Future enhancement could make one pass through
1265 * the sglist do both.
1266 */
1267 static SBA_INLINE int
1268 sba_coalesce_chunks( struct ioc *ioc,
1269 struct scatterlist *startsg,
1270 int nents)
1271 {
1272 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */
1273 unsigned long vcontig_len; /* len of VCONTIG chunk */
1274 unsigned long vcontig_end;
1275 struct scatterlist *dma_sg; /* next DMA stream head */
1276 unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1277 int n_mappings = 0;
1278
1279 while (nents > 0) {
1280 unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1281
1282 /*
1283 ** Prepare for first/next DMA stream
1284 */
1285 dma_sg = vcontig_sg = startsg;
1286 dma_len = vcontig_len = vcontig_end = startsg->length;
1287 vcontig_end += vaddr;
1288 dma_offset = vaddr & ~iovp_mask;
1289
1290 /* PARANOID: clear entries */
1291 startsg->dma_address = startsg->dma_length = 0;
1292
1293 /*
1294 ** This loop terminates one iteration "early" since
1295 ** it's always looking one "ahead".
1296 */
1297 while (--nents > 0) {
1298 unsigned long vaddr; /* tmp */
1299
1300 startsg = sg_next(startsg);
1301
1302 /* PARANOID */
1303 startsg->dma_address = startsg->dma_length = 0;
1304
1305 /* catch brokenness in SCSI layer */
1306 ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1307
1308 /*
1309 ** First make sure current dma stream won't
1310 ** exceed DMA_CHUNK_SIZE if we coalesce the
1311 ** next entry.
1312 */
1313 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1314 > DMA_CHUNK_SIZE)
1315 break;
1316
1317 /*
1318 ** Then look for virtually contiguous blocks.
1319 **
1320 ** append the next transaction?
1321 */
1322 vaddr = (unsigned long) sba_sg_address(startsg);
1323 if (vcontig_end == vaddr)
1324 {
1325 vcontig_len += startsg->length;
1326 vcontig_end += startsg->length;
1327 dma_len += startsg->length;
1328 continue;
1329 }
1330
1331 #ifdef DEBUG_LARGE_SG_ENTRIES
1332 dump_run_sg = (vcontig_len > iovp_size);
1333 #endif
1334
1335 /*
1336 ** Not virtually contigous.
1337 ** Terminate prev chunk.
1338 ** Start a new chunk.
1339 **
1340 ** Once we start a new VCONTIG chunk, dma_offset
1341 ** can't change. And we need the offset from the first
1342 ** chunk - not the last one. Ergo Successive chunks
1343 ** must start on page boundaries and dove tail
1344 ** with it's predecessor.
1345 */
1346 vcontig_sg->dma_length = vcontig_len;
1347
1348 vcontig_sg = startsg;
1349 vcontig_len = startsg->length;
1350
1351 /*
1352 ** 3) do the entries end/start on page boundaries?
1353 ** Don't update vcontig_end until we've checked.
1354 */
1355 if (DMA_CONTIG(vcontig_end, vaddr))
1356 {
1357 vcontig_end = vcontig_len + vaddr;
1358 dma_len += vcontig_len;
1359 continue;
1360 } else {
1361 break;
1362 }
1363 }
1364
1365 /*
1366 ** End of DMA Stream
1367 ** Terminate last VCONTIG block.
1368 ** Allocate space for DMA stream.
1369 */
1370 vcontig_sg->dma_length = vcontig_len;
1371 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1372 ASSERT(dma_len <= DMA_CHUNK_SIZE);
1373 dma_sg->dma_address = (dma_addr_t) (PIDE_FLAG
1374 | (sba_alloc_range(ioc, dma_len) << iovp_shift)
1375 | dma_offset);
1376 n_mappings++;
1377 }
1378
1379 return n_mappings;
1380 }
1381
1382
1383 /**
1384 * sba_map_sg - map Scatter/Gather list
1385 * @dev: instance of PCI owned by the driver that's asking.
1386 * @sglist: array of buffer/length pairs
1387 * @nents: number of entries in list
1388 * @dir: R/W or both.
1389 *
1390 * See Documentation/DMA-mapping.txt
1391 */
1392 int sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents, int dir)
1393 {
1394 struct ioc *ioc;
1395 int coalesced, filled = 0;
1396 #ifdef ASSERT_PDIR_SANITY
1397 unsigned long flags;
1398 #endif
1399 #ifdef ALLOW_IOV_BYPASS_SG
1400 struct scatterlist *sg;
1401 #endif
1402
1403 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
1404 ioc = GET_IOC(dev);
1405 ASSERT(ioc);
1406
1407 #ifdef ALLOW_IOV_BYPASS_SG
1408 ASSERT(to_pci_dev(dev)->dma_mask);
1409 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1410 for_each_sg(sglist, sg, nents, filled) {
1411 sg->dma_length = sg->length;
1412 sg->dma_address = virt_to_phys(sba_sg_address(sg));
1413 }
1414 return filled;
1415 }
1416 #endif
1417 /* Fast path single entry scatterlists. */
1418 if (nents == 1) {
1419 sglist->dma_length = sglist->length;
1420 sglist->dma_address = sba_map_single(dev, sba_sg_address(sglist), sglist->length, dir);
1421 return 1;
1422 }
1423
1424 #ifdef ASSERT_PDIR_SANITY
1425 spin_lock_irqsave(&ioc->res_lock, flags);
1426 if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
1427 {
1428 sba_dump_sg(ioc, sglist, nents);
1429 panic("Check before sba_map_sg()");
1430 }
1431 spin_unlock_irqrestore(&ioc->res_lock, flags);
1432 #endif
1433
1434 prefetch(ioc->res_hint);
1435
1436 /*
1437 ** First coalesce the chunks and allocate I/O pdir space
1438 **
1439 ** If this is one DMA stream, we can properly map using the
1440 ** correct virtual address associated with each DMA page.
1441 ** w/o this association, we wouldn't have coherent DMA!
1442 ** Access to the virtual address is what forces a two pass algorithm.
1443 */
1444 coalesced = sba_coalesce_chunks(ioc, sglist, nents);
1445
1446 /*
1447 ** Program the I/O Pdir
1448 **
1449 ** map the virtual addresses to the I/O Pdir
1450 ** o dma_address will contain the pdir index
1451 ** o dma_len will contain the number of bytes to map
1452 ** o address contains the virtual address.
1453 */
1454 filled = sba_fill_pdir(ioc, sglist, nents);
1455
1456 #ifdef ASSERT_PDIR_SANITY
1457 spin_lock_irqsave(&ioc->res_lock, flags);
1458 if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
1459 {
1460 sba_dump_sg(ioc, sglist, nents);
1461 panic("Check after sba_map_sg()\n");
1462 }
1463 spin_unlock_irqrestore(&ioc->res_lock, flags);
1464 #endif
1465
1466 ASSERT(coalesced == filled);
1467 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
1468
1469 return filled;
1470 }
1471
1472
1473 /**
1474 * sba_unmap_sg - unmap Scatter/Gather list
1475 * @dev: instance of PCI owned by the driver that's asking.
1476 * @sglist: array of buffer/length pairs
1477 * @nents: number of entries in list
1478 * @dir: R/W or both.
1479 *
1480 * See Documentation/DMA-mapping.txt
1481 */
1482 void sba_unmap_sg (struct device *dev, struct scatterlist *sglist, int nents, int dir)
1483 {
1484 #ifdef ASSERT_PDIR_SANITY
1485 struct ioc *ioc;
1486 unsigned long flags;
1487 #endif
1488
1489 DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1490 __FUNCTION__, nents, sba_sg_address(sglist), sglist->length);
1491
1492 #ifdef ASSERT_PDIR_SANITY
1493 ioc = GET_IOC(dev);
1494 ASSERT(ioc);
1495
1496 spin_lock_irqsave(&ioc->res_lock, flags);
1497 sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1498 spin_unlock_irqrestore(&ioc->res_lock, flags);
1499 #endif
1500
1501 while (nents && sglist->dma_length) {
1502
1503 sba_unmap_single(dev, sglist->dma_address, sglist->dma_length, dir);
1504 sglist = sg_next(sglist);
1505 nents--;
1506 }
1507
1508 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1509
1510 #ifdef ASSERT_PDIR_SANITY
1511 spin_lock_irqsave(&ioc->res_lock, flags);
1512 sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1513 spin_unlock_irqrestore(&ioc->res_lock, flags);
1514 #endif
1515
1516 }
1517
1518 /**************************************************************
1519 *
1520 * Initialization and claim
1521 *
1522 ***************************************************************/
1523
1524 static void __init
1525 ioc_iova_init(struct ioc *ioc)
1526 {
1527 int tcnfg;
1528 int agp_found = 0;
1529 struct pci_dev *device = NULL;
1530 #ifdef FULL_VALID_PDIR
1531 unsigned long index;
1532 #endif
1533
1534 /*
1535 ** Firmware programs the base and size of a "safe IOVA space"
1536 ** (one that doesn't overlap memory or LMMIO space) in the
1537 ** IBASE and IMASK registers.
1538 */
1539 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1540 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1541
1542 ioc->iov_size = ~ioc->imask + 1;
1543
1544 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1545 __FUNCTION__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1546 ioc->iov_size >> 20);
1547
1548 switch (iovp_size) {
1549 case 4*1024: tcnfg = 0; break;
1550 case 8*1024: tcnfg = 1; break;
1551 case 16*1024: tcnfg = 2; break;
1552 case 64*1024: tcnfg = 3; break;
1553 default:
1554 panic(PFX "Unsupported IOTLB page size %ldK",
1555 iovp_size >> 10);
1556 break;
1557 }
1558 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1559
1560 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1561 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1562 get_order(ioc->pdir_size));
1563 if (!ioc->pdir_base)
1564 panic(PFX "Couldn't allocate I/O Page Table\n");
1565
1566 memset(ioc->pdir_base, 0, ioc->pdir_size);
1567
1568 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __FUNCTION__,
1569 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1570
1571 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1572 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1573
1574 /*
1575 ** If an AGP device is present, only use half of the IOV space
1576 ** for PCI DMA. Unfortunately we can't know ahead of time
1577 ** whether GART support will actually be used, for now we
1578 ** can just key on an AGP device found in the system.
1579 ** We program the next pdir index after we stop w/ a key for
1580 ** the GART code to handshake on.
1581 */
1582 for_each_pci_dev(device)
1583 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1584
1585 if (agp_found && reserve_sba_gart) {
1586 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1587 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1588 ioc->pdir_size /= 2;
1589 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1590 }
1591 #ifdef FULL_VALID_PDIR
1592 /*
1593 ** Check to see if the spill page has been allocated, we don't need more than
1594 ** one across multiple SBAs.
1595 */
1596 if (!prefetch_spill_page) {
1597 char *spill_poison = "SBAIOMMU POISON";
1598 int poison_size = 16;
1599 void *poison_addr, *addr;
1600
1601 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1602 if (!addr)
1603 panic(PFX "Couldn't allocate PDIR spill page\n");
1604
1605 poison_addr = addr;
1606 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1607 memcpy(poison_addr, spill_poison, poison_size);
1608
1609 prefetch_spill_page = virt_to_phys(addr);
1610
1611 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __FUNCTION__, prefetch_spill_page);
1612 }
1613 /*
1614 ** Set all the PDIR entries valid w/ the spill page as the target
1615 */
1616 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1617 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1618 #endif
1619
1620 /* Clear I/O TLB of any possible entries */
1621 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1622 READ_REG(ioc->ioc_hpa + IOC_PCOM);
1623
1624 /* Enable IOVA translation */
1625 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1626 READ_REG(ioc->ioc_hpa + IOC_IBASE);
1627 }
1628
1629 static void __init
1630 ioc_resource_init(struct ioc *ioc)
1631 {
1632 spin_lock_init(&ioc->res_lock);
1633 #if DELAYED_RESOURCE_CNT > 0
1634 spin_lock_init(&ioc->saved_lock);
1635 #endif
1636
1637 /* resource map size dictated by pdir_size */
1638 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1639 ioc->res_size >>= 3; /* convert bit count to byte count */
1640 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1641
1642 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1643 get_order(ioc->res_size));
1644 if (!ioc->res_map)
1645 panic(PFX "Couldn't allocate resource map\n");
1646
1647 memset(ioc->res_map, 0, ioc->res_size);
1648 /* next available IOVP - circular search */
1649 ioc->res_hint = (unsigned long *) ioc->res_map;
1650
1651 #ifdef ASSERT_PDIR_SANITY
1652 /* Mark first bit busy - ie no IOVA 0 */
1653 ioc->res_map[0] = 0x1;
1654 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1655 #endif
1656 #ifdef FULL_VALID_PDIR
1657 /* Mark the last resource used so we don't prefetch beyond IOVA space */
1658 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1659 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1660 | prefetch_spill_page);
1661 #endif
1662
1663 DBG_INIT("%s() res_map %x %p\n", __FUNCTION__,
1664 ioc->res_size, (void *) ioc->res_map);
1665 }
1666
1667 static void __init
1668 ioc_sac_init(struct ioc *ioc)
1669 {
1670 struct pci_dev *sac = NULL;
1671 struct pci_controller *controller = NULL;
1672
1673 /*
1674 * pci_alloc_coherent() must return a DMA address which is
1675 * SAC (single address cycle) addressable, so allocate a
1676 * pseudo-device to enforce that.
1677 */
1678 sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1679 if (!sac)
1680 panic(PFX "Couldn't allocate struct pci_dev");
1681
1682 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1683 if (!controller)
1684 panic(PFX "Couldn't allocate struct pci_controller");
1685
1686 controller->iommu = ioc;
1687 sac->sysdata = controller;
1688 sac->dma_mask = 0xFFFFFFFFUL;
1689 #ifdef CONFIG_PCI
1690 sac->dev.bus = &pci_bus_type;
1691 #endif
1692 ioc->sac_only_dev = sac;
1693 }
1694
1695 static void __init
1696 ioc_zx1_init(struct ioc *ioc)
1697 {
1698 unsigned long rope_config;
1699 unsigned int i;
1700
1701 if (ioc->rev < 0x20)
1702 panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1703
1704 /* 38 bit memory controller + extra bit for range displaced by MMIO */
1705 ioc->dma_mask = (0x1UL << 39) - 1;
1706
1707 /*
1708 ** Clear ROPE(N)_CONFIG AO bit.
1709 ** Disables "NT Ordering" (~= !"Relaxed Ordering")
1710 ** Overrides bit 1 in DMA Hint Sets.
1711 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1712 */
1713 for (i=0; i<(8*8); i+=8) {
1714 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1715 rope_config &= ~IOC_ROPE_AO;
1716 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1717 }
1718 }
1719
1720 typedef void (initfunc)(struct ioc *);
1721
1722 struct ioc_iommu {
1723 u32 func_id;
1724 char *name;
1725 initfunc *init;
1726 };
1727
1728 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1729 { ZX1_IOC_ID, "zx1", ioc_zx1_init },
1730 { ZX2_IOC_ID, "zx2", NULL },
1731 { SX1000_IOC_ID, "sx1000", NULL },
1732 { SX2000_IOC_ID, "sx2000", NULL },
1733 };
1734
1735 static struct ioc * __init
1736 ioc_init(u64 hpa, void *handle)
1737 {
1738 struct ioc *ioc;
1739 struct ioc_iommu *info;
1740
1741 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
1742 if (!ioc)
1743 return NULL;
1744
1745 ioc->next = ioc_list;
1746 ioc_list = ioc;
1747
1748 ioc->handle = handle;
1749 ioc->ioc_hpa = ioremap(hpa, 0x1000);
1750
1751 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1752 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1753 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */
1754
1755 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1756 if (ioc->func_id == info->func_id) {
1757 ioc->name = info->name;
1758 if (info->init)
1759 (info->init)(ioc);
1760 }
1761 }
1762
1763 iovp_size = (1 << iovp_shift);
1764 iovp_mask = ~(iovp_size - 1);
1765
1766 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __FUNCTION__,
1767 PAGE_SIZE >> 10, iovp_size >> 10);
1768
1769 if (!ioc->name) {
1770 ioc->name = kmalloc(24, GFP_KERNEL);
1771 if (ioc->name)
1772 sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1773 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1774 else
1775 ioc->name = "Unknown";
1776 }
1777
1778 ioc_iova_init(ioc);
1779 ioc_resource_init(ioc);
1780 ioc_sac_init(ioc);
1781
1782 if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask)
1783 ia64_max_iommu_merge_mask = ~iovp_mask;
1784
1785 printk(KERN_INFO PFX
1786 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1787 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1788 hpa, ioc->iov_size >> 20, ioc->ibase);
1789
1790 return ioc;
1791 }
1792
1793
1794
1795 /**************************************************************************
1796 **
1797 ** SBA initialization code (HW and SW)
1798 **
1799 ** o identify SBA chip itself
1800 ** o FIXME: initialize DMA hints for reasonable defaults
1801 **
1802 **************************************************************************/
1803
1804 #ifdef CONFIG_PROC_FS
1805 static void *
1806 ioc_start(struct seq_file *s, loff_t *pos)
1807 {
1808 struct ioc *ioc;
1809 loff_t n = *pos;
1810
1811 for (ioc = ioc_list; ioc; ioc = ioc->next)
1812 if (!n--)
1813 return ioc;
1814
1815 return NULL;
1816 }
1817
1818 static void *
1819 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1820 {
1821 struct ioc *ioc = v;
1822
1823 ++*pos;
1824 return ioc->next;
1825 }
1826
1827 static void
1828 ioc_stop(struct seq_file *s, void *v)
1829 {
1830 }
1831
1832 static int
1833 ioc_show(struct seq_file *s, void *v)
1834 {
1835 struct ioc *ioc = v;
1836 unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1837 int i, used = 0;
1838
1839 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1840 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1841 #ifdef CONFIG_NUMA
1842 if (ioc->node != MAX_NUMNODES)
1843 seq_printf(s, "NUMA node : %d\n", ioc->node);
1844 #endif
1845 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1846 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024);
1847
1848 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1849 used += hweight64(*res_ptr);
1850
1851 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3);
1852 seq_printf(s, "PDIR used : %d entries\n", used);
1853
1854 #ifdef PDIR_SEARCH_TIMING
1855 {
1856 unsigned long i = 0, avg = 0, min, max;
1857 min = max = ioc->avg_search[0];
1858 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1859 avg += ioc->avg_search[i];
1860 if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1861 if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1862 }
1863 avg /= SBA_SEARCH_SAMPLE;
1864 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1865 min, avg, max);
1866 }
1867 #endif
1868 #ifndef ALLOW_IOV_BYPASS
1869 seq_printf(s, "IOVA bypass disabled\n");
1870 #endif
1871 return 0;
1872 }
1873
1874 static const struct seq_operations ioc_seq_ops = {
1875 .start = ioc_start,
1876 .next = ioc_next,
1877 .stop = ioc_stop,
1878 .show = ioc_show
1879 };
1880
1881 static int
1882 ioc_open(struct inode *inode, struct file *file)
1883 {
1884 return seq_open(file, &ioc_seq_ops);
1885 }
1886
1887 static const struct file_operations ioc_fops = {
1888 .open = ioc_open,
1889 .read = seq_read,
1890 .llseek = seq_lseek,
1891 .release = seq_release
1892 };
1893
1894 static void __init
1895 ioc_proc_init(void)
1896 {
1897 struct proc_dir_entry *dir, *entry;
1898
1899 dir = proc_mkdir("bus/mckinley", NULL);
1900 if (!dir)
1901 return;
1902
1903 entry = create_proc_entry(ioc_list->name, 0, dir);
1904 if (entry)
1905 entry->proc_fops = &ioc_fops;
1906 }
1907 #endif
1908
1909 static void
1910 sba_connect_bus(struct pci_bus *bus)
1911 {
1912 acpi_handle handle, parent;
1913 acpi_status status;
1914 struct ioc *ioc;
1915
1916 if (!PCI_CONTROLLER(bus))
1917 panic(PFX "no sysdata on bus %d!\n", bus->number);
1918
1919 if (PCI_CONTROLLER(bus)->iommu)
1920 return;
1921
1922 handle = PCI_CONTROLLER(bus)->acpi_handle;
1923 if (!handle)
1924 return;
1925
1926 /*
1927 * The IOC scope encloses PCI root bridges in the ACPI
1928 * namespace, so work our way out until we find an IOC we
1929 * claimed previously.
1930 */
1931 do {
1932 for (ioc = ioc_list; ioc; ioc = ioc->next)
1933 if (ioc->handle == handle) {
1934 PCI_CONTROLLER(bus)->iommu = ioc;
1935 return;
1936 }
1937
1938 status = acpi_get_parent(handle, &parent);
1939 handle = parent;
1940 } while (ACPI_SUCCESS(status));
1941
1942 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1943 }
1944
1945 #ifdef CONFIG_NUMA
1946 static void __init
1947 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1948 {
1949 unsigned int node;
1950 int pxm;
1951
1952 ioc->node = MAX_NUMNODES;
1953
1954 pxm = acpi_get_pxm(handle);
1955
1956 if (pxm < 0)
1957 return;
1958
1959 node = pxm_to_node(pxm);
1960
1961 if (node >= MAX_NUMNODES || !node_online(node))
1962 return;
1963
1964 ioc->node = node;
1965 return;
1966 }
1967 #else
1968 #define sba_map_ioc_to_node(ioc, handle)
1969 #endif
1970
1971 static int __init
1972 acpi_sba_ioc_add(struct acpi_device *device)
1973 {
1974 struct ioc *ioc;
1975 acpi_status status;
1976 u64 hpa, length;
1977 struct acpi_buffer buffer;
1978 struct acpi_device_info *dev_info;
1979
1980 status = hp_acpi_csr_space(device->handle, &hpa, &length);
1981 if (ACPI_FAILURE(status))
1982 return 1;
1983
1984 buffer.length = ACPI_ALLOCATE_LOCAL_BUFFER;
1985 status = acpi_get_object_info(device->handle, &buffer);
1986 if (ACPI_FAILURE(status))
1987 return 1;
1988 dev_info = buffer.pointer;
1989
1990 /*
1991 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI
1992 * root bridges, and its CSR space includes the IOC function.
1993 */
1994 if (strncmp("HWP0001", dev_info->hardware_id.value, 7) == 0) {
1995 hpa += ZX1_IOC_OFFSET;
1996 /* zx1 based systems default to kernel page size iommu pages */
1997 if (!iovp_shift)
1998 iovp_shift = min(PAGE_SHIFT, 16);
1999 }
2000 kfree(dev_info);
2001
2002 /*
2003 * default anything not caught above or specified on cmdline to 4k
2004 * iommu page size
2005 */
2006 if (!iovp_shift)
2007 iovp_shift = 12;
2008
2009 ioc = ioc_init(hpa, device->handle);
2010 if (!ioc)
2011 return 1;
2012
2013 /* setup NUMA node association */
2014 sba_map_ioc_to_node(ioc, device->handle);
2015 return 0;
2016 }
2017
2018 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2019 {"HWP0001", 0},
2020 {"HWP0004", 0},
2021 {"", 0},
2022 };
2023 static struct acpi_driver acpi_sba_ioc_driver = {
2024 .name = "IOC IOMMU Driver",
2025 .ids = hp_ioc_iommu_device_ids,
2026 .ops = {
2027 .add = acpi_sba_ioc_add,
2028 },
2029 };
2030
2031 static int __init
2032 sba_init(void)
2033 {
2034 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2035 return 0;
2036
2037 #if defined(CONFIG_IA64_GENERIC) && defined(CONFIG_CRASH_DUMP) && \
2038 defined(CONFIG_PROC_FS)
2039 /* If we are booting a kdump kernel, the sba_iommu will
2040 * cause devices that were not shutdown properly to MCA
2041 * as soon as they are turned back on. Our only option for
2042 * a successful kdump kernel boot is to use the swiotlb.
2043 */
2044 if (elfcorehdr_addr < ELFCORE_ADDR_MAX) {
2045 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2046 panic("Unable to initialize software I/O TLB:"
2047 " Try machvec=dig boot option");
2048 machvec_init("dig");
2049 return 0;
2050 }
2051 #endif
2052
2053 acpi_bus_register_driver(&acpi_sba_ioc_driver);
2054 if (!ioc_list) {
2055 #ifdef CONFIG_IA64_GENERIC
2056 /*
2057 * If we didn't find something sba_iommu can claim, we
2058 * need to setup the swiotlb and switch to the dig machvec.
2059 */
2060 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2061 panic("Unable to find SBA IOMMU or initialize "
2062 "software I/O TLB: Try machvec=dig boot option");
2063 machvec_init("dig");
2064 #else
2065 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2066 #endif
2067 return 0;
2068 }
2069
2070 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2071 /*
2072 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2073 * buffer setup to support devices with smaller DMA masks than
2074 * sba_iommu can handle.
2075 */
2076 if (ia64_platform_is("hpzx1_swiotlb")) {
2077 extern void hwsw_init(void);
2078
2079 hwsw_init();
2080 }
2081 #endif
2082
2083 #ifdef CONFIG_PCI
2084 {
2085 struct pci_bus *b = NULL;
2086 while ((b = pci_find_next_bus(b)) != NULL)
2087 sba_connect_bus(b);
2088 }
2089 #endif
2090
2091 #ifdef CONFIG_PROC_FS
2092 ioc_proc_init();
2093 #endif
2094 return 0;
2095 }
2096
2097 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2098
2099 static int __init
2100 nosbagart(char *str)
2101 {
2102 reserve_sba_gart = 0;
2103 return 1;
2104 }
2105
2106 int
2107 sba_dma_supported (struct device *dev, u64 mask)
2108 {
2109 /* make sure it's at least 32bit capable */
2110 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2111 }
2112
2113 int
2114 sba_dma_mapping_error (dma_addr_t dma_addr)
2115 {
2116 return 0;
2117 }
2118
2119 __setup("nosbagart", nosbagart);
2120
2121 static int __init
2122 sba_page_override(char *str)
2123 {
2124 unsigned long page_size;
2125
2126 page_size = memparse(str, &str);
2127 switch (page_size) {
2128 case 4096:
2129 case 8192:
2130 case 16384:
2131 case 65536:
2132 iovp_shift = ffs(page_size) - 1;
2133 break;
2134 default:
2135 printk("%s: unknown/unsupported iommu page size %ld\n",
2136 __FUNCTION__, page_size);
2137 }
2138
2139 return 1;
2140 }
2141
2142 __setup("sbapagesize=",sba_page_override);
2143
2144 EXPORT_SYMBOL(sba_dma_mapping_error);
2145 EXPORT_SYMBOL(sba_map_single);
2146 EXPORT_SYMBOL(sba_unmap_single);
2147 EXPORT_SYMBOL(sba_map_sg);
2148 EXPORT_SYMBOL(sba_unmap_sg);
2149 EXPORT_SYMBOL(sba_dma_supported);
2150 EXPORT_SYMBOL(sba_alloc_coherent);
2151 EXPORT_SYMBOL(sba_free_coherent);