]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/ia64/ia32/sys_ia32.c
compat: move cp_compat_stat to common code
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / ia32 / sys_ia32.c
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
3 *
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
12 *
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/syscalls.h>
19 #include <linux/sysctl.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/signal.h>
24 #include <linux/resource.h>
25 #include <linux/times.h>
26 #include <linux/utsname.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sem.h>
30 #include <linux/msg.h>
31 #include <linux/mm.h>
32 #include <linux/shm.h>
33 #include <linux/slab.h>
34 #include <linux/uio.h>
35 #include <linux/socket.h>
36 #include <linux/quota.h>
37 #include <linux/poll.h>
38 #include <linux/eventpoll.h>
39 #include <linux/personality.h>
40 #include <linux/ptrace.h>
41 #include <linux/regset.h>
42 #include <linux/stat.h>
43 #include <linux/ipc.h>
44 #include <linux/capability.h>
45 #include <linux/compat.h>
46 #include <linux/vfs.h>
47 #include <linux/mman.h>
48 #include <linux/mutex.h>
49
50 #include <asm/intrinsics.h>
51 #include <asm/types.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54
55 #include "ia32priv.h"
56
57 #include <net/scm.h>
58 #include <net/sock.h>
59
60 #define DEBUG 0
61
62 #if DEBUG
63 # define DBG(fmt...) printk(KERN_DEBUG fmt)
64 #else
65 # define DBG(fmt...)
66 #endif
67
68 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
69
70 #define OFFSET4K(a) ((a) & 0xfff)
71 #define PAGE_START(addr) ((addr) & PAGE_MASK)
72 #define MINSIGSTKSZ_IA32 2048
73
74 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
75 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
76
77 /*
78 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
79 * while doing so.
80 */
81 /* XXX make per-mm: */
82 static DEFINE_MUTEX(ia32_mmap_mutex);
83
84 asmlinkage long
85 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
86 struct pt_regs *regs)
87 {
88 long error;
89 char *filename;
90 unsigned long old_map_base, old_task_size, tssd;
91
92 filename = getname(name);
93 error = PTR_ERR(filename);
94 if (IS_ERR(filename))
95 return error;
96
97 old_map_base = current->thread.map_base;
98 old_task_size = current->thread.task_size;
99 tssd = ia64_get_kr(IA64_KR_TSSD);
100
101 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
102 current->thread.map_base = DEFAULT_MAP_BASE;
103 current->thread.task_size = DEFAULT_TASK_SIZE;
104 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
105 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
106
107 error = compat_do_execve(filename, argv, envp, regs);
108 putname(filename);
109
110 if (error < 0) {
111 /* oops, execve failed, switch back to old values... */
112 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
113 ia64_set_kr(IA64_KR_TSSD, tssd);
114 current->thread.map_base = old_map_base;
115 current->thread.task_size = old_task_size;
116 }
117
118 return error;
119 }
120
121
122 #if PAGE_SHIFT > IA32_PAGE_SHIFT
123
124
125 static int
126 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
127 {
128 int prot = 0;
129
130 if (!vma || vma->vm_start > addr)
131 return 0;
132
133 if (vma->vm_flags & VM_READ)
134 prot |= PROT_READ;
135 if (vma->vm_flags & VM_WRITE)
136 prot |= PROT_WRITE;
137 if (vma->vm_flags & VM_EXEC)
138 prot |= PROT_EXEC;
139 return prot;
140 }
141
142 /*
143 * Map a subpage by creating an anonymous page that contains the union of the old page and
144 * the subpage.
145 */
146 static unsigned long
147 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
148 loff_t off)
149 {
150 void *page = NULL;
151 struct inode *inode;
152 unsigned long ret = 0;
153 struct vm_area_struct *vma = find_vma(current->mm, start);
154 int old_prot = get_page_prot(vma, start);
155
156 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
157 file, start, end, prot, flags, off);
158
159
160 /* Optimize the case where the old mmap and the new mmap are both anonymous */
161 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
162 if (clear_user((void __user *) start, end - start)) {
163 ret = -EFAULT;
164 goto out;
165 }
166 goto skip_mmap;
167 }
168
169 page = (void *) get_zeroed_page(GFP_KERNEL);
170 if (!page)
171 return -ENOMEM;
172
173 if (old_prot)
174 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
175
176 down_write(&current->mm->mmap_sem);
177 {
178 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
179 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
180 }
181 up_write(&current->mm->mmap_sem);
182
183 if (IS_ERR((void *) ret))
184 goto out;
185
186 if (old_prot) {
187 /* copy back the old page contents. */
188 if (offset_in_page(start))
189 copy_to_user((void __user *) PAGE_START(start), page,
190 offset_in_page(start));
191 if (offset_in_page(end))
192 copy_to_user((void __user *) end, page + offset_in_page(end),
193 PAGE_SIZE - offset_in_page(end));
194 }
195
196 if (!(flags & MAP_ANONYMOUS)) {
197 /* read the file contents */
198 inode = file->f_path.dentry->d_inode;
199 if (!inode->i_fop || !file->f_op->read
200 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
201 {
202 ret = -EINVAL;
203 goto out;
204 }
205 }
206
207 skip_mmap:
208 if (!(prot & PROT_WRITE))
209 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
210 out:
211 if (page)
212 free_page((unsigned long) page);
213 return ret;
214 }
215
216 /* SLAB cache for ia64_partial_page structures */
217 struct kmem_cache *ia64_partial_page_cachep;
218
219 /*
220 * init ia64_partial_page_list.
221 * return 0 means kmalloc fail.
222 */
223 struct ia64_partial_page_list*
224 ia32_init_pp_list(void)
225 {
226 struct ia64_partial_page_list *p;
227
228 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
229 return p;
230 p->pp_head = NULL;
231 p->ppl_rb = RB_ROOT;
232 p->pp_hint = NULL;
233 atomic_set(&p->pp_count, 1);
234 return p;
235 }
236
237 /*
238 * Search for the partial page with @start in partial page list @ppl.
239 * If finds the partial page, return the found partial page.
240 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
241 * be used by later __ia32_insert_pp().
242 */
243 static struct ia64_partial_page *
244 __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
245 struct ia64_partial_page **pprev, struct rb_node ***rb_link,
246 struct rb_node **rb_parent)
247 {
248 struct ia64_partial_page *pp;
249 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
250
251 pp = ppl->pp_hint;
252 if (pp && pp->base == start)
253 return pp;
254
255 __rb_link = &ppl->ppl_rb.rb_node;
256 rb_prev = __rb_parent = NULL;
257
258 while (*__rb_link) {
259 __rb_parent = *__rb_link;
260 pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
261
262 if (pp->base == start) {
263 ppl->pp_hint = pp;
264 return pp;
265 } else if (pp->base < start) {
266 rb_prev = __rb_parent;
267 __rb_link = &__rb_parent->rb_right;
268 } else {
269 __rb_link = &__rb_parent->rb_left;
270 }
271 }
272
273 *rb_link = __rb_link;
274 *rb_parent = __rb_parent;
275 *pprev = NULL;
276 if (rb_prev)
277 *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
278 return NULL;
279 }
280
281 /*
282 * insert @pp into @ppl.
283 */
284 static void
285 __ia32_insert_pp(struct ia64_partial_page_list *ppl,
286 struct ia64_partial_page *pp, struct ia64_partial_page *prev,
287 struct rb_node **rb_link, struct rb_node *rb_parent)
288 {
289 /* link list */
290 if (prev) {
291 pp->next = prev->next;
292 prev->next = pp;
293 } else {
294 ppl->pp_head = pp;
295 if (rb_parent)
296 pp->next = rb_entry(rb_parent,
297 struct ia64_partial_page, pp_rb);
298 else
299 pp->next = NULL;
300 }
301
302 /* link rb */
303 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
304 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
305
306 ppl->pp_hint = pp;
307 }
308
309 /*
310 * delete @pp from partial page list @ppl.
311 */
312 static void
313 __ia32_delete_pp(struct ia64_partial_page_list *ppl,
314 struct ia64_partial_page *pp, struct ia64_partial_page *prev)
315 {
316 if (prev) {
317 prev->next = pp->next;
318 if (ppl->pp_hint == pp)
319 ppl->pp_hint = prev;
320 } else {
321 ppl->pp_head = pp->next;
322 if (ppl->pp_hint == pp)
323 ppl->pp_hint = pp->next;
324 }
325 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
326 kmem_cache_free(ia64_partial_page_cachep, pp);
327 }
328
329 static struct ia64_partial_page *
330 __pp_prev(struct ia64_partial_page *pp)
331 {
332 struct rb_node *prev = rb_prev(&pp->pp_rb);
333 if (prev)
334 return rb_entry(prev, struct ia64_partial_page, pp_rb);
335 else
336 return NULL;
337 }
338
339 /*
340 * Delete partial pages with address between @start and @end.
341 * @start and @end are page aligned.
342 */
343 static void
344 __ia32_delete_pp_range(unsigned int start, unsigned int end)
345 {
346 struct ia64_partial_page *pp, *prev;
347 struct rb_node **rb_link, *rb_parent;
348
349 if (start >= end)
350 return;
351
352 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
353 &rb_link, &rb_parent);
354 if (pp)
355 prev = __pp_prev(pp);
356 else {
357 if (prev)
358 pp = prev->next;
359 else
360 pp = current->thread.ppl->pp_head;
361 }
362
363 while (pp && pp->base < end) {
364 struct ia64_partial_page *tmp = pp->next;
365 __ia32_delete_pp(current->thread.ppl, pp, prev);
366 pp = tmp;
367 }
368 }
369
370 /*
371 * Set the range between @start and @end in bitmap.
372 * @start and @end should be IA32 page aligned and in the same IA64 page.
373 */
374 static int
375 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
376 {
377 struct ia64_partial_page *pp, *prev;
378 struct rb_node ** rb_link, *rb_parent;
379 unsigned int pstart, start_bit, end_bit, i;
380
381 pstart = PAGE_START(start);
382 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
383 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
384 if (end_bit == 0)
385 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
386 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
387 &rb_link, &rb_parent);
388 if (pp) {
389 for (i = start_bit; i < end_bit; i++)
390 set_bit(i, &pp->bitmap);
391 /*
392 * Check: if this partial page has been set to a full page,
393 * then delete it.
394 */
395 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
396 PAGE_SIZE/IA32_PAGE_SIZE) {
397 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
398 }
399 return 0;
400 }
401
402 /*
403 * MAP_FIXED may lead to overlapping mmap.
404 * In this case, the requested mmap area may already mmaped as a full
405 * page. So check vma before adding a new partial page.
406 */
407 if (flags & MAP_FIXED) {
408 struct vm_area_struct *vma = find_vma(current->mm, pstart);
409 if (vma && vma->vm_start <= pstart)
410 return 0;
411 }
412
413 /* new a ia64_partial_page */
414 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
415 if (!pp)
416 return -ENOMEM;
417 pp->base = pstart;
418 pp->bitmap = 0;
419 for (i=start_bit; i<end_bit; i++)
420 set_bit(i, &(pp->bitmap));
421 pp->next = NULL;
422 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
423 return 0;
424 }
425
426 /*
427 * @start and @end should be IA32 page aligned, but don't need to be in the
428 * same IA64 page. Split @start and @end to make sure they're in the same IA64
429 * page, then call __ia32_set_pp().
430 */
431 static void
432 ia32_set_pp(unsigned int start, unsigned int end, int flags)
433 {
434 down_write(&current->mm->mmap_sem);
435 if (flags & MAP_FIXED) {
436 /*
437 * MAP_FIXED may lead to overlapping mmap. When this happens,
438 * a series of complete IA64 pages results in deletion of
439 * old partial pages in that range.
440 */
441 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
442 }
443
444 if (end < PAGE_ALIGN(start)) {
445 __ia32_set_pp(start, end, flags);
446 } else {
447 if (offset_in_page(start))
448 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
449 if (offset_in_page(end))
450 __ia32_set_pp(PAGE_START(end), end, flags);
451 }
452 up_write(&current->mm->mmap_sem);
453 }
454
455 /*
456 * Unset the range between @start and @end in bitmap.
457 * @start and @end should be IA32 page aligned and in the same IA64 page.
458 * After doing that, if the bitmap is 0, then free the page and return 1,
459 * else return 0;
460 * If not find the partial page in the list, then
461 * If the vma exists, then the full page is set to a partial page;
462 * Else return -ENOMEM.
463 */
464 static int
465 __ia32_unset_pp(unsigned int start, unsigned int end)
466 {
467 struct ia64_partial_page *pp, *prev;
468 struct rb_node ** rb_link, *rb_parent;
469 unsigned int pstart, start_bit, end_bit, i;
470 struct vm_area_struct *vma;
471
472 pstart = PAGE_START(start);
473 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
474 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
475 if (end_bit == 0)
476 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
477
478 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
479 &rb_link, &rb_parent);
480 if (pp) {
481 for (i = start_bit; i < end_bit; i++)
482 clear_bit(i, &pp->bitmap);
483 if (pp->bitmap == 0) {
484 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
485 return 1;
486 }
487 return 0;
488 }
489
490 vma = find_vma(current->mm, pstart);
491 if (!vma || vma->vm_start > pstart) {
492 return -ENOMEM;
493 }
494
495 /* new a ia64_partial_page */
496 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
497 if (!pp)
498 return -ENOMEM;
499 pp->base = pstart;
500 pp->bitmap = 0;
501 for (i = 0; i < start_bit; i++)
502 set_bit(i, &(pp->bitmap));
503 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
504 set_bit(i, &(pp->bitmap));
505 pp->next = NULL;
506 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
507 return 0;
508 }
509
510 /*
511 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
512 * __ia32_delete_pp_range(). Unset possible partial pages by calling
513 * __ia32_unset_pp().
514 * The returned value see __ia32_unset_pp().
515 */
516 static int
517 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
518 {
519 unsigned int start = *startp, end = *endp;
520 int ret = 0;
521
522 down_write(&current->mm->mmap_sem);
523
524 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
525
526 if (end < PAGE_ALIGN(start)) {
527 ret = __ia32_unset_pp(start, end);
528 if (ret == 1) {
529 *startp = PAGE_START(start);
530 *endp = PAGE_ALIGN(end);
531 }
532 if (ret == 0) {
533 /* to shortcut sys_munmap() in sys32_munmap() */
534 *startp = PAGE_START(start);
535 *endp = PAGE_START(end);
536 }
537 } else {
538 if (offset_in_page(start)) {
539 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
540 if (ret == 1)
541 *startp = PAGE_START(start);
542 if (ret == 0)
543 *startp = PAGE_ALIGN(start);
544 if (ret < 0)
545 goto out;
546 }
547 if (offset_in_page(end)) {
548 ret = __ia32_unset_pp(PAGE_START(end), end);
549 if (ret == 1)
550 *endp = PAGE_ALIGN(end);
551 if (ret == 0)
552 *endp = PAGE_START(end);
553 }
554 }
555
556 out:
557 up_write(&current->mm->mmap_sem);
558 return ret;
559 }
560
561 /*
562 * Compare the range between @start and @end with bitmap in partial page.
563 * @start and @end should be IA32 page aligned and in the same IA64 page.
564 */
565 static int
566 __ia32_compare_pp(unsigned int start, unsigned int end)
567 {
568 struct ia64_partial_page *pp, *prev;
569 struct rb_node ** rb_link, *rb_parent;
570 unsigned int pstart, start_bit, end_bit, size;
571 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
572
573 pstart = PAGE_START(start);
574
575 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
576 &rb_link, &rb_parent);
577 if (!pp)
578 return 1;
579
580 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
581 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
582 size = sizeof(pp->bitmap) * 8;
583 first_bit = find_first_bit(&pp->bitmap, size);
584 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
585 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
586 /* exceeds the first range in bitmap */
587 return -ENOMEM;
588 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
589 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
590 if ((next_zero_bit < first_bit) && (first_bit < size))
591 return 1; /* has next range */
592 else
593 return 0; /* no next range */
594 } else
595 return 1;
596 }
597
598 /*
599 * @start and @end should be IA32 page aligned, but don't need to be in the
600 * same IA64 page. Split @start and @end to make sure they're in the same IA64
601 * page, then call __ia32_compare_pp().
602 *
603 * Take this as example: the range is the 1st and 2nd 4K page.
604 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
605 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
606 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
607 * bitmap = 00000101.
608 */
609 static int
610 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
611 {
612 unsigned int start = *startp, end = *endp;
613 int retval = 0;
614
615 down_write(&current->mm->mmap_sem);
616
617 if (end < PAGE_ALIGN(start)) {
618 retval = __ia32_compare_pp(start, end);
619 if (retval == 0) {
620 *startp = PAGE_START(start);
621 *endp = PAGE_ALIGN(end);
622 }
623 } else {
624 if (offset_in_page(start)) {
625 retval = __ia32_compare_pp(start,
626 PAGE_ALIGN(start));
627 if (retval == 0)
628 *startp = PAGE_START(start);
629 if (retval < 0)
630 goto out;
631 }
632 if (offset_in_page(end)) {
633 retval = __ia32_compare_pp(PAGE_START(end), end);
634 if (retval == 0)
635 *endp = PAGE_ALIGN(end);
636 }
637 }
638
639 out:
640 up_write(&current->mm->mmap_sem);
641 return retval;
642 }
643
644 static void
645 __ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
646 {
647 struct ia64_partial_page *pp = ppl->pp_head;
648
649 while (pp) {
650 struct ia64_partial_page *next = pp->next;
651 kmem_cache_free(ia64_partial_page_cachep, pp);
652 pp = next;
653 }
654
655 kfree(ppl);
656 }
657
658 void
659 ia32_drop_ia64_partial_page_list(struct task_struct *task)
660 {
661 struct ia64_partial_page_list* ppl = task->thread.ppl;
662
663 if (ppl && atomic_dec_and_test(&ppl->pp_count))
664 __ia32_drop_pp_list(ppl);
665 }
666
667 /*
668 * Copy current->thread.ppl to ppl (already initialized).
669 */
670 static int
671 __ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
672 {
673 struct ia64_partial_page *pp, *tmp, *prev;
674 struct rb_node **rb_link, *rb_parent;
675
676 ppl->pp_head = NULL;
677 ppl->pp_hint = NULL;
678 ppl->ppl_rb = RB_ROOT;
679 rb_link = &ppl->ppl_rb.rb_node;
680 rb_parent = NULL;
681 prev = NULL;
682
683 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
684 tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
685 if (!tmp)
686 return -ENOMEM;
687 *tmp = *pp;
688 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
689 prev = tmp;
690 rb_link = &tmp->pp_rb.rb_right;
691 rb_parent = &tmp->pp_rb;
692 }
693 return 0;
694 }
695
696 int
697 ia32_copy_ia64_partial_page_list(struct task_struct *p,
698 unsigned long clone_flags)
699 {
700 int retval = 0;
701
702 if (clone_flags & CLONE_VM) {
703 atomic_inc(&current->thread.ppl->pp_count);
704 p->thread.ppl = current->thread.ppl;
705 } else {
706 p->thread.ppl = ia32_init_pp_list();
707 if (!p->thread.ppl)
708 return -ENOMEM;
709 down_write(&current->mm->mmap_sem);
710 {
711 retval = __ia32_copy_pp_list(p->thread.ppl);
712 }
713 up_write(&current->mm->mmap_sem);
714 }
715
716 return retval;
717 }
718
719 static unsigned long
720 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
721 loff_t off)
722 {
723 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
724 struct inode *inode;
725 loff_t poff;
726
727 end = start + len;
728 pstart = PAGE_START(start);
729 pend = PAGE_ALIGN(end);
730
731 if (flags & MAP_FIXED) {
732 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
733 if (start > pstart) {
734 if (flags & MAP_SHARED)
735 printk(KERN_INFO
736 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
737 current->comm, task_pid_nr(current), start);
738 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
739 off);
740 if (IS_ERR((void *) ret))
741 return ret;
742 pstart += PAGE_SIZE;
743 if (pstart >= pend)
744 goto out; /* done */
745 }
746 if (end < pend) {
747 if (flags & MAP_SHARED)
748 printk(KERN_INFO
749 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
750 current->comm, task_pid_nr(current), end);
751 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
752 (off + len) - offset_in_page(end));
753 if (IS_ERR((void *) ret))
754 return ret;
755 pend -= PAGE_SIZE;
756 if (pstart >= pend)
757 goto out; /* done */
758 }
759 } else {
760 /*
761 * If a start address was specified, use it if the entire rounded out area
762 * is available.
763 */
764 if (start && !pstart)
765 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
766 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
767 if (tmp != pstart) {
768 pstart = tmp;
769 start = pstart + offset_in_page(off); /* make start congruent with off */
770 end = start + len;
771 pend = PAGE_ALIGN(end);
772 }
773 }
774
775 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
776 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
777
778 if ((flags & MAP_SHARED) && !is_congruent)
779 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
780 "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
781
782 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
783 is_congruent ? "congruent" : "not congruent", poff);
784
785 down_write(&current->mm->mmap_sem);
786 {
787 if (!(flags & MAP_ANONYMOUS) && is_congruent)
788 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
789 else
790 ret = do_mmap(NULL, pstart, pend - pstart,
791 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
792 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
793 }
794 up_write(&current->mm->mmap_sem);
795
796 if (IS_ERR((void *) ret))
797 return ret;
798
799 if (!is_congruent) {
800 /* read the file contents */
801 inode = file->f_path.dentry->d_inode;
802 if (!inode->i_fop || !file->f_op->read
803 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
804 < 0))
805 {
806 sys_munmap(pstart, pend - pstart);
807 return -EINVAL;
808 }
809 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
810 return -EINVAL;
811 }
812
813 if (!(flags & MAP_FIXED))
814 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
815 out:
816 return start;
817 }
818
819 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
820
821 static inline unsigned int
822 get_prot32 (unsigned int prot)
823 {
824 if (prot & PROT_WRITE)
825 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
826 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
827 else if (prot & (PROT_READ | PROT_EXEC))
828 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
829 prot |= (PROT_READ | PROT_EXEC);
830
831 return prot;
832 }
833
834 unsigned long
835 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
836 loff_t offset)
837 {
838 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
839 file, addr, len, prot, flags, offset);
840
841 if (file && (!file->f_op || !file->f_op->mmap))
842 return -ENODEV;
843
844 len = IA32_PAGE_ALIGN(len);
845 if (len == 0)
846 return addr;
847
848 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
849 {
850 if (flags & MAP_FIXED)
851 return -ENOMEM;
852 else
853 return -EINVAL;
854 }
855
856 if (OFFSET4K(offset))
857 return -EINVAL;
858
859 prot = get_prot32(prot);
860
861 #if PAGE_SHIFT > IA32_PAGE_SHIFT
862 mutex_lock(&ia32_mmap_mutex);
863 {
864 addr = emulate_mmap(file, addr, len, prot, flags, offset);
865 }
866 mutex_unlock(&ia32_mmap_mutex);
867 #else
868 down_write(&current->mm->mmap_sem);
869 {
870 addr = do_mmap(file, addr, len, prot, flags, offset);
871 }
872 up_write(&current->mm->mmap_sem);
873 #endif
874 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
875 return addr;
876 }
877
878 /*
879 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
880 * system calls used a memory block for parameter passing..
881 */
882
883 struct mmap_arg_struct {
884 unsigned int addr;
885 unsigned int len;
886 unsigned int prot;
887 unsigned int flags;
888 unsigned int fd;
889 unsigned int offset;
890 };
891
892 asmlinkage long
893 sys32_mmap (struct mmap_arg_struct __user *arg)
894 {
895 struct mmap_arg_struct a;
896 struct file *file = NULL;
897 unsigned long addr;
898 int flags;
899
900 if (copy_from_user(&a, arg, sizeof(a)))
901 return -EFAULT;
902
903 if (OFFSET4K(a.offset))
904 return -EINVAL;
905
906 flags = a.flags;
907
908 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
909 if (!(flags & MAP_ANONYMOUS)) {
910 file = fget(a.fd);
911 if (!file)
912 return -EBADF;
913 }
914
915 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
916
917 if (file)
918 fput(file);
919 return addr;
920 }
921
922 asmlinkage long
923 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
924 unsigned int fd, unsigned int pgoff)
925 {
926 struct file *file = NULL;
927 unsigned long retval;
928
929 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
930 if (!(flags & MAP_ANONYMOUS)) {
931 file = fget(fd);
932 if (!file)
933 return -EBADF;
934 }
935
936 retval = ia32_do_mmap(file, addr, len, prot, flags,
937 (unsigned long) pgoff << IA32_PAGE_SHIFT);
938
939 if (file)
940 fput(file);
941 return retval;
942 }
943
944 asmlinkage long
945 sys32_munmap (unsigned int start, unsigned int len)
946 {
947 unsigned int end = start + len;
948 long ret;
949
950 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
951 ret = sys_munmap(start, end - start);
952 #else
953 if (OFFSET4K(start))
954 return -EINVAL;
955
956 end = IA32_PAGE_ALIGN(end);
957 if (start >= end)
958 return -EINVAL;
959
960 ret = ia32_unset_pp(&start, &end);
961 if (ret < 0)
962 return ret;
963
964 if (start >= end)
965 return 0;
966
967 mutex_lock(&ia32_mmap_mutex);
968 ret = sys_munmap(start, end - start);
969 mutex_unlock(&ia32_mmap_mutex);
970 #endif
971 return ret;
972 }
973
974 #if PAGE_SHIFT > IA32_PAGE_SHIFT
975
976 /*
977 * When mprotect()ing a partial page, we set the permission to the union of the old
978 * settings and the new settings. In other words, it's only possible to make access to a
979 * partial page less restrictive.
980 */
981 static long
982 mprotect_subpage (unsigned long address, int new_prot)
983 {
984 int old_prot;
985 struct vm_area_struct *vma;
986
987 if (new_prot == PROT_NONE)
988 return 0; /* optimize case where nothing changes... */
989 vma = find_vma(current->mm, address);
990 old_prot = get_page_prot(vma, address);
991 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
992 }
993
994 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
995
996 asmlinkage long
997 sys32_mprotect (unsigned int start, unsigned int len, int prot)
998 {
999 unsigned int end = start + len;
1000 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1001 long retval = 0;
1002 #endif
1003
1004 prot = get_prot32(prot);
1005
1006 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1007 return sys_mprotect(start, end - start, prot);
1008 #else
1009 if (OFFSET4K(start))
1010 return -EINVAL;
1011
1012 end = IA32_PAGE_ALIGN(end);
1013 if (end < start)
1014 return -EINVAL;
1015
1016 retval = ia32_compare_pp(&start, &end);
1017
1018 if (retval < 0)
1019 return retval;
1020
1021 mutex_lock(&ia32_mmap_mutex);
1022 {
1023 if (offset_in_page(start)) {
1024 /* start address is 4KB aligned but not page aligned. */
1025 retval = mprotect_subpage(PAGE_START(start), prot);
1026 if (retval < 0)
1027 goto out;
1028
1029 start = PAGE_ALIGN(start);
1030 if (start >= end)
1031 goto out; /* retval is already zero... */
1032 }
1033
1034 if (offset_in_page(end)) {
1035 /* end address is 4KB aligned but not page aligned. */
1036 retval = mprotect_subpage(PAGE_START(end), prot);
1037 if (retval < 0)
1038 goto out;
1039
1040 end = PAGE_START(end);
1041 }
1042 retval = sys_mprotect(start, end - start, prot);
1043 }
1044 out:
1045 mutex_unlock(&ia32_mmap_mutex);
1046 return retval;
1047 #endif
1048 }
1049
1050 asmlinkage long
1051 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1052 unsigned int flags, unsigned int new_addr)
1053 {
1054 long ret;
1055
1056 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1057 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1058 #else
1059 unsigned int old_end, new_end;
1060
1061 if (OFFSET4K(addr))
1062 return -EINVAL;
1063
1064 old_len = IA32_PAGE_ALIGN(old_len);
1065 new_len = IA32_PAGE_ALIGN(new_len);
1066 old_end = addr + old_len;
1067 new_end = addr + new_len;
1068
1069 if (!new_len)
1070 return -EINVAL;
1071
1072 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1073 return -EINVAL;
1074
1075 if (old_len >= new_len) {
1076 ret = sys32_munmap(addr + new_len, old_len - new_len);
1077 if (ret && old_len != new_len)
1078 return ret;
1079 ret = addr;
1080 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1081 return ret;
1082 old_len = new_len;
1083 }
1084
1085 addr = PAGE_START(addr);
1086 old_len = PAGE_ALIGN(old_end) - addr;
1087 new_len = PAGE_ALIGN(new_end) - addr;
1088
1089 mutex_lock(&ia32_mmap_mutex);
1090 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1091 mutex_unlock(&ia32_mmap_mutex);
1092
1093 if ((ret >= 0) && (old_len < new_len)) {
1094 /* mremap expanded successfully */
1095 ia32_set_pp(old_end, new_end, flags);
1096 }
1097 #endif
1098 return ret;
1099 }
1100
1101 asmlinkage long
1102 sys32_pipe (int __user *fd)
1103 {
1104 int retval;
1105 int fds[2];
1106
1107 retval = do_pipe_flags(fds, 0);
1108 if (retval)
1109 goto out;
1110 if (copy_to_user(fd, fds, sizeof(fds)))
1111 retval = -EFAULT;
1112 out:
1113 return retval;
1114 }
1115
1116 static inline long
1117 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1118 {
1119 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1120 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1121 }
1122
1123 static inline long
1124 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1125 {
1126 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1127 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1128 }
1129
1130 asmlinkage unsigned long
1131 sys32_alarm (unsigned int seconds)
1132 {
1133 return alarm_setitimer(seconds);
1134 }
1135
1136 /* Translations due to time_t size differences. Which affects all
1137 sorts of things, like timeval and itimerval. */
1138
1139 extern struct timezone sys_tz;
1140
1141 asmlinkage long
1142 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1143 {
1144 if (tv) {
1145 struct timeval ktv;
1146 do_gettimeofday(&ktv);
1147 if (put_tv32(tv, &ktv))
1148 return -EFAULT;
1149 }
1150 if (tz) {
1151 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1152 return -EFAULT;
1153 }
1154 return 0;
1155 }
1156
1157 asmlinkage long
1158 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1159 {
1160 struct timeval ktv;
1161 struct timespec kts;
1162 struct timezone ktz;
1163
1164 if (tv) {
1165 if (get_tv32(&ktv, tv))
1166 return -EFAULT;
1167 kts.tv_sec = ktv.tv_sec;
1168 kts.tv_nsec = ktv.tv_usec * 1000;
1169 }
1170 if (tz) {
1171 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1172 return -EFAULT;
1173 }
1174
1175 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1176 }
1177
1178 struct sel_arg_struct {
1179 unsigned int n;
1180 unsigned int inp;
1181 unsigned int outp;
1182 unsigned int exp;
1183 unsigned int tvp;
1184 };
1185
1186 asmlinkage long
1187 sys32_old_select (struct sel_arg_struct __user *arg)
1188 {
1189 struct sel_arg_struct a;
1190
1191 if (copy_from_user(&a, arg, sizeof(a)))
1192 return -EFAULT;
1193 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1194 compat_ptr(a.exp), compat_ptr(a.tvp));
1195 }
1196
1197 #define SEMOP 1
1198 #define SEMGET 2
1199 #define SEMCTL 3
1200 #define SEMTIMEDOP 4
1201 #define MSGSND 11
1202 #define MSGRCV 12
1203 #define MSGGET 13
1204 #define MSGCTL 14
1205 #define SHMAT 21
1206 #define SHMDT 22
1207 #define SHMGET 23
1208 #define SHMCTL 24
1209
1210 asmlinkage long
1211 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1212 {
1213 int version;
1214
1215 version = call >> 16; /* hack for backward compatibility */
1216 call &= 0xffff;
1217
1218 switch (call) {
1219 case SEMTIMEDOP:
1220 if (fifth)
1221 return compat_sys_semtimedop(first, compat_ptr(ptr),
1222 second, compat_ptr(fifth));
1223 /* else fall through for normal semop() */
1224 case SEMOP:
1225 /* struct sembuf is the same on 32 and 64bit :)) */
1226 return sys_semtimedop(first, compat_ptr(ptr), second,
1227 NULL);
1228 case SEMGET:
1229 return sys_semget(first, second, third);
1230 case SEMCTL:
1231 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1232
1233 case MSGSND:
1234 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1235 case MSGRCV:
1236 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1237 case MSGGET:
1238 return sys_msgget((key_t) first, second);
1239 case MSGCTL:
1240 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1241
1242 case SHMAT:
1243 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1244 break;
1245 case SHMDT:
1246 return sys_shmdt(compat_ptr(ptr));
1247 case SHMGET:
1248 return sys_shmget(first, (unsigned)second, third);
1249 case SHMCTL:
1250 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1251
1252 default:
1253 return -ENOSYS;
1254 }
1255 return -EINVAL;
1256 }
1257
1258 asmlinkage long
1259 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1260 struct compat_rusage *ru);
1261
1262 asmlinkage long
1263 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1264 {
1265 return compat_sys_wait4(pid, stat_addr, options, NULL);
1266 }
1267
1268 static unsigned int
1269 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1270 {
1271 size_t copied;
1272 unsigned int ret;
1273
1274 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1275 return (copied != sizeof(ret)) ? -EIO : 0;
1276 }
1277
1278 static unsigned int
1279 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1280 {
1281
1282 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1283 return -EIO;
1284 return 0;
1285 }
1286
1287 /*
1288 * The order in which registers are stored in the ptrace regs structure
1289 */
1290 #define PT_EBX 0
1291 #define PT_ECX 1
1292 #define PT_EDX 2
1293 #define PT_ESI 3
1294 #define PT_EDI 4
1295 #define PT_EBP 5
1296 #define PT_EAX 6
1297 #define PT_DS 7
1298 #define PT_ES 8
1299 #define PT_FS 9
1300 #define PT_GS 10
1301 #define PT_ORIG_EAX 11
1302 #define PT_EIP 12
1303 #define PT_CS 13
1304 #define PT_EFL 14
1305 #define PT_UESP 15
1306 #define PT_SS 16
1307
1308 static unsigned int
1309 getreg (struct task_struct *child, int regno)
1310 {
1311 struct pt_regs *child_regs;
1312
1313 child_regs = task_pt_regs(child);
1314 switch (regno / sizeof(int)) {
1315 case PT_EBX: return child_regs->r11;
1316 case PT_ECX: return child_regs->r9;
1317 case PT_EDX: return child_regs->r10;
1318 case PT_ESI: return child_regs->r14;
1319 case PT_EDI: return child_regs->r15;
1320 case PT_EBP: return child_regs->r13;
1321 case PT_EAX: return child_regs->r8;
1322 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1323 case PT_EIP: return child_regs->cr_iip;
1324 case PT_UESP: return child_regs->r12;
1325 case PT_EFL: return child->thread.eflag;
1326 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1327 return __USER_DS;
1328 case PT_CS: return __USER_CS;
1329 default:
1330 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1331 break;
1332 }
1333 return 0;
1334 }
1335
1336 static void
1337 putreg (struct task_struct *child, int regno, unsigned int value)
1338 {
1339 struct pt_regs *child_regs;
1340
1341 child_regs = task_pt_regs(child);
1342 switch (regno / sizeof(int)) {
1343 case PT_EBX: child_regs->r11 = value; break;
1344 case PT_ECX: child_regs->r9 = value; break;
1345 case PT_EDX: child_regs->r10 = value; break;
1346 case PT_ESI: child_regs->r14 = value; break;
1347 case PT_EDI: child_regs->r15 = value; break;
1348 case PT_EBP: child_regs->r13 = value; break;
1349 case PT_EAX: child_regs->r8 = value; break;
1350 case PT_ORIG_EAX: child_regs->r1 = value; break;
1351 case PT_EIP: child_regs->cr_iip = value; break;
1352 case PT_UESP: child_regs->r12 = value; break;
1353 case PT_EFL: child->thread.eflag = value; break;
1354 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1355 if (value != __USER_DS)
1356 printk(KERN_ERR
1357 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1358 regno, value);
1359 break;
1360 case PT_CS:
1361 if (value != __USER_CS)
1362 printk(KERN_ERR
1363 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1364 regno, value);
1365 break;
1366 default:
1367 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1368 break;
1369 }
1370 }
1371
1372 static void
1373 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1374 struct switch_stack *swp, int tos)
1375 {
1376 struct _fpreg_ia32 *f;
1377 char buf[32];
1378
1379 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1380 if ((regno += tos) >= 8)
1381 regno -= 8;
1382 switch (regno) {
1383 case 0:
1384 ia64f2ia32f(f, &ptp->f8);
1385 break;
1386 case 1:
1387 ia64f2ia32f(f, &ptp->f9);
1388 break;
1389 case 2:
1390 ia64f2ia32f(f, &ptp->f10);
1391 break;
1392 case 3:
1393 ia64f2ia32f(f, &ptp->f11);
1394 break;
1395 case 4:
1396 case 5:
1397 case 6:
1398 case 7:
1399 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1400 break;
1401 }
1402 copy_to_user(reg, f, sizeof(*reg));
1403 }
1404
1405 static void
1406 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1407 struct switch_stack *swp, int tos)
1408 {
1409
1410 if ((regno += tos) >= 8)
1411 regno -= 8;
1412 switch (regno) {
1413 case 0:
1414 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1415 break;
1416 case 1:
1417 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1418 break;
1419 case 2:
1420 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1421 break;
1422 case 3:
1423 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1424 break;
1425 case 4:
1426 case 5:
1427 case 6:
1428 case 7:
1429 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1430 break;
1431 }
1432 return;
1433 }
1434
1435 int
1436 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1437 {
1438 struct switch_stack *swp;
1439 struct pt_regs *ptp;
1440 int i, tos;
1441
1442 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1443 return -EFAULT;
1444
1445 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1446 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1447 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1448 __put_user(tsk->thread.fir, &save->fip);
1449 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1450 __put_user(tsk->thread.fdr, &save->foo);
1451 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1452
1453 /*
1454 * Stack frames start with 16-bytes of temp space
1455 */
1456 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1457 ptp = task_pt_regs(tsk);
1458 tos = (tsk->thread.fsr >> 11) & 7;
1459 for (i = 0; i < 8; i++)
1460 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1461 return 0;
1462 }
1463
1464 static int
1465 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1466 {
1467 struct switch_stack *swp;
1468 struct pt_regs *ptp;
1469 int i, tos;
1470 unsigned int fsrlo, fsrhi, num32;
1471
1472 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1473 return(-EFAULT);
1474
1475 __get_user(num32, (unsigned int __user *)&save->cwd);
1476 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1477 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1478 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1479 num32 = (fsrhi << 16) | fsrlo;
1480 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1481 __get_user(num32, (unsigned int __user *)&save->fip);
1482 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1483 __get_user(num32, (unsigned int __user *)&save->foo);
1484 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1485
1486 /*
1487 * Stack frames start with 16-bytes of temp space
1488 */
1489 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1490 ptp = task_pt_regs(tsk);
1491 tos = (tsk->thread.fsr >> 11) & 7;
1492 for (i = 0; i < 8; i++)
1493 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1494 return 0;
1495 }
1496
1497 int
1498 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1499 {
1500 struct switch_stack *swp;
1501 struct pt_regs *ptp;
1502 int i, tos;
1503 unsigned long mxcsr=0;
1504 unsigned long num128[2];
1505
1506 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1507 return -EFAULT;
1508
1509 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1510 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1511 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1512 __put_user(tsk->thread.fir, &save->fip);
1513 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1514 __put_user(tsk->thread.fdr, &save->foo);
1515 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1516
1517 /*
1518 * Stack frames start with 16-bytes of temp space
1519 */
1520 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1521 ptp = task_pt_regs(tsk);
1522 tos = (tsk->thread.fsr >> 11) & 7;
1523 for (i = 0; i < 8; i++)
1524 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1525
1526 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1527 __put_user(mxcsr & 0xffff, &save->mxcsr);
1528 for (i = 0; i < 8; i++) {
1529 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1530 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1531 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1532 }
1533 return 0;
1534 }
1535
1536 static int
1537 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1538 {
1539 struct switch_stack *swp;
1540 struct pt_regs *ptp;
1541 int i, tos;
1542 unsigned int fsrlo, fsrhi, num32;
1543 int mxcsr;
1544 unsigned long num64;
1545 unsigned long num128[2];
1546
1547 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1548 return(-EFAULT);
1549
1550 __get_user(num32, (unsigned int __user *)&save->cwd);
1551 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1552 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1553 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1554 num32 = (fsrhi << 16) | fsrlo;
1555 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1556 __get_user(num32, (unsigned int __user *)&save->fip);
1557 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1558 __get_user(num32, (unsigned int __user *)&save->foo);
1559 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1560
1561 /*
1562 * Stack frames start with 16-bytes of temp space
1563 */
1564 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1565 ptp = task_pt_regs(tsk);
1566 tos = (tsk->thread.fsr >> 11) & 7;
1567 for (i = 0; i < 8; i++)
1568 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1569
1570 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1571 num64 = mxcsr & 0xff10;
1572 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1573 num64 = mxcsr & 0x3f;
1574 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1575
1576 for (i = 0; i < 8; i++) {
1577 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1578 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1579 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1580 }
1581 return 0;
1582 }
1583
1584 asmlinkage long
1585 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1586 {
1587 struct task_struct *child;
1588 unsigned int value, tmp;
1589 long i, ret;
1590
1591 lock_kernel();
1592 if (request == PTRACE_TRACEME) {
1593 ret = ptrace_traceme();
1594 goto out;
1595 }
1596
1597 child = ptrace_get_task_struct(pid);
1598 if (IS_ERR(child)) {
1599 ret = PTR_ERR(child);
1600 goto out;
1601 }
1602
1603 if (request == PTRACE_ATTACH) {
1604 ret = sys_ptrace(request, pid, addr, data);
1605 goto out_tsk;
1606 }
1607
1608 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1609 if (ret < 0)
1610 goto out_tsk;
1611
1612 switch (request) {
1613 case PTRACE_PEEKTEXT:
1614 case PTRACE_PEEKDATA: /* read word at location addr */
1615 ret = ia32_peek(child, addr, &value);
1616 if (ret == 0)
1617 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1618 else
1619 ret = -EIO;
1620 goto out_tsk;
1621
1622 case PTRACE_POKETEXT:
1623 case PTRACE_POKEDATA: /* write the word at location addr */
1624 ret = ia32_poke(child, addr, data);
1625 goto out_tsk;
1626
1627 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1628 ret = -EIO;
1629 if ((addr & 3) || addr > 17*sizeof(int))
1630 break;
1631
1632 tmp = getreg(child, addr);
1633 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1634 ret = 0;
1635 break;
1636
1637 case PTRACE_POKEUSR: /* write word at addr in USER area */
1638 ret = -EIO;
1639 if ((addr & 3) || addr > 17*sizeof(int))
1640 break;
1641
1642 putreg(child, addr, data);
1643 ret = 0;
1644 break;
1645
1646 case IA32_PTRACE_GETREGS:
1647 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1648 ret = -EIO;
1649 break;
1650 }
1651 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1652 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1653 data += sizeof(int);
1654 }
1655 ret = 0;
1656 break;
1657
1658 case IA32_PTRACE_SETREGS:
1659 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1660 ret = -EIO;
1661 break;
1662 }
1663 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1664 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1665 putreg(child, i, tmp);
1666 data += sizeof(int);
1667 }
1668 ret = 0;
1669 break;
1670
1671 case IA32_PTRACE_GETFPREGS:
1672 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1673 compat_ptr(data));
1674 break;
1675
1676 case IA32_PTRACE_GETFPXREGS:
1677 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1678 compat_ptr(data));
1679 break;
1680
1681 case IA32_PTRACE_SETFPREGS:
1682 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1683 compat_ptr(data));
1684 break;
1685
1686 case IA32_PTRACE_SETFPXREGS:
1687 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1688 compat_ptr(data));
1689 break;
1690
1691 case PTRACE_GETEVENTMSG:
1692 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1693 break;
1694
1695 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1696 case PTRACE_CONT: /* restart after signal. */
1697 case PTRACE_KILL:
1698 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1699 case PTRACE_DETACH: /* detach a process */
1700 ret = sys_ptrace(request, pid, addr, data);
1701 break;
1702
1703 default:
1704 ret = ptrace_request(child, request, addr, data);
1705 break;
1706
1707 }
1708 out_tsk:
1709 put_task_struct(child);
1710 out:
1711 unlock_kernel();
1712 return ret;
1713 }
1714
1715 typedef struct {
1716 unsigned int ss_sp;
1717 unsigned int ss_flags;
1718 unsigned int ss_size;
1719 } ia32_stack_t;
1720
1721 asmlinkage long
1722 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1723 long arg2, long arg3, long arg4, long arg5, long arg6,
1724 long arg7, struct pt_regs pt)
1725 {
1726 stack_t uss, uoss;
1727 ia32_stack_t buf32;
1728 int ret;
1729 mm_segment_t old_fs = get_fs();
1730
1731 if (uss32) {
1732 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1733 return -EFAULT;
1734 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1735 uss.ss_flags = buf32.ss_flags;
1736 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1737 check and set it to the user requested value later */
1738 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1739 ret = -ENOMEM;
1740 goto out;
1741 }
1742 uss.ss_size = MINSIGSTKSZ;
1743 }
1744 set_fs(KERNEL_DS);
1745 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1746 (stack_t __user *) &uoss, pt.r12);
1747 current->sas_ss_size = buf32.ss_size;
1748 set_fs(old_fs);
1749 out:
1750 if (ret < 0)
1751 return(ret);
1752 if (uoss32) {
1753 buf32.ss_sp = (long __user) uoss.ss_sp;
1754 buf32.ss_flags = uoss.ss_flags;
1755 buf32.ss_size = uoss.ss_size;
1756 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1757 return -EFAULT;
1758 }
1759 return ret;
1760 }
1761
1762 asmlinkage int
1763 sys32_pause (void)
1764 {
1765 current->state = TASK_INTERRUPTIBLE;
1766 schedule();
1767 return -ERESTARTNOHAND;
1768 }
1769
1770 asmlinkage int
1771 sys32_msync (unsigned int start, unsigned int len, int flags)
1772 {
1773 unsigned int addr;
1774
1775 if (OFFSET4K(start))
1776 return -EINVAL;
1777 addr = PAGE_START(start);
1778 return sys_msync(addr, len + (start - addr), flags);
1779 }
1780
1781 struct sysctl32 {
1782 unsigned int name;
1783 int nlen;
1784 unsigned int oldval;
1785 unsigned int oldlenp;
1786 unsigned int newval;
1787 unsigned int newlen;
1788 unsigned int __unused[4];
1789 };
1790
1791 #ifdef CONFIG_SYSCTL_SYSCALL
1792 asmlinkage long
1793 sys32_sysctl (struct sysctl32 __user *args)
1794 {
1795 struct sysctl32 a32;
1796 mm_segment_t old_fs = get_fs ();
1797 void __user *oldvalp, *newvalp;
1798 size_t oldlen;
1799 int __user *namep;
1800 long ret;
1801
1802 if (copy_from_user(&a32, args, sizeof(a32)))
1803 return -EFAULT;
1804
1805 /*
1806 * We need to pre-validate these because we have to disable address checking
1807 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1808 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1809 * addresses, we KNOW that access_ok() will always succeed, so this is an
1810 * expensive NOP, but so what...
1811 */
1812 namep = (int __user *) compat_ptr(a32.name);
1813 oldvalp = compat_ptr(a32.oldval);
1814 newvalp = compat_ptr(a32.newval);
1815
1816 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1817 || !access_ok(VERIFY_WRITE, namep, 0)
1818 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1819 || !access_ok(VERIFY_WRITE, newvalp, 0))
1820 return -EFAULT;
1821
1822 set_fs(KERNEL_DS);
1823 lock_kernel();
1824 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1825 newvalp, (size_t) a32.newlen);
1826 unlock_kernel();
1827 set_fs(old_fs);
1828
1829 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1830 return -EFAULT;
1831
1832 return ret;
1833 }
1834 #endif
1835
1836 asmlinkage long
1837 sys32_newuname (struct new_utsname __user *name)
1838 {
1839 int ret = sys_newuname(name);
1840
1841 if (!ret)
1842 if (copy_to_user(name->machine, "i686\0\0\0", 8))
1843 ret = -EFAULT;
1844 return ret;
1845 }
1846
1847 asmlinkage long
1848 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
1849 {
1850 uid_t a, b, c;
1851 int ret;
1852 mm_segment_t old_fs = get_fs();
1853
1854 set_fs(KERNEL_DS);
1855 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
1856 set_fs(old_fs);
1857
1858 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
1859 return -EFAULT;
1860 return ret;
1861 }
1862
1863 asmlinkage long
1864 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
1865 {
1866 gid_t a, b, c;
1867 int ret;
1868 mm_segment_t old_fs = get_fs();
1869
1870 set_fs(KERNEL_DS);
1871 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
1872 set_fs(old_fs);
1873
1874 if (ret)
1875 return ret;
1876
1877 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
1878 }
1879
1880 asmlinkage long
1881 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
1882 {
1883 /* Sign-extension of "offset" is important here... */
1884 return sys_lseek(fd, offset, whence);
1885 }
1886
1887 static int
1888 groups16_to_user(short __user *grouplist, struct group_info *group_info)
1889 {
1890 int i;
1891 short group;
1892
1893 for (i = 0; i < group_info->ngroups; i++) {
1894 group = (short)GROUP_AT(group_info, i);
1895 if (put_user(group, grouplist+i))
1896 return -EFAULT;
1897 }
1898
1899 return 0;
1900 }
1901
1902 static int
1903 groups16_from_user(struct group_info *group_info, short __user *grouplist)
1904 {
1905 int i;
1906 short group;
1907
1908 for (i = 0; i < group_info->ngroups; i++) {
1909 if (get_user(group, grouplist+i))
1910 return -EFAULT;
1911 GROUP_AT(group_info, i) = (gid_t)group;
1912 }
1913
1914 return 0;
1915 }
1916
1917 asmlinkage long
1918 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
1919 {
1920 int i;
1921
1922 if (gidsetsize < 0)
1923 return -EINVAL;
1924
1925 get_group_info(current->group_info);
1926 i = current->group_info->ngroups;
1927 if (gidsetsize) {
1928 if (i > gidsetsize) {
1929 i = -EINVAL;
1930 goto out;
1931 }
1932 if (groups16_to_user(grouplist, current->group_info)) {
1933 i = -EFAULT;
1934 goto out;
1935 }
1936 }
1937 out:
1938 put_group_info(current->group_info);
1939 return i;
1940 }
1941
1942 asmlinkage long
1943 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
1944 {
1945 struct group_info *group_info;
1946 int retval;
1947
1948 if (!capable(CAP_SETGID))
1949 return -EPERM;
1950 if ((unsigned)gidsetsize > NGROUPS_MAX)
1951 return -EINVAL;
1952
1953 group_info = groups_alloc(gidsetsize);
1954 if (!group_info)
1955 return -ENOMEM;
1956 retval = groups16_from_user(group_info, grouplist);
1957 if (retval) {
1958 put_group_info(group_info);
1959 return retval;
1960 }
1961
1962 retval = set_current_groups(group_info);
1963 put_group_info(group_info);
1964
1965 return retval;
1966 }
1967
1968 asmlinkage long
1969 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
1970 {
1971 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
1972 }
1973
1974 asmlinkage long
1975 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
1976 {
1977 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
1978 }
1979
1980 static int
1981 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
1982 {
1983 int err;
1984 u64 hdev;
1985
1986 if (clear_user(ubuf, sizeof(*ubuf)))
1987 return -EFAULT;
1988
1989 hdev = huge_encode_dev(kbuf->dev);
1990 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
1991 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
1992 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
1993 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
1994 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
1995 err |= __put_user(kbuf->mode, &ubuf->st_mode);
1996 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
1997 err |= __put_user(kbuf->uid, &ubuf->st_uid);
1998 err |= __put_user(kbuf->gid, &ubuf->st_gid);
1999 hdev = huge_encode_dev(kbuf->rdev);
2000 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2001 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2002 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2003 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2004 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2005 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2006 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2007 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2008 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2009 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2010 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2011 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2012 return err;
2013 }
2014
2015 asmlinkage long
2016 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2017 {
2018 struct kstat s;
2019 long ret = vfs_stat(filename, &s);
2020 if (!ret)
2021 ret = putstat64(statbuf, &s);
2022 return ret;
2023 }
2024
2025 asmlinkage long
2026 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2027 {
2028 struct kstat s;
2029 long ret = vfs_lstat(filename, &s);
2030 if (!ret)
2031 ret = putstat64(statbuf, &s);
2032 return ret;
2033 }
2034
2035 asmlinkage long
2036 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2037 {
2038 struct kstat s;
2039 long ret = vfs_fstat(fd, &s);
2040 if (!ret)
2041 ret = putstat64(statbuf, &s);
2042 return ret;
2043 }
2044
2045 asmlinkage long
2046 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2047 {
2048 mm_segment_t old_fs = get_fs();
2049 struct timespec t;
2050 long ret;
2051
2052 set_fs(KERNEL_DS);
2053 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2054 set_fs(old_fs);
2055 if (put_compat_timespec(&t, interval))
2056 return -EFAULT;
2057 return ret;
2058 }
2059
2060 asmlinkage long
2061 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2062 {
2063 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2064 }
2065
2066 asmlinkage long
2067 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2068 {
2069 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2070 }
2071
2072 asmlinkage long
2073 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2074 {
2075 mm_segment_t old_fs = get_fs();
2076 long ret;
2077 off_t of;
2078
2079 if (offset && get_user(of, offset))
2080 return -EFAULT;
2081
2082 set_fs(KERNEL_DS);
2083 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2084 set_fs(old_fs);
2085
2086 if (offset && put_user(of, offset))
2087 return -EFAULT;
2088
2089 return ret;
2090 }
2091
2092 asmlinkage long
2093 sys32_personality (unsigned int personality)
2094 {
2095 long ret;
2096
2097 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2098 personality = PER_LINUX32;
2099 ret = sys_personality(personality);
2100 if (ret == PER_LINUX32)
2101 ret = PER_LINUX;
2102 return ret;
2103 }
2104
2105 asmlinkage unsigned long
2106 sys32_brk (unsigned int brk)
2107 {
2108 unsigned long ret, obrk;
2109 struct mm_struct *mm = current->mm;
2110
2111 obrk = mm->brk;
2112 ret = sys_brk(brk);
2113 if (ret < obrk)
2114 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2115 return ret;
2116 }
2117
2118 /* Structure for ia32 emulation on ia64 */
2119 struct epoll_event32
2120 {
2121 u32 events;
2122 u32 data[2];
2123 };
2124
2125 asmlinkage long
2126 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2127 {
2128 mm_segment_t old_fs = get_fs();
2129 struct epoll_event event64;
2130 int error;
2131 u32 data_halfword;
2132
2133 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2134 return -EFAULT;
2135
2136 __get_user(event64.events, &event->events);
2137 __get_user(data_halfword, &event->data[0]);
2138 event64.data = data_halfword;
2139 __get_user(data_halfword, &event->data[1]);
2140 event64.data |= (u64)data_halfword << 32;
2141
2142 set_fs(KERNEL_DS);
2143 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2144 set_fs(old_fs);
2145
2146 return error;
2147 }
2148
2149 asmlinkage long
2150 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2151 int timeout)
2152 {
2153 struct epoll_event *events64 = NULL;
2154 mm_segment_t old_fs = get_fs();
2155 int numevents, size;
2156 int evt_idx;
2157 int do_free_pages = 0;
2158
2159 if (maxevents <= 0) {
2160 return -EINVAL;
2161 }
2162
2163 /* Verify that the area passed by the user is writeable */
2164 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2165 return -EFAULT;
2166
2167 /*
2168 * Allocate space for the intermediate copy. If the space needed
2169 * is large enough to cause kmalloc to fail, then try again with
2170 * __get_free_pages.
2171 */
2172 size = maxevents * sizeof(struct epoll_event);
2173 events64 = kmalloc(size, GFP_KERNEL);
2174 if (events64 == NULL) {
2175 events64 = (struct epoll_event *)
2176 __get_free_pages(GFP_KERNEL, get_order(size));
2177 if (events64 == NULL)
2178 return -ENOMEM;
2179 do_free_pages = 1;
2180 }
2181
2182 /* Do the system call */
2183 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2184 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2185 maxevents, timeout);
2186 set_fs(old_fs);
2187
2188 /* Don't modify userspace memory if we're returning an error */
2189 if (numevents > 0) {
2190 /* Translate the 64-bit structures back into the 32-bit
2191 structures */
2192 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2193 __put_user(events64[evt_idx].events,
2194 &events[evt_idx].events);
2195 __put_user((u32)events64[evt_idx].data,
2196 &events[evt_idx].data[0]);
2197 __put_user((u32)(events64[evt_idx].data >> 32),
2198 &events[evt_idx].data[1]);
2199 }
2200 }
2201
2202 if (do_free_pages)
2203 free_pages((unsigned long) events64, get_order(size));
2204 else
2205 kfree(events64);
2206 return numevents;
2207 }
2208
2209 /*
2210 * Get a yet unused TLS descriptor index.
2211 */
2212 static int
2213 get_free_idx (void)
2214 {
2215 struct thread_struct *t = &current->thread;
2216 int idx;
2217
2218 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2219 if (desc_empty(t->tls_array + idx))
2220 return idx + GDT_ENTRY_TLS_MIN;
2221 return -ESRCH;
2222 }
2223
2224 static void set_tls_desc(struct task_struct *p, int idx,
2225 const struct ia32_user_desc *info, int n)
2226 {
2227 struct thread_struct *t = &p->thread;
2228 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
2229 int cpu;
2230
2231 /*
2232 * We must not get preempted while modifying the TLS.
2233 */
2234 cpu = get_cpu();
2235
2236 while (n-- > 0) {
2237 if (LDT_empty(info)) {
2238 desc->a = 0;
2239 desc->b = 0;
2240 } else {
2241 desc->a = LDT_entry_a(info);
2242 desc->b = LDT_entry_b(info);
2243 }
2244
2245 ++info;
2246 ++desc;
2247 }
2248
2249 if (t == &current->thread)
2250 load_TLS(t, cpu);
2251
2252 put_cpu();
2253 }
2254
2255 /*
2256 * Set a given TLS descriptor:
2257 */
2258 asmlinkage int
2259 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2260 {
2261 struct ia32_user_desc info;
2262 int idx;
2263
2264 if (copy_from_user(&info, u_info, sizeof(info)))
2265 return -EFAULT;
2266 idx = info.entry_number;
2267
2268 /*
2269 * index -1 means the kernel should try to find and allocate an empty descriptor:
2270 */
2271 if (idx == -1) {
2272 idx = get_free_idx();
2273 if (idx < 0)
2274 return idx;
2275 if (put_user(idx, &u_info->entry_number))
2276 return -EFAULT;
2277 }
2278
2279 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2280 return -EINVAL;
2281
2282 set_tls_desc(current, idx, &info, 1);
2283 return 0;
2284 }
2285
2286 /*
2287 * Get the current Thread-Local Storage area:
2288 */
2289
2290 #define GET_BASE(desc) ( \
2291 (((desc)->a >> 16) & 0x0000ffff) | \
2292 (((desc)->b << 16) & 0x00ff0000) | \
2293 ( (desc)->b & 0xff000000) )
2294
2295 #define GET_LIMIT(desc) ( \
2296 ((desc)->a & 0x0ffff) | \
2297 ((desc)->b & 0xf0000) )
2298
2299 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2300 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2301 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2302 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2303 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2304 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2305
2306 static void fill_user_desc(struct ia32_user_desc *info, int idx,
2307 const struct desc_struct *desc)
2308 {
2309 info->entry_number = idx;
2310 info->base_addr = GET_BASE(desc);
2311 info->limit = GET_LIMIT(desc);
2312 info->seg_32bit = GET_32BIT(desc);
2313 info->contents = GET_CONTENTS(desc);
2314 info->read_exec_only = !GET_WRITABLE(desc);
2315 info->limit_in_pages = GET_LIMIT_PAGES(desc);
2316 info->seg_not_present = !GET_PRESENT(desc);
2317 info->useable = GET_USEABLE(desc);
2318 }
2319
2320 asmlinkage int
2321 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2322 {
2323 struct ia32_user_desc info;
2324 struct desc_struct *desc;
2325 int idx;
2326
2327 if (get_user(idx, &u_info->entry_number))
2328 return -EFAULT;
2329 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2330 return -EINVAL;
2331
2332 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2333 fill_user_desc(&info, idx, desc);
2334
2335 if (copy_to_user(u_info, &info, sizeof(info)))
2336 return -EFAULT;
2337 return 0;
2338 }
2339
2340 struct regset_get {
2341 void *kbuf;
2342 void __user *ubuf;
2343 };
2344
2345 struct regset_set {
2346 const void *kbuf;
2347 const void __user *ubuf;
2348 };
2349
2350 struct regset_getset {
2351 struct task_struct *target;
2352 const struct user_regset *regset;
2353 union {
2354 struct regset_get get;
2355 struct regset_set set;
2356 } u;
2357 unsigned int pos;
2358 unsigned int count;
2359 int ret;
2360 };
2361
2362 static void getfpreg(struct task_struct *task, int regno, int *val)
2363 {
2364 switch (regno / sizeof(int)) {
2365 case 0:
2366 *val = task->thread.fcr & 0xffff;
2367 break;
2368 case 1:
2369 *val = task->thread.fsr & 0xffff;
2370 break;
2371 case 2:
2372 *val = (task->thread.fsr>>16) & 0xffff;
2373 break;
2374 case 3:
2375 *val = task->thread.fir;
2376 break;
2377 case 4:
2378 *val = (task->thread.fir>>32) & 0xffff;
2379 break;
2380 case 5:
2381 *val = task->thread.fdr;
2382 break;
2383 case 6:
2384 *val = (task->thread.fdr >> 32) & 0xffff;
2385 break;
2386 }
2387 }
2388
2389 static void setfpreg(struct task_struct *task, int regno, int val)
2390 {
2391 switch (regno / sizeof(int)) {
2392 case 0:
2393 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2394 | (val & 0x1f3f);
2395 break;
2396 case 1:
2397 task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
2398 break;
2399 case 2:
2400 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2401 | (val << 16);
2402 break;
2403 case 3:
2404 task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
2405 break;
2406 case 5:
2407 task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
2408 break;
2409 }
2410 }
2411
2412 static void access_fpreg_ia32(int regno, void *reg,
2413 struct pt_regs *pt, struct switch_stack *sw,
2414 int tos, int write)
2415 {
2416 void *f;
2417
2418 if ((regno += tos) >= 8)
2419 regno -= 8;
2420 if (regno < 4)
2421 f = &pt->f8 + regno;
2422 else if (regno <= 7)
2423 f = &sw->f12 + (regno - 4);
2424 else {
2425 printk(KERN_ERR "regno must be less than 7 \n");
2426 return;
2427 }
2428
2429 if (write)
2430 memcpy(f, reg, sizeof(struct _fpreg_ia32));
2431 else
2432 memcpy(reg, f, sizeof(struct _fpreg_ia32));
2433 }
2434
2435 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
2436 {
2437 struct regset_getset *dst = arg;
2438 struct task_struct *task = dst->target;
2439 struct pt_regs *pt;
2440 int start, end, tos;
2441 char buf[80];
2442
2443 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2444 return;
2445 if (dst->pos < 7 * sizeof(int)) {
2446 end = min((dst->pos + dst->count),
2447 (unsigned int)(7 * sizeof(int)));
2448 for (start = dst->pos; start < end; start += sizeof(int))
2449 getfpreg(task, start, (int *)(buf + start));
2450 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2451 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2452 0, 7 * sizeof(int));
2453 if (dst->ret || dst->count == 0)
2454 return;
2455 }
2456 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2457 pt = task_pt_regs(task);
2458 tos = (task->thread.fsr >> 11) & 7;
2459 end = min(dst->pos + dst->count,
2460 (unsigned int)(sizeof(struct ia32_user_i387_struct)));
2461 start = (dst->pos - 7 * sizeof(int)) /
2462 sizeof(struct _fpreg_ia32);
2463 end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2464 for (; start < end; start++)
2465 access_fpreg_ia32(start,
2466 (struct _fpreg_ia32 *)buf + start,
2467 pt, info->sw, tos, 0);
2468 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2469 &dst->u.get.kbuf, &dst->u.get.ubuf,
2470 buf, 7 * sizeof(int),
2471 sizeof(struct ia32_user_i387_struct));
2472 if (dst->ret || dst->count == 0)
2473 return;
2474 }
2475 }
2476
2477 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
2478 {
2479 struct regset_getset *dst = arg;
2480 struct task_struct *task = dst->target;
2481 struct pt_regs *pt;
2482 char buf[80];
2483 int end, start, tos;
2484
2485 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2486 return;
2487
2488 if (dst->pos < 7 * sizeof(int)) {
2489 start = dst->pos;
2490 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2491 &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
2492 0, 7 * sizeof(int));
2493 if (dst->ret)
2494 return;
2495 for (; start < dst->pos; start += sizeof(int))
2496 setfpreg(task, start, *((int *)(buf + start)));
2497 if (dst->count == 0)
2498 return;
2499 }
2500 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2501 start = (dst->pos - 7 * sizeof(int)) /
2502 sizeof(struct _fpreg_ia32);
2503 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2504 &dst->u.set.kbuf, &dst->u.set.ubuf,
2505 buf, 7 * sizeof(int),
2506 sizeof(struct ia32_user_i387_struct));
2507 if (dst->ret)
2508 return;
2509 pt = task_pt_regs(task);
2510 tos = (task->thread.fsr >> 11) & 7;
2511 end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2512 for (; start < end; start++)
2513 access_fpreg_ia32(start,
2514 (struct _fpreg_ia32 *)buf + start,
2515 pt, info->sw, tos, 1);
2516 if (dst->count == 0)
2517 return;
2518 }
2519 }
2520
2521 #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
2522 static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
2523 {
2524 int min_val;
2525
2526 min_val = min(end, OFFSET(fop));
2527 while (start < min_val) {
2528 if (start == OFFSET(cwd))
2529 *((short *)buf) = task->thread.fcr & 0xffff;
2530 else if (start == OFFSET(swd))
2531 *((short *)buf) = task->thread.fsr & 0xffff;
2532 else if (start == OFFSET(twd))
2533 *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
2534 buf += 2;
2535 start += 2;
2536 }
2537 /* skip fop element */
2538 if (start == OFFSET(fop)) {
2539 start += 2;
2540 buf += 2;
2541 }
2542 while (start < end) {
2543 if (start == OFFSET(fip))
2544 *((int *)buf) = task->thread.fir;
2545 else if (start == OFFSET(fcs))
2546 *((int *)buf) = (task->thread.fir>>32) & 0xffff;
2547 else if (start == OFFSET(foo))
2548 *((int *)buf) = task->thread.fdr;
2549 else if (start == OFFSET(fos))
2550 *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
2551 else if (start == OFFSET(mxcsr))
2552 *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
2553 | ((task->thread.fsr>>32) & 0x3f);
2554 buf += 4;
2555 start += 4;
2556 }
2557 }
2558
2559 static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
2560 {
2561 int min_val, num32;
2562 short num;
2563 unsigned long num64;
2564
2565 min_val = min(end, OFFSET(fop));
2566 while (start < min_val) {
2567 num = *((short *)buf);
2568 if (start == OFFSET(cwd)) {
2569 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2570 | (num & 0x1f3f);
2571 } else if (start == OFFSET(swd)) {
2572 task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
2573 } else if (start == OFFSET(twd)) {
2574 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2575 | (((int)num) << 16);
2576 }
2577 buf += 2;
2578 start += 2;
2579 }
2580 /* skip fop element */
2581 if (start == OFFSET(fop)) {
2582 start += 2;
2583 buf += 2;
2584 }
2585 while (start < end) {
2586 num32 = *((int *)buf);
2587 if (start == OFFSET(fip))
2588 task->thread.fir = (task->thread.fir & (~0xffffffff))
2589 | num32;
2590 else if (start == OFFSET(foo))
2591 task->thread.fdr = (task->thread.fdr & (~0xffffffff))
2592 | num32;
2593 else if (start == OFFSET(mxcsr)) {
2594 num64 = num32 & 0xff10;
2595 task->thread.fcr = (task->thread.fcr &
2596 (~0xff1000000000UL)) | (num64<<32);
2597 num64 = num32 & 0x3f;
2598 task->thread.fsr = (task->thread.fsr &
2599 (~0x3f00000000UL)) | (num64<<32);
2600 }
2601 buf += 4;
2602 start += 4;
2603 }
2604 }
2605
2606 static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
2607 {
2608 struct regset_getset *dst = arg;
2609 struct task_struct *task = dst->target;
2610 struct pt_regs *pt;
2611 char buf[128];
2612 int start, end, tos;
2613
2614 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2615 return;
2616 if (dst->pos < OFFSET(st_space[0])) {
2617 end = min(dst->pos + dst->count, (unsigned int)32);
2618 getfpxreg(task, dst->pos, end, buf);
2619 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2620 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2621 0, OFFSET(st_space[0]));
2622 if (dst->ret || dst->count == 0)
2623 return;
2624 }
2625 if (dst->pos < OFFSET(xmm_space[0])) {
2626 pt = task_pt_regs(task);
2627 tos = (task->thread.fsr >> 11) & 7;
2628 end = min(dst->pos + dst->count,
2629 (unsigned int)OFFSET(xmm_space[0]));
2630 start = (dst->pos - OFFSET(st_space[0])) / 16;
2631 end = (end - OFFSET(st_space[0])) / 16;
2632 for (; start < end; start++)
2633 access_fpreg_ia32(start, buf + 16 * start, pt,
2634 info->sw, tos, 0);
2635 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2636 &dst->u.get.kbuf, &dst->u.get.ubuf,
2637 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2638 if (dst->ret || dst->count == 0)
2639 return;
2640 }
2641 if (dst->pos < OFFSET(padding[0]))
2642 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2643 &dst->u.get.kbuf, &dst->u.get.ubuf,
2644 &info->sw->f16, OFFSET(xmm_space[0]),
2645 OFFSET(padding[0]));
2646 }
2647
2648 static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
2649 {
2650 struct regset_getset *dst = arg;
2651 struct task_struct *task = dst->target;
2652 char buf[128];
2653 int start, end;
2654
2655 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2656 return;
2657
2658 if (dst->pos < OFFSET(st_space[0])) {
2659 start = dst->pos;
2660 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2661 &dst->u.set.kbuf, &dst->u.set.ubuf,
2662 buf, 0, OFFSET(st_space[0]));
2663 if (dst->ret)
2664 return;
2665 setfpxreg(task, start, dst->pos, buf);
2666 if (dst->count == 0)
2667 return;
2668 }
2669 if (dst->pos < OFFSET(xmm_space[0])) {
2670 struct pt_regs *pt;
2671 int tos;
2672 pt = task_pt_regs(task);
2673 tos = (task->thread.fsr >> 11) & 7;
2674 start = (dst->pos - OFFSET(st_space[0])) / 16;
2675 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2676 &dst->u.set.kbuf, &dst->u.set.ubuf,
2677 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2678 if (dst->ret)
2679 return;
2680 end = (dst->pos - OFFSET(st_space[0])) / 16;
2681 for (; start < end; start++)
2682 access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
2683 tos, 1);
2684 if (dst->count == 0)
2685 return;
2686 }
2687 if (dst->pos < OFFSET(padding[0]))
2688 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2689 &dst->u.set.kbuf, &dst->u.set.ubuf,
2690 &info->sw->f16, OFFSET(xmm_space[0]),
2691 OFFSET(padding[0]));
2692 }
2693 #undef OFFSET
2694
2695 static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
2696 struct task_struct *target,
2697 const struct user_regset *regset,
2698 unsigned int pos, unsigned int count,
2699 const void *kbuf, const void __user *ubuf)
2700 {
2701 struct regset_getset info = { .target = target, .regset = regset,
2702 .pos = pos, .count = count,
2703 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
2704 .ret = 0 };
2705
2706 if (target == current)
2707 unw_init_running(call, &info);
2708 else {
2709 struct unw_frame_info ufi;
2710 memset(&ufi, 0, sizeof(ufi));
2711 unw_init_from_blocked_task(&ufi, target);
2712 (*call)(&ufi, &info);
2713 }
2714
2715 return info.ret;
2716 }
2717
2718 static int ia32_fpregs_get(struct task_struct *target,
2719 const struct user_regset *regset,
2720 unsigned int pos, unsigned int count,
2721 void *kbuf, void __user *ubuf)
2722 {
2723 return do_regset_call(do_fpregs_get, target, regset, pos, count,
2724 kbuf, ubuf);
2725 }
2726
2727 static int ia32_fpregs_set(struct task_struct *target,
2728 const struct user_regset *regset,
2729 unsigned int pos, unsigned int count,
2730 const void *kbuf, const void __user *ubuf)
2731 {
2732 return do_regset_call(do_fpregs_set, target, regset, pos, count,
2733 kbuf, ubuf);
2734 }
2735
2736 static int ia32_fpxregs_get(struct task_struct *target,
2737 const struct user_regset *regset,
2738 unsigned int pos, unsigned int count,
2739 void *kbuf, void __user *ubuf)
2740 {
2741 return do_regset_call(do_fpxregs_get, target, regset, pos, count,
2742 kbuf, ubuf);
2743 }
2744
2745 static int ia32_fpxregs_set(struct task_struct *target,
2746 const struct user_regset *regset,
2747 unsigned int pos, unsigned int count,
2748 const void *kbuf, const void __user *ubuf)
2749 {
2750 return do_regset_call(do_fpxregs_set, target, regset, pos, count,
2751 kbuf, ubuf);
2752 }
2753
2754 static int ia32_genregs_get(struct task_struct *target,
2755 const struct user_regset *regset,
2756 unsigned int pos, unsigned int count,
2757 void *kbuf, void __user *ubuf)
2758 {
2759 if (kbuf) {
2760 u32 *kp = kbuf;
2761 while (count > 0) {
2762 *kp++ = getreg(target, pos);
2763 pos += 4;
2764 count -= 4;
2765 }
2766 } else {
2767 u32 __user *up = ubuf;
2768 while (count > 0) {
2769 if (__put_user(getreg(target, pos), up++))
2770 return -EFAULT;
2771 pos += 4;
2772 count -= 4;
2773 }
2774 }
2775 return 0;
2776 }
2777
2778 static int ia32_genregs_set(struct task_struct *target,
2779 const struct user_regset *regset,
2780 unsigned int pos, unsigned int count,
2781 const void *kbuf, const void __user *ubuf)
2782 {
2783 int ret = 0;
2784
2785 if (kbuf) {
2786 const u32 *kp = kbuf;
2787 while (!ret && count > 0) {
2788 putreg(target, pos, *kp++);
2789 pos += 4;
2790 count -= 4;
2791 }
2792 } else {
2793 const u32 __user *up = ubuf;
2794 u32 val;
2795 while (!ret && count > 0) {
2796 ret = __get_user(val, up++);
2797 if (!ret)
2798 putreg(target, pos, val);
2799 pos += 4;
2800 count -= 4;
2801 }
2802 }
2803 return ret;
2804 }
2805
2806 static int ia32_tls_active(struct task_struct *target,
2807 const struct user_regset *regset)
2808 {
2809 struct thread_struct *t = &target->thread;
2810 int n = GDT_ENTRY_TLS_ENTRIES;
2811 while (n > 0 && desc_empty(&t->tls_array[n -1]))
2812 --n;
2813 return n;
2814 }
2815
2816 static int ia32_tls_get(struct task_struct *target,
2817 const struct user_regset *regset, unsigned int pos,
2818 unsigned int count, void *kbuf, void __user *ubuf)
2819 {
2820 const struct desc_struct *tls;
2821
2822 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2823 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2824 (count % sizeof(struct ia32_user_desc)) != 0)
2825 return -EINVAL;
2826
2827 pos /= sizeof(struct ia32_user_desc);
2828 count /= sizeof(struct ia32_user_desc);
2829
2830 tls = &target->thread.tls_array[pos];
2831
2832 if (kbuf) {
2833 struct ia32_user_desc *info = kbuf;
2834 while (count-- > 0)
2835 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
2836 tls++);
2837 } else {
2838 struct ia32_user_desc __user *u_info = ubuf;
2839 while (count-- > 0) {
2840 struct ia32_user_desc info;
2841 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
2842 if (__copy_to_user(u_info++, &info, sizeof(info)))
2843 return -EFAULT;
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 static int ia32_tls_set(struct task_struct *target,
2851 const struct user_regset *regset, unsigned int pos,
2852 unsigned int count, const void *kbuf, const void __user *ubuf)
2853 {
2854 struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
2855 const struct ia32_user_desc *info;
2856
2857 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2858 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2859 (count % sizeof(struct ia32_user_desc)) != 0)
2860 return -EINVAL;
2861
2862 if (kbuf)
2863 info = kbuf;
2864 else if (__copy_from_user(infobuf, ubuf, count))
2865 return -EFAULT;
2866 else
2867 info = infobuf;
2868
2869 set_tls_desc(target,
2870 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
2871 info, count / sizeof(struct ia32_user_desc));
2872
2873 return 0;
2874 }
2875
2876 /*
2877 * This should match arch/i386/kernel/ptrace.c:native_regsets.
2878 * XXX ioperm? vm86?
2879 */
2880 static const struct user_regset ia32_regsets[] = {
2881 {
2882 .core_note_type = NT_PRSTATUS,
2883 .n = sizeof(struct user_regs_struct32)/4,
2884 .size = 4, .align = 4,
2885 .get = ia32_genregs_get, .set = ia32_genregs_set
2886 },
2887 {
2888 .core_note_type = NT_PRFPREG,
2889 .n = sizeof(struct ia32_user_i387_struct) / 4,
2890 .size = 4, .align = 4,
2891 .get = ia32_fpregs_get, .set = ia32_fpregs_set
2892 },
2893 {
2894 .core_note_type = NT_PRXFPREG,
2895 .n = sizeof(struct ia32_user_fxsr_struct) / 4,
2896 .size = 4, .align = 4,
2897 .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
2898 },
2899 {
2900 .core_note_type = NT_386_TLS,
2901 .n = GDT_ENTRY_TLS_ENTRIES,
2902 .bias = GDT_ENTRY_TLS_MIN,
2903 .size = sizeof(struct ia32_user_desc),
2904 .align = sizeof(struct ia32_user_desc),
2905 .active = ia32_tls_active,
2906 .get = ia32_tls_get, .set = ia32_tls_set,
2907 },
2908 };
2909
2910 const struct user_regset_view user_ia32_view = {
2911 .name = "i386", .e_machine = EM_386,
2912 .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
2913 };
2914
2915 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
2916 __u32 len_low, __u32 len_high, int advice)
2917 {
2918 return sys_fadvise64_64(fd,
2919 (((u64)offset_high)<<32) | offset_low,
2920 (((u64)len_high)<<32) | len_low,
2921 advice);
2922 }
2923
2924 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
2925
2926 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
2927 {
2928 uid_t sruid, seuid;
2929
2930 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2931 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2932 return sys_setreuid(sruid, seuid);
2933 }
2934
2935 asmlinkage long
2936 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
2937 compat_uid_t suid)
2938 {
2939 uid_t sruid, seuid, ssuid;
2940
2941 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2942 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2943 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
2944 return sys_setresuid(sruid, seuid, ssuid);
2945 }
2946
2947 asmlinkage long
2948 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
2949 {
2950 gid_t srgid, segid;
2951
2952 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2953 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2954 return sys_setregid(srgid, segid);
2955 }
2956
2957 asmlinkage long
2958 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
2959 compat_gid_t sgid)
2960 {
2961 gid_t srgid, segid, ssgid;
2962
2963 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2964 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2965 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
2966 return sys_setresgid(srgid, segid, ssgid);
2967 }
2968 #endif /* NOTYET */