]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/ia64/ia32/sys_ia32.c
[PATCH] unify sys_ptrace prototype
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / ia32 / sys_ia32.c
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
3 *
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
12 *
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
15 */
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/syscalls.h>
20 #include <linux/sysctl.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/signal.h>
25 #include <linux/resource.h>
26 #include <linux/times.h>
27 #include <linux/utsname.h>
28 #include <linux/timex.h>
29 #include <linux/smp.h>
30 #include <linux/smp_lock.h>
31 #include <linux/sem.h>
32 #include <linux/msg.h>
33 #include <linux/mm.h>
34 #include <linux/shm.h>
35 #include <linux/slab.h>
36 #include <linux/uio.h>
37 #include <linux/nfs_fs.h>
38 #include <linux/quota.h>
39 #include <linux/syscalls.h>
40 #include <linux/sunrpc/svc.h>
41 #include <linux/nfsd/nfsd.h>
42 #include <linux/nfsd/cache.h>
43 #include <linux/nfsd/xdr.h>
44 #include <linux/nfsd/syscall.h>
45 #include <linux/poll.h>
46 #include <linux/eventpoll.h>
47 #include <linux/personality.h>
48 #include <linux/ptrace.h>
49 #include <linux/stat.h>
50 #include <linux/ipc.h>
51 #include <linux/compat.h>
52 #include <linux/vfs.h>
53 #include <linux/mman.h>
54
55 #include <asm/intrinsics.h>
56 #include <asm/semaphore.h>
57 #include <asm/types.h>
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60
61 #include "ia32priv.h"
62
63 #include <net/scm.h>
64 #include <net/sock.h>
65
66 #define DEBUG 0
67
68 #if DEBUG
69 # define DBG(fmt...) printk(KERN_DEBUG fmt)
70 #else
71 # define DBG(fmt...)
72 #endif
73
74 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
75
76 #define OFFSET4K(a) ((a) & 0xfff)
77 #define PAGE_START(addr) ((addr) & PAGE_MASK)
78 #define MINSIGSTKSZ_IA32 2048
79
80 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
81 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
82
83 /*
84 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
85 * while doing so.
86 */
87 /* XXX make per-mm: */
88 static DECLARE_MUTEX(ia32_mmap_sem);
89
90 asmlinkage long
91 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
92 struct pt_regs *regs)
93 {
94 long error;
95 char *filename;
96 unsigned long old_map_base, old_task_size, tssd;
97
98 filename = getname(name);
99 error = PTR_ERR(filename);
100 if (IS_ERR(filename))
101 return error;
102
103 old_map_base = current->thread.map_base;
104 old_task_size = current->thread.task_size;
105 tssd = ia64_get_kr(IA64_KR_TSSD);
106
107 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
108 current->thread.map_base = DEFAULT_MAP_BASE;
109 current->thread.task_size = DEFAULT_TASK_SIZE;
110 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
111 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
112
113 error = compat_do_execve(filename, argv, envp, regs);
114 putname(filename);
115
116 if (error < 0) {
117 /* oops, execve failed, switch back to old values... */
118 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
119 ia64_set_kr(IA64_KR_TSSD, tssd);
120 current->thread.map_base = old_map_base;
121 current->thread.task_size = old_task_size;
122 }
123
124 return error;
125 }
126
127 int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
128 {
129 int err;
130
131 if ((u64) stat->size > MAX_NON_LFS ||
132 !old_valid_dev(stat->dev) ||
133 !old_valid_dev(stat->rdev))
134 return -EOVERFLOW;
135
136 if (clear_user(ubuf, sizeof(*ubuf)))
137 return -EFAULT;
138
139 err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
140 err |= __put_user(stat->ino, &ubuf->st_ino);
141 err |= __put_user(stat->mode, &ubuf->st_mode);
142 err |= __put_user(stat->nlink, &ubuf->st_nlink);
143 err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
144 err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
145 err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
146 err |= __put_user(stat->size, &ubuf->st_size);
147 err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
148 err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
149 err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
150 err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
151 err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
152 err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
153 err |= __put_user(stat->blksize, &ubuf->st_blksize);
154 err |= __put_user(stat->blocks, &ubuf->st_blocks);
155 return err;
156 }
157
158 #if PAGE_SHIFT > IA32_PAGE_SHIFT
159
160
161 static int
162 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
163 {
164 int prot = 0;
165
166 if (!vma || vma->vm_start > addr)
167 return 0;
168
169 if (vma->vm_flags & VM_READ)
170 prot |= PROT_READ;
171 if (vma->vm_flags & VM_WRITE)
172 prot |= PROT_WRITE;
173 if (vma->vm_flags & VM_EXEC)
174 prot |= PROT_EXEC;
175 return prot;
176 }
177
178 /*
179 * Map a subpage by creating an anonymous page that contains the union of the old page and
180 * the subpage.
181 */
182 static unsigned long
183 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
184 loff_t off)
185 {
186 void *page = NULL;
187 struct inode *inode;
188 unsigned long ret = 0;
189 struct vm_area_struct *vma = find_vma(current->mm, start);
190 int old_prot = get_page_prot(vma, start);
191
192 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
193 file, start, end, prot, flags, off);
194
195
196 /* Optimize the case where the old mmap and the new mmap are both anonymous */
197 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
198 if (clear_user((void __user *) start, end - start)) {
199 ret = -EFAULT;
200 goto out;
201 }
202 goto skip_mmap;
203 }
204
205 page = (void *) get_zeroed_page(GFP_KERNEL);
206 if (!page)
207 return -ENOMEM;
208
209 if (old_prot)
210 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
211
212 down_write(&current->mm->mmap_sem);
213 {
214 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
215 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
216 }
217 up_write(&current->mm->mmap_sem);
218
219 if (IS_ERR((void *) ret))
220 goto out;
221
222 if (old_prot) {
223 /* copy back the old page contents. */
224 if (offset_in_page(start))
225 copy_to_user((void __user *) PAGE_START(start), page,
226 offset_in_page(start));
227 if (offset_in_page(end))
228 copy_to_user((void __user *) end, page + offset_in_page(end),
229 PAGE_SIZE - offset_in_page(end));
230 }
231
232 if (!(flags & MAP_ANONYMOUS)) {
233 /* read the file contents */
234 inode = file->f_dentry->d_inode;
235 if (!inode->i_fop || !file->f_op->read
236 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
237 {
238 ret = -EINVAL;
239 goto out;
240 }
241 }
242
243 skip_mmap:
244 if (!(prot & PROT_WRITE))
245 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
246 out:
247 if (page)
248 free_page((unsigned long) page);
249 return ret;
250 }
251
252 /* SLAB cache for partial_page structures */
253 kmem_cache_t *partial_page_cachep;
254
255 /*
256 * init partial_page_list.
257 * return 0 means kmalloc fail.
258 */
259 struct partial_page_list*
260 ia32_init_pp_list(void)
261 {
262 struct partial_page_list *p;
263
264 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
265 return p;
266 p->pp_head = NULL;
267 p->ppl_rb = RB_ROOT;
268 p->pp_hint = NULL;
269 atomic_set(&p->pp_count, 1);
270 return p;
271 }
272
273 /*
274 * Search for the partial page with @start in partial page list @ppl.
275 * If finds the partial page, return the found partial page.
276 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
277 * be used by later __ia32_insert_pp().
278 */
279 static struct partial_page *
280 __ia32_find_pp(struct partial_page_list *ppl, unsigned int start,
281 struct partial_page **pprev, struct rb_node ***rb_link,
282 struct rb_node **rb_parent)
283 {
284 struct partial_page *pp;
285 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
286
287 pp = ppl->pp_hint;
288 if (pp && pp->base == start)
289 return pp;
290
291 __rb_link = &ppl->ppl_rb.rb_node;
292 rb_prev = __rb_parent = NULL;
293
294 while (*__rb_link) {
295 __rb_parent = *__rb_link;
296 pp = rb_entry(__rb_parent, struct partial_page, pp_rb);
297
298 if (pp->base == start) {
299 ppl->pp_hint = pp;
300 return pp;
301 } else if (pp->base < start) {
302 rb_prev = __rb_parent;
303 __rb_link = &__rb_parent->rb_right;
304 } else {
305 __rb_link = &__rb_parent->rb_left;
306 }
307 }
308
309 *rb_link = __rb_link;
310 *rb_parent = __rb_parent;
311 *pprev = NULL;
312 if (rb_prev)
313 *pprev = rb_entry(rb_prev, struct partial_page, pp_rb);
314 return NULL;
315 }
316
317 /*
318 * insert @pp into @ppl.
319 */
320 static void
321 __ia32_insert_pp(struct partial_page_list *ppl, struct partial_page *pp,
322 struct partial_page *prev, struct rb_node **rb_link,
323 struct rb_node *rb_parent)
324 {
325 /* link list */
326 if (prev) {
327 pp->next = prev->next;
328 prev->next = pp;
329 } else {
330 ppl->pp_head = pp;
331 if (rb_parent)
332 pp->next = rb_entry(rb_parent,
333 struct partial_page, pp_rb);
334 else
335 pp->next = NULL;
336 }
337
338 /* link rb */
339 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
340 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
341
342 ppl->pp_hint = pp;
343 }
344
345 /*
346 * delete @pp from partial page list @ppl.
347 */
348 static void
349 __ia32_delete_pp(struct partial_page_list *ppl, struct partial_page *pp,
350 struct partial_page *prev)
351 {
352 if (prev) {
353 prev->next = pp->next;
354 if (ppl->pp_hint == pp)
355 ppl->pp_hint = prev;
356 } else {
357 ppl->pp_head = pp->next;
358 if (ppl->pp_hint == pp)
359 ppl->pp_hint = pp->next;
360 }
361 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
362 kmem_cache_free(partial_page_cachep, pp);
363 }
364
365 static struct partial_page *
366 __pp_prev(struct partial_page *pp)
367 {
368 struct rb_node *prev = rb_prev(&pp->pp_rb);
369 if (prev)
370 return rb_entry(prev, struct partial_page, pp_rb);
371 else
372 return NULL;
373 }
374
375 /*
376 * Delete partial pages with address between @start and @end.
377 * @start and @end are page aligned.
378 */
379 static void
380 __ia32_delete_pp_range(unsigned int start, unsigned int end)
381 {
382 struct partial_page *pp, *prev;
383 struct rb_node **rb_link, *rb_parent;
384
385 if (start >= end)
386 return;
387
388 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
389 &rb_link, &rb_parent);
390 if (pp)
391 prev = __pp_prev(pp);
392 else {
393 if (prev)
394 pp = prev->next;
395 else
396 pp = current->thread.ppl->pp_head;
397 }
398
399 while (pp && pp->base < end) {
400 struct partial_page *tmp = pp->next;
401 __ia32_delete_pp(current->thread.ppl, pp, prev);
402 pp = tmp;
403 }
404 }
405
406 /*
407 * Set the range between @start and @end in bitmap.
408 * @start and @end should be IA32 page aligned and in the same IA64 page.
409 */
410 static int
411 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
412 {
413 struct partial_page *pp, *prev;
414 struct rb_node ** rb_link, *rb_parent;
415 unsigned int pstart, start_bit, end_bit, i;
416
417 pstart = PAGE_START(start);
418 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
419 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
420 if (end_bit == 0)
421 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
422 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
423 &rb_link, &rb_parent);
424 if (pp) {
425 for (i = start_bit; i < end_bit; i++)
426 set_bit(i, &pp->bitmap);
427 /*
428 * Check: if this partial page has been set to a full page,
429 * then delete it.
430 */
431 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
432 PAGE_SIZE/IA32_PAGE_SIZE) {
433 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
434 }
435 return 0;
436 }
437
438 /*
439 * MAP_FIXED may lead to overlapping mmap.
440 * In this case, the requested mmap area may already mmaped as a full
441 * page. So check vma before adding a new partial page.
442 */
443 if (flags & MAP_FIXED) {
444 struct vm_area_struct *vma = find_vma(current->mm, pstart);
445 if (vma && vma->vm_start <= pstart)
446 return 0;
447 }
448
449 /* new a partial_page */
450 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
451 if (!pp)
452 return -ENOMEM;
453 pp->base = pstart;
454 pp->bitmap = 0;
455 for (i=start_bit; i<end_bit; i++)
456 set_bit(i, &(pp->bitmap));
457 pp->next = NULL;
458 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
459 return 0;
460 }
461
462 /*
463 * @start and @end should be IA32 page aligned, but don't need to be in the
464 * same IA64 page. Split @start and @end to make sure they're in the same IA64
465 * page, then call __ia32_set_pp().
466 */
467 static void
468 ia32_set_pp(unsigned int start, unsigned int end, int flags)
469 {
470 down_write(&current->mm->mmap_sem);
471 if (flags & MAP_FIXED) {
472 /*
473 * MAP_FIXED may lead to overlapping mmap. When this happens,
474 * a series of complete IA64 pages results in deletion of
475 * old partial pages in that range.
476 */
477 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
478 }
479
480 if (end < PAGE_ALIGN(start)) {
481 __ia32_set_pp(start, end, flags);
482 } else {
483 if (offset_in_page(start))
484 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
485 if (offset_in_page(end))
486 __ia32_set_pp(PAGE_START(end), end, flags);
487 }
488 up_write(&current->mm->mmap_sem);
489 }
490
491 /*
492 * Unset the range between @start and @end in bitmap.
493 * @start and @end should be IA32 page aligned and in the same IA64 page.
494 * After doing that, if the bitmap is 0, then free the page and return 1,
495 * else return 0;
496 * If not find the partial page in the list, then
497 * If the vma exists, then the full page is set to a partial page;
498 * Else return -ENOMEM.
499 */
500 static int
501 __ia32_unset_pp(unsigned int start, unsigned int end)
502 {
503 struct partial_page *pp, *prev;
504 struct rb_node ** rb_link, *rb_parent;
505 unsigned int pstart, start_bit, end_bit, i;
506 struct vm_area_struct *vma;
507
508 pstart = PAGE_START(start);
509 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
510 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
511 if (end_bit == 0)
512 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
513
514 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
515 &rb_link, &rb_parent);
516 if (pp) {
517 for (i = start_bit; i < end_bit; i++)
518 clear_bit(i, &pp->bitmap);
519 if (pp->bitmap == 0) {
520 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
521 return 1;
522 }
523 return 0;
524 }
525
526 vma = find_vma(current->mm, pstart);
527 if (!vma || vma->vm_start > pstart) {
528 return -ENOMEM;
529 }
530
531 /* new a partial_page */
532 pp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
533 if (!pp)
534 return -ENOMEM;
535 pp->base = pstart;
536 pp->bitmap = 0;
537 for (i = 0; i < start_bit; i++)
538 set_bit(i, &(pp->bitmap));
539 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
540 set_bit(i, &(pp->bitmap));
541 pp->next = NULL;
542 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
543 return 0;
544 }
545
546 /*
547 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
548 * __ia32_delete_pp_range(). Unset possible partial pages by calling
549 * __ia32_unset_pp().
550 * The returned value see __ia32_unset_pp().
551 */
552 static int
553 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
554 {
555 unsigned int start = *startp, end = *endp;
556 int ret = 0;
557
558 down_write(&current->mm->mmap_sem);
559
560 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
561
562 if (end < PAGE_ALIGN(start)) {
563 ret = __ia32_unset_pp(start, end);
564 if (ret == 1) {
565 *startp = PAGE_START(start);
566 *endp = PAGE_ALIGN(end);
567 }
568 if (ret == 0) {
569 /* to shortcut sys_munmap() in sys32_munmap() */
570 *startp = PAGE_START(start);
571 *endp = PAGE_START(end);
572 }
573 } else {
574 if (offset_in_page(start)) {
575 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
576 if (ret == 1)
577 *startp = PAGE_START(start);
578 if (ret == 0)
579 *startp = PAGE_ALIGN(start);
580 if (ret < 0)
581 goto out;
582 }
583 if (offset_in_page(end)) {
584 ret = __ia32_unset_pp(PAGE_START(end), end);
585 if (ret == 1)
586 *endp = PAGE_ALIGN(end);
587 if (ret == 0)
588 *endp = PAGE_START(end);
589 }
590 }
591
592 out:
593 up_write(&current->mm->mmap_sem);
594 return ret;
595 }
596
597 /*
598 * Compare the range between @start and @end with bitmap in partial page.
599 * @start and @end should be IA32 page aligned and in the same IA64 page.
600 */
601 static int
602 __ia32_compare_pp(unsigned int start, unsigned int end)
603 {
604 struct partial_page *pp, *prev;
605 struct rb_node ** rb_link, *rb_parent;
606 unsigned int pstart, start_bit, end_bit, size;
607 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
608
609 pstart = PAGE_START(start);
610
611 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
612 &rb_link, &rb_parent);
613 if (!pp)
614 return 1;
615
616 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
617 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
618 size = sizeof(pp->bitmap) * 8;
619 first_bit = find_first_bit(&pp->bitmap, size);
620 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
621 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
622 /* exceeds the first range in bitmap */
623 return -ENOMEM;
624 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
625 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
626 if ((next_zero_bit < first_bit) && (first_bit < size))
627 return 1; /* has next range */
628 else
629 return 0; /* no next range */
630 } else
631 return 1;
632 }
633
634 /*
635 * @start and @end should be IA32 page aligned, but don't need to be in the
636 * same IA64 page. Split @start and @end to make sure they're in the same IA64
637 * page, then call __ia32_compare_pp().
638 *
639 * Take this as example: the range is the 1st and 2nd 4K page.
640 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
641 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
642 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
643 * bitmap = 00000101.
644 */
645 static int
646 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
647 {
648 unsigned int start = *startp, end = *endp;
649 int retval = 0;
650
651 down_write(&current->mm->mmap_sem);
652
653 if (end < PAGE_ALIGN(start)) {
654 retval = __ia32_compare_pp(start, end);
655 if (retval == 0) {
656 *startp = PAGE_START(start);
657 *endp = PAGE_ALIGN(end);
658 }
659 } else {
660 if (offset_in_page(start)) {
661 retval = __ia32_compare_pp(start,
662 PAGE_ALIGN(start));
663 if (retval == 0)
664 *startp = PAGE_START(start);
665 if (retval < 0)
666 goto out;
667 }
668 if (offset_in_page(end)) {
669 retval = __ia32_compare_pp(PAGE_START(end), end);
670 if (retval == 0)
671 *endp = PAGE_ALIGN(end);
672 }
673 }
674
675 out:
676 up_write(&current->mm->mmap_sem);
677 return retval;
678 }
679
680 static void
681 __ia32_drop_pp_list(struct partial_page_list *ppl)
682 {
683 struct partial_page *pp = ppl->pp_head;
684
685 while (pp) {
686 struct partial_page *next = pp->next;
687 kmem_cache_free(partial_page_cachep, pp);
688 pp = next;
689 }
690
691 kfree(ppl);
692 }
693
694 void
695 ia32_drop_partial_page_list(struct task_struct *task)
696 {
697 struct partial_page_list* ppl = task->thread.ppl;
698
699 if (ppl && atomic_dec_and_test(&ppl->pp_count))
700 __ia32_drop_pp_list(ppl);
701 }
702
703 /*
704 * Copy current->thread.ppl to ppl (already initialized).
705 */
706 static int
707 __ia32_copy_pp_list(struct partial_page_list *ppl)
708 {
709 struct partial_page *pp, *tmp, *prev;
710 struct rb_node **rb_link, *rb_parent;
711
712 ppl->pp_head = NULL;
713 ppl->pp_hint = NULL;
714 ppl->ppl_rb = RB_ROOT;
715 rb_link = &ppl->ppl_rb.rb_node;
716 rb_parent = NULL;
717 prev = NULL;
718
719 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
720 tmp = kmem_cache_alloc(partial_page_cachep, GFP_KERNEL);
721 if (!tmp)
722 return -ENOMEM;
723 *tmp = *pp;
724 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
725 prev = tmp;
726 rb_link = &tmp->pp_rb.rb_right;
727 rb_parent = &tmp->pp_rb;
728 }
729 return 0;
730 }
731
732 int
733 ia32_copy_partial_page_list(struct task_struct *p, unsigned long clone_flags)
734 {
735 int retval = 0;
736
737 if (clone_flags & CLONE_VM) {
738 atomic_inc(&current->thread.ppl->pp_count);
739 p->thread.ppl = current->thread.ppl;
740 } else {
741 p->thread.ppl = ia32_init_pp_list();
742 if (!p->thread.ppl)
743 return -ENOMEM;
744 down_write(&current->mm->mmap_sem);
745 {
746 retval = __ia32_copy_pp_list(p->thread.ppl);
747 }
748 up_write(&current->mm->mmap_sem);
749 }
750
751 return retval;
752 }
753
754 static unsigned long
755 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
756 loff_t off)
757 {
758 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
759 struct inode *inode;
760 loff_t poff;
761
762 end = start + len;
763 pstart = PAGE_START(start);
764 pend = PAGE_ALIGN(end);
765
766 if (flags & MAP_FIXED) {
767 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
768 if (start > pstart) {
769 if (flags & MAP_SHARED)
770 printk(KERN_INFO
771 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
772 current->comm, current->pid, start);
773 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
774 off);
775 if (IS_ERR((void *) ret))
776 return ret;
777 pstart += PAGE_SIZE;
778 if (pstart >= pend)
779 goto out; /* done */
780 }
781 if (end < pend) {
782 if (flags & MAP_SHARED)
783 printk(KERN_INFO
784 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
785 current->comm, current->pid, end);
786 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
787 (off + len) - offset_in_page(end));
788 if (IS_ERR((void *) ret))
789 return ret;
790 pend -= PAGE_SIZE;
791 if (pstart >= pend)
792 goto out; /* done */
793 }
794 } else {
795 /*
796 * If a start address was specified, use it if the entire rounded out area
797 * is available.
798 */
799 if (start && !pstart)
800 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
801 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
802 if (tmp != pstart) {
803 pstart = tmp;
804 start = pstart + offset_in_page(off); /* make start congruent with off */
805 end = start + len;
806 pend = PAGE_ALIGN(end);
807 }
808 }
809
810 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
811 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
812
813 if ((flags & MAP_SHARED) && !is_congruent)
814 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
815 "(addr=0x%lx,off=0x%llx)\n", current->comm, current->pid, start, off);
816
817 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
818 is_congruent ? "congruent" : "not congruent", poff);
819
820 down_write(&current->mm->mmap_sem);
821 {
822 if (!(flags & MAP_ANONYMOUS) && is_congruent)
823 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
824 else
825 ret = do_mmap(NULL, pstart, pend - pstart,
826 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
827 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
828 }
829 up_write(&current->mm->mmap_sem);
830
831 if (IS_ERR((void *) ret))
832 return ret;
833
834 if (!is_congruent) {
835 /* read the file contents */
836 inode = file->f_dentry->d_inode;
837 if (!inode->i_fop || !file->f_op->read
838 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
839 < 0))
840 {
841 sys_munmap(pstart, pend - pstart);
842 return -EINVAL;
843 }
844 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
845 return -EINVAL;
846 }
847
848 if (!(flags & MAP_FIXED))
849 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
850 out:
851 return start;
852 }
853
854 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
855
856 static inline unsigned int
857 get_prot32 (unsigned int prot)
858 {
859 if (prot & PROT_WRITE)
860 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
861 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
862 else if (prot & (PROT_READ | PROT_EXEC))
863 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
864 prot |= (PROT_READ | PROT_EXEC);
865
866 return prot;
867 }
868
869 unsigned long
870 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
871 loff_t offset)
872 {
873 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
874 file, addr, len, prot, flags, offset);
875
876 if (file && (!file->f_op || !file->f_op->mmap))
877 return -ENODEV;
878
879 len = IA32_PAGE_ALIGN(len);
880 if (len == 0)
881 return addr;
882
883 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
884 {
885 if (flags & MAP_FIXED)
886 return -ENOMEM;
887 else
888 return -EINVAL;
889 }
890
891 if (OFFSET4K(offset))
892 return -EINVAL;
893
894 prot = get_prot32(prot);
895
896 #if PAGE_SHIFT > IA32_PAGE_SHIFT
897 down(&ia32_mmap_sem);
898 {
899 addr = emulate_mmap(file, addr, len, prot, flags, offset);
900 }
901 up(&ia32_mmap_sem);
902 #else
903 down_write(&current->mm->mmap_sem);
904 {
905 addr = do_mmap(file, addr, len, prot, flags, offset);
906 }
907 up_write(&current->mm->mmap_sem);
908 #endif
909 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
910 return addr;
911 }
912
913 /*
914 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
915 * system calls used a memory block for parameter passing..
916 */
917
918 struct mmap_arg_struct {
919 unsigned int addr;
920 unsigned int len;
921 unsigned int prot;
922 unsigned int flags;
923 unsigned int fd;
924 unsigned int offset;
925 };
926
927 asmlinkage long
928 sys32_mmap (struct mmap_arg_struct __user *arg)
929 {
930 struct mmap_arg_struct a;
931 struct file *file = NULL;
932 unsigned long addr;
933 int flags;
934
935 if (copy_from_user(&a, arg, sizeof(a)))
936 return -EFAULT;
937
938 if (OFFSET4K(a.offset))
939 return -EINVAL;
940
941 flags = a.flags;
942
943 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
944 if (!(flags & MAP_ANONYMOUS)) {
945 file = fget(a.fd);
946 if (!file)
947 return -EBADF;
948 }
949
950 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
951
952 if (file)
953 fput(file);
954 return addr;
955 }
956
957 asmlinkage long
958 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
959 unsigned int fd, unsigned int pgoff)
960 {
961 struct file *file = NULL;
962 unsigned long retval;
963
964 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
965 if (!(flags & MAP_ANONYMOUS)) {
966 file = fget(fd);
967 if (!file)
968 return -EBADF;
969 }
970
971 retval = ia32_do_mmap(file, addr, len, prot, flags,
972 (unsigned long) pgoff << IA32_PAGE_SHIFT);
973
974 if (file)
975 fput(file);
976 return retval;
977 }
978
979 asmlinkage long
980 sys32_munmap (unsigned int start, unsigned int len)
981 {
982 unsigned int end = start + len;
983 long ret;
984
985 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
986 ret = sys_munmap(start, end - start);
987 #else
988 if (OFFSET4K(start))
989 return -EINVAL;
990
991 end = IA32_PAGE_ALIGN(end);
992 if (start >= end)
993 return -EINVAL;
994
995 ret = ia32_unset_pp(&start, &end);
996 if (ret < 0)
997 return ret;
998
999 if (start >= end)
1000 return 0;
1001
1002 down(&ia32_mmap_sem);
1003 {
1004 ret = sys_munmap(start, end - start);
1005 }
1006 up(&ia32_mmap_sem);
1007 #endif
1008 return ret;
1009 }
1010
1011 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1012
1013 /*
1014 * When mprotect()ing a partial page, we set the permission to the union of the old
1015 * settings and the new settings. In other words, it's only possible to make access to a
1016 * partial page less restrictive.
1017 */
1018 static long
1019 mprotect_subpage (unsigned long address, int new_prot)
1020 {
1021 int old_prot;
1022 struct vm_area_struct *vma;
1023
1024 if (new_prot == PROT_NONE)
1025 return 0; /* optimize case where nothing changes... */
1026 vma = find_vma(current->mm, address);
1027 old_prot = get_page_prot(vma, address);
1028 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
1029 }
1030
1031 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
1032
1033 asmlinkage long
1034 sys32_mprotect (unsigned int start, unsigned int len, int prot)
1035 {
1036 unsigned int end = start + len;
1037 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1038 long retval = 0;
1039 #endif
1040
1041 prot = get_prot32(prot);
1042
1043 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1044 return sys_mprotect(start, end - start, prot);
1045 #else
1046 if (OFFSET4K(start))
1047 return -EINVAL;
1048
1049 end = IA32_PAGE_ALIGN(end);
1050 if (end < start)
1051 return -EINVAL;
1052
1053 retval = ia32_compare_pp(&start, &end);
1054
1055 if (retval < 0)
1056 return retval;
1057
1058 down(&ia32_mmap_sem);
1059 {
1060 if (offset_in_page(start)) {
1061 /* start address is 4KB aligned but not page aligned. */
1062 retval = mprotect_subpage(PAGE_START(start), prot);
1063 if (retval < 0)
1064 goto out;
1065
1066 start = PAGE_ALIGN(start);
1067 if (start >= end)
1068 goto out; /* retval is already zero... */
1069 }
1070
1071 if (offset_in_page(end)) {
1072 /* end address is 4KB aligned but not page aligned. */
1073 retval = mprotect_subpage(PAGE_START(end), prot);
1074 if (retval < 0)
1075 goto out;
1076
1077 end = PAGE_START(end);
1078 }
1079 retval = sys_mprotect(start, end - start, prot);
1080 }
1081 out:
1082 up(&ia32_mmap_sem);
1083 return retval;
1084 #endif
1085 }
1086
1087 asmlinkage long
1088 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1089 unsigned int flags, unsigned int new_addr)
1090 {
1091 long ret;
1092
1093 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1094 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1095 #else
1096 unsigned int old_end, new_end;
1097
1098 if (OFFSET4K(addr))
1099 return -EINVAL;
1100
1101 old_len = IA32_PAGE_ALIGN(old_len);
1102 new_len = IA32_PAGE_ALIGN(new_len);
1103 old_end = addr + old_len;
1104 new_end = addr + new_len;
1105
1106 if (!new_len)
1107 return -EINVAL;
1108
1109 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1110 return -EINVAL;
1111
1112 if (old_len >= new_len) {
1113 ret = sys32_munmap(addr + new_len, old_len - new_len);
1114 if (ret && old_len != new_len)
1115 return ret;
1116 ret = addr;
1117 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1118 return ret;
1119 old_len = new_len;
1120 }
1121
1122 addr = PAGE_START(addr);
1123 old_len = PAGE_ALIGN(old_end) - addr;
1124 new_len = PAGE_ALIGN(new_end) - addr;
1125
1126 down(&ia32_mmap_sem);
1127 {
1128 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1129 }
1130 up(&ia32_mmap_sem);
1131
1132 if ((ret >= 0) && (old_len < new_len)) {
1133 /* mremap expanded successfully */
1134 ia32_set_pp(old_end, new_end, flags);
1135 }
1136 #endif
1137 return ret;
1138 }
1139
1140 asmlinkage long
1141 sys32_pipe (int __user *fd)
1142 {
1143 int retval;
1144 int fds[2];
1145
1146 retval = do_pipe(fds);
1147 if (retval)
1148 goto out;
1149 if (copy_to_user(fd, fds, sizeof(fds)))
1150 retval = -EFAULT;
1151 out:
1152 return retval;
1153 }
1154
1155 static inline long
1156 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1157 {
1158 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1159 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1160 }
1161
1162 static inline long
1163 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1164 {
1165 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1166 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1167 }
1168
1169 asmlinkage unsigned long
1170 sys32_alarm (unsigned int seconds)
1171 {
1172 struct itimerval it_new, it_old;
1173 unsigned int oldalarm;
1174
1175 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
1176 it_new.it_value.tv_sec = seconds;
1177 it_new.it_value.tv_usec = 0;
1178 do_setitimer(ITIMER_REAL, &it_new, &it_old);
1179 oldalarm = it_old.it_value.tv_sec;
1180 /* ehhh.. We can't return 0 if we have an alarm pending.. */
1181 /* And we'd better return too much than too little anyway */
1182 if (it_old.it_value.tv_usec)
1183 oldalarm++;
1184 return oldalarm;
1185 }
1186
1187 /* Translations due to time_t size differences. Which affects all
1188 sorts of things, like timeval and itimerval. */
1189
1190 extern struct timezone sys_tz;
1191
1192 asmlinkage long
1193 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1194 {
1195 if (tv) {
1196 struct timeval ktv;
1197 do_gettimeofday(&ktv);
1198 if (put_tv32(tv, &ktv))
1199 return -EFAULT;
1200 }
1201 if (tz) {
1202 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1203 return -EFAULT;
1204 }
1205 return 0;
1206 }
1207
1208 asmlinkage long
1209 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1210 {
1211 struct timeval ktv;
1212 struct timespec kts;
1213 struct timezone ktz;
1214
1215 if (tv) {
1216 if (get_tv32(&ktv, tv))
1217 return -EFAULT;
1218 kts.tv_sec = ktv.tv_sec;
1219 kts.tv_nsec = ktv.tv_usec * 1000;
1220 }
1221 if (tz) {
1222 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1223 return -EFAULT;
1224 }
1225
1226 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1227 }
1228
1229 struct getdents32_callback {
1230 struct compat_dirent __user *current_dir;
1231 struct compat_dirent __user *previous;
1232 int count;
1233 int error;
1234 };
1235
1236 struct readdir32_callback {
1237 struct old_linux32_dirent __user * dirent;
1238 int count;
1239 };
1240
1241 static int
1242 filldir32 (void *__buf, const char *name, int namlen, loff_t offset, ino_t ino,
1243 unsigned int d_type)
1244 {
1245 struct compat_dirent __user * dirent;
1246 struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
1247 int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4);
1248
1249 buf->error = -EINVAL; /* only used if we fail.. */
1250 if (reclen > buf->count)
1251 return -EINVAL;
1252 buf->error = -EFAULT; /* only used if we fail.. */
1253 dirent = buf->previous;
1254 if (dirent)
1255 if (put_user(offset, &dirent->d_off))
1256 return -EFAULT;
1257 dirent = buf->current_dir;
1258 buf->previous = dirent;
1259 if (put_user(ino, &dirent->d_ino)
1260 || put_user(reclen, &dirent->d_reclen)
1261 || copy_to_user(dirent->d_name, name, namlen)
1262 || put_user(0, dirent->d_name + namlen))
1263 return -EFAULT;
1264 dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen);
1265 buf->current_dir = dirent;
1266 buf->count -= reclen;
1267 return 0;
1268 }
1269
1270 asmlinkage long
1271 sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count)
1272 {
1273 struct file * file;
1274 struct compat_dirent __user * lastdirent;
1275 struct getdents32_callback buf;
1276 int error;
1277
1278 error = -EBADF;
1279 file = fget(fd);
1280 if (!file)
1281 goto out;
1282
1283 buf.current_dir = dirent;
1284 buf.previous = NULL;
1285 buf.count = count;
1286 buf.error = 0;
1287
1288 error = vfs_readdir(file, filldir32, &buf);
1289 if (error < 0)
1290 goto out_putf;
1291 error = buf.error;
1292 lastdirent = buf.previous;
1293 if (lastdirent) {
1294 error = -EINVAL;
1295 if (put_user(file->f_pos, &lastdirent->d_off))
1296 goto out_putf;
1297 error = count - buf.count;
1298 }
1299
1300 out_putf:
1301 fput(file);
1302 out:
1303 return error;
1304 }
1305
1306 static int
1307 fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, ino_t ino,
1308 unsigned int d_type)
1309 {
1310 struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
1311 struct old_linux32_dirent __user * dirent;
1312
1313 if (buf->count)
1314 return -EINVAL;
1315 buf->count++;
1316 dirent = buf->dirent;
1317 if (put_user(ino, &dirent->d_ino)
1318 || put_user(offset, &dirent->d_offset)
1319 || put_user(namlen, &dirent->d_namlen)
1320 || copy_to_user(dirent->d_name, name, namlen)
1321 || put_user(0, dirent->d_name + namlen))
1322 return -EFAULT;
1323 return 0;
1324 }
1325
1326 asmlinkage long
1327 sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count)
1328 {
1329 int error;
1330 struct file * file;
1331 struct readdir32_callback buf;
1332
1333 error = -EBADF;
1334 file = fget(fd);
1335 if (!file)
1336 goto out;
1337
1338 buf.count = 0;
1339 buf.dirent = dirent;
1340
1341 error = vfs_readdir(file, fillonedir32, &buf);
1342 if (error >= 0)
1343 error = buf.count;
1344 fput(file);
1345 out:
1346 return error;
1347 }
1348
1349 struct sel_arg_struct {
1350 unsigned int n;
1351 unsigned int inp;
1352 unsigned int outp;
1353 unsigned int exp;
1354 unsigned int tvp;
1355 };
1356
1357 asmlinkage long
1358 sys32_old_select (struct sel_arg_struct __user *arg)
1359 {
1360 struct sel_arg_struct a;
1361
1362 if (copy_from_user(&a, arg, sizeof(a)))
1363 return -EFAULT;
1364 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1365 compat_ptr(a.exp), compat_ptr(a.tvp));
1366 }
1367
1368 #define SEMOP 1
1369 #define SEMGET 2
1370 #define SEMCTL 3
1371 #define SEMTIMEDOP 4
1372 #define MSGSND 11
1373 #define MSGRCV 12
1374 #define MSGGET 13
1375 #define MSGCTL 14
1376 #define SHMAT 21
1377 #define SHMDT 22
1378 #define SHMGET 23
1379 #define SHMCTL 24
1380
1381 asmlinkage long
1382 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1383 {
1384 int version;
1385
1386 version = call >> 16; /* hack for backward compatibility */
1387 call &= 0xffff;
1388
1389 switch (call) {
1390 case SEMTIMEDOP:
1391 if (fifth)
1392 return compat_sys_semtimedop(first, compat_ptr(ptr),
1393 second, compat_ptr(fifth));
1394 /* else fall through for normal semop() */
1395 case SEMOP:
1396 /* struct sembuf is the same on 32 and 64bit :)) */
1397 return sys_semtimedop(first, compat_ptr(ptr), second,
1398 NULL);
1399 case SEMGET:
1400 return sys_semget(first, second, third);
1401 case SEMCTL:
1402 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1403
1404 case MSGSND:
1405 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1406 case MSGRCV:
1407 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1408 case MSGGET:
1409 return sys_msgget((key_t) first, second);
1410 case MSGCTL:
1411 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1412
1413 case SHMAT:
1414 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1415 break;
1416 case SHMDT:
1417 return sys_shmdt(compat_ptr(ptr));
1418 case SHMGET:
1419 return sys_shmget(first, (unsigned)second, third);
1420 case SHMCTL:
1421 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1422
1423 default:
1424 return -ENOSYS;
1425 }
1426 return -EINVAL;
1427 }
1428
1429 asmlinkage long
1430 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1431 struct compat_rusage *ru);
1432
1433 asmlinkage long
1434 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1435 {
1436 return compat_sys_wait4(pid, stat_addr, options, NULL);
1437 }
1438
1439 static unsigned int
1440 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1441 {
1442 size_t copied;
1443 unsigned int ret;
1444
1445 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1446 return (copied != sizeof(ret)) ? -EIO : 0;
1447 }
1448
1449 static unsigned int
1450 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1451 {
1452
1453 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1454 return -EIO;
1455 return 0;
1456 }
1457
1458 /*
1459 * The order in which registers are stored in the ptrace regs structure
1460 */
1461 #define PT_EBX 0
1462 #define PT_ECX 1
1463 #define PT_EDX 2
1464 #define PT_ESI 3
1465 #define PT_EDI 4
1466 #define PT_EBP 5
1467 #define PT_EAX 6
1468 #define PT_DS 7
1469 #define PT_ES 8
1470 #define PT_FS 9
1471 #define PT_GS 10
1472 #define PT_ORIG_EAX 11
1473 #define PT_EIP 12
1474 #define PT_CS 13
1475 #define PT_EFL 14
1476 #define PT_UESP 15
1477 #define PT_SS 16
1478
1479 static unsigned int
1480 getreg (struct task_struct *child, int regno)
1481 {
1482 struct pt_regs *child_regs;
1483
1484 child_regs = ia64_task_regs(child);
1485 switch (regno / sizeof(int)) {
1486 case PT_EBX: return child_regs->r11;
1487 case PT_ECX: return child_regs->r9;
1488 case PT_EDX: return child_regs->r10;
1489 case PT_ESI: return child_regs->r14;
1490 case PT_EDI: return child_regs->r15;
1491 case PT_EBP: return child_regs->r13;
1492 case PT_EAX: return child_regs->r8;
1493 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1494 case PT_EIP: return child_regs->cr_iip;
1495 case PT_UESP: return child_regs->r12;
1496 case PT_EFL: return child->thread.eflag;
1497 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1498 return __USER_DS;
1499 case PT_CS: return __USER_CS;
1500 default:
1501 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1502 break;
1503 }
1504 return 0;
1505 }
1506
1507 static void
1508 putreg (struct task_struct *child, int regno, unsigned int value)
1509 {
1510 struct pt_regs *child_regs;
1511
1512 child_regs = ia64_task_regs(child);
1513 switch (regno / sizeof(int)) {
1514 case PT_EBX: child_regs->r11 = value; break;
1515 case PT_ECX: child_regs->r9 = value; break;
1516 case PT_EDX: child_regs->r10 = value; break;
1517 case PT_ESI: child_regs->r14 = value; break;
1518 case PT_EDI: child_regs->r15 = value; break;
1519 case PT_EBP: child_regs->r13 = value; break;
1520 case PT_EAX: child_regs->r8 = value; break;
1521 case PT_ORIG_EAX: child_regs->r1 = value; break;
1522 case PT_EIP: child_regs->cr_iip = value; break;
1523 case PT_UESP: child_regs->r12 = value; break;
1524 case PT_EFL: child->thread.eflag = value; break;
1525 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1526 if (value != __USER_DS)
1527 printk(KERN_ERR
1528 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1529 regno, value);
1530 break;
1531 case PT_CS:
1532 if (value != __USER_CS)
1533 printk(KERN_ERR
1534 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1535 regno, value);
1536 break;
1537 default:
1538 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1539 break;
1540 }
1541 }
1542
1543 static void
1544 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1545 struct switch_stack *swp, int tos)
1546 {
1547 struct _fpreg_ia32 *f;
1548 char buf[32];
1549
1550 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1551 if ((regno += tos) >= 8)
1552 regno -= 8;
1553 switch (regno) {
1554 case 0:
1555 ia64f2ia32f(f, &ptp->f8);
1556 break;
1557 case 1:
1558 ia64f2ia32f(f, &ptp->f9);
1559 break;
1560 case 2:
1561 ia64f2ia32f(f, &ptp->f10);
1562 break;
1563 case 3:
1564 ia64f2ia32f(f, &ptp->f11);
1565 break;
1566 case 4:
1567 case 5:
1568 case 6:
1569 case 7:
1570 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1571 break;
1572 }
1573 copy_to_user(reg, f, sizeof(*reg));
1574 }
1575
1576 static void
1577 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1578 struct switch_stack *swp, int tos)
1579 {
1580
1581 if ((regno += tos) >= 8)
1582 regno -= 8;
1583 switch (regno) {
1584 case 0:
1585 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1586 break;
1587 case 1:
1588 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1589 break;
1590 case 2:
1591 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1592 break;
1593 case 3:
1594 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1595 break;
1596 case 4:
1597 case 5:
1598 case 6:
1599 case 7:
1600 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1601 break;
1602 }
1603 return;
1604 }
1605
1606 int
1607 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1608 {
1609 struct switch_stack *swp;
1610 struct pt_regs *ptp;
1611 int i, tos;
1612
1613 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1614 return -EFAULT;
1615
1616 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1617 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1618 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1619 __put_user(tsk->thread.fir, &save->fip);
1620 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1621 __put_user(tsk->thread.fdr, &save->foo);
1622 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1623
1624 /*
1625 * Stack frames start with 16-bytes of temp space
1626 */
1627 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1628 ptp = ia64_task_regs(tsk);
1629 tos = (tsk->thread.fsr >> 11) & 7;
1630 for (i = 0; i < 8; i++)
1631 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1632 return 0;
1633 }
1634
1635 static int
1636 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1637 {
1638 struct switch_stack *swp;
1639 struct pt_regs *ptp;
1640 int i, tos;
1641 unsigned int fsrlo, fsrhi, num32;
1642
1643 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1644 return(-EFAULT);
1645
1646 __get_user(num32, (unsigned int __user *)&save->cwd);
1647 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1648 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1649 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1650 num32 = (fsrhi << 16) | fsrlo;
1651 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1652 __get_user(num32, (unsigned int __user *)&save->fip);
1653 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1654 __get_user(num32, (unsigned int __user *)&save->foo);
1655 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1656
1657 /*
1658 * Stack frames start with 16-bytes of temp space
1659 */
1660 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1661 ptp = ia64_task_regs(tsk);
1662 tos = (tsk->thread.fsr >> 11) & 7;
1663 for (i = 0; i < 8; i++)
1664 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1665 return 0;
1666 }
1667
1668 int
1669 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1670 {
1671 struct switch_stack *swp;
1672 struct pt_regs *ptp;
1673 int i, tos;
1674 unsigned long mxcsr=0;
1675 unsigned long num128[2];
1676
1677 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1678 return -EFAULT;
1679
1680 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1681 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1682 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1683 __put_user(tsk->thread.fir, &save->fip);
1684 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1685 __put_user(tsk->thread.fdr, &save->foo);
1686 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1687
1688 /*
1689 * Stack frames start with 16-bytes of temp space
1690 */
1691 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1692 ptp = ia64_task_regs(tsk);
1693 tos = (tsk->thread.fsr >> 11) & 7;
1694 for (i = 0; i < 8; i++)
1695 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1696
1697 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1698 __put_user(mxcsr & 0xffff, &save->mxcsr);
1699 for (i = 0; i < 8; i++) {
1700 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1701 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1702 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1703 }
1704 return 0;
1705 }
1706
1707 static int
1708 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1709 {
1710 struct switch_stack *swp;
1711 struct pt_regs *ptp;
1712 int i, tos;
1713 unsigned int fsrlo, fsrhi, num32;
1714 int mxcsr;
1715 unsigned long num64;
1716 unsigned long num128[2];
1717
1718 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1719 return(-EFAULT);
1720
1721 __get_user(num32, (unsigned int __user *)&save->cwd);
1722 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1723 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1724 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1725 num32 = (fsrhi << 16) | fsrlo;
1726 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1727 __get_user(num32, (unsigned int __user *)&save->fip);
1728 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1729 __get_user(num32, (unsigned int __user *)&save->foo);
1730 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1731
1732 /*
1733 * Stack frames start with 16-bytes of temp space
1734 */
1735 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1736 ptp = ia64_task_regs(tsk);
1737 tos = (tsk->thread.fsr >> 11) & 7;
1738 for (i = 0; i < 8; i++)
1739 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1740
1741 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1742 num64 = mxcsr & 0xff10;
1743 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1744 num64 = mxcsr & 0x3f;
1745 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1746
1747 for (i = 0; i < 8; i++) {
1748 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1749 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1750 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1751 }
1752 return 0;
1753 }
1754
1755 asmlinkage long
1756 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1757 {
1758 struct task_struct *child;
1759 unsigned int value, tmp;
1760 long i, ret;
1761
1762 lock_kernel();
1763 if (request == PTRACE_TRACEME) {
1764 ret = sys_ptrace(request, pid, addr, data);
1765 goto out;
1766 }
1767
1768 ret = -ESRCH;
1769 read_lock(&tasklist_lock);
1770 child = find_task_by_pid(pid);
1771 if (child)
1772 get_task_struct(child);
1773 read_unlock(&tasklist_lock);
1774 if (!child)
1775 goto out;
1776 ret = -EPERM;
1777 if (pid == 1) /* no messing around with init! */
1778 goto out_tsk;
1779
1780 if (request == PTRACE_ATTACH) {
1781 ret = sys_ptrace(request, pid, addr, data);
1782 goto out_tsk;
1783 }
1784
1785 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1786 if (ret < 0)
1787 goto out_tsk;
1788
1789 switch (request) {
1790 case PTRACE_PEEKTEXT:
1791 case PTRACE_PEEKDATA: /* read word at location addr */
1792 ret = ia32_peek(child, addr, &value);
1793 if (ret == 0)
1794 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1795 else
1796 ret = -EIO;
1797 goto out_tsk;
1798
1799 case PTRACE_POKETEXT:
1800 case PTRACE_POKEDATA: /* write the word at location addr */
1801 ret = ia32_poke(child, addr, data);
1802 goto out_tsk;
1803
1804 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1805 ret = -EIO;
1806 if ((addr & 3) || addr > 17*sizeof(int))
1807 break;
1808
1809 tmp = getreg(child, addr);
1810 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1811 ret = 0;
1812 break;
1813
1814 case PTRACE_POKEUSR: /* write word at addr in USER area */
1815 ret = -EIO;
1816 if ((addr & 3) || addr > 17*sizeof(int))
1817 break;
1818
1819 putreg(child, addr, data);
1820 ret = 0;
1821 break;
1822
1823 case IA32_PTRACE_GETREGS:
1824 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1825 ret = -EIO;
1826 break;
1827 }
1828 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1829 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1830 data += sizeof(int);
1831 }
1832 ret = 0;
1833 break;
1834
1835 case IA32_PTRACE_SETREGS:
1836 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1837 ret = -EIO;
1838 break;
1839 }
1840 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1841 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1842 putreg(child, i, tmp);
1843 data += sizeof(int);
1844 }
1845 ret = 0;
1846 break;
1847
1848 case IA32_PTRACE_GETFPREGS:
1849 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1850 compat_ptr(data));
1851 break;
1852
1853 case IA32_PTRACE_GETFPXREGS:
1854 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1855 compat_ptr(data));
1856 break;
1857
1858 case IA32_PTRACE_SETFPREGS:
1859 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1860 compat_ptr(data));
1861 break;
1862
1863 case IA32_PTRACE_SETFPXREGS:
1864 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1865 compat_ptr(data));
1866 break;
1867
1868 case PTRACE_GETEVENTMSG:
1869 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1870 break;
1871
1872 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1873 case PTRACE_CONT: /* restart after signal. */
1874 case PTRACE_KILL:
1875 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1876 case PTRACE_DETACH: /* detach a process */
1877 ret = sys_ptrace(request, pid, addr, data);
1878 break;
1879
1880 default:
1881 ret = ptrace_request(child, request, addr, data);
1882 break;
1883
1884 }
1885 out_tsk:
1886 put_task_struct(child);
1887 out:
1888 unlock_kernel();
1889 return ret;
1890 }
1891
1892 typedef struct {
1893 unsigned int ss_sp;
1894 unsigned int ss_flags;
1895 unsigned int ss_size;
1896 } ia32_stack_t;
1897
1898 asmlinkage long
1899 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1900 long arg2, long arg3, long arg4, long arg5, long arg6,
1901 long arg7, struct pt_regs pt)
1902 {
1903 stack_t uss, uoss;
1904 ia32_stack_t buf32;
1905 int ret;
1906 mm_segment_t old_fs = get_fs();
1907
1908 if (uss32) {
1909 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1910 return -EFAULT;
1911 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1912 uss.ss_flags = buf32.ss_flags;
1913 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1914 check and set it to the user requested value later */
1915 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1916 ret = -ENOMEM;
1917 goto out;
1918 }
1919 uss.ss_size = MINSIGSTKSZ;
1920 }
1921 set_fs(KERNEL_DS);
1922 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1923 (stack_t __user *) &uoss, pt.r12);
1924 current->sas_ss_size = buf32.ss_size;
1925 set_fs(old_fs);
1926 out:
1927 if (ret < 0)
1928 return(ret);
1929 if (uoss32) {
1930 buf32.ss_sp = (long __user) uoss.ss_sp;
1931 buf32.ss_flags = uoss.ss_flags;
1932 buf32.ss_size = uoss.ss_size;
1933 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1934 return -EFAULT;
1935 }
1936 return ret;
1937 }
1938
1939 asmlinkage int
1940 sys32_pause (void)
1941 {
1942 current->state = TASK_INTERRUPTIBLE;
1943 schedule();
1944 return -ERESTARTNOHAND;
1945 }
1946
1947 asmlinkage int
1948 sys32_msync (unsigned int start, unsigned int len, int flags)
1949 {
1950 unsigned int addr;
1951
1952 if (OFFSET4K(start))
1953 return -EINVAL;
1954 addr = PAGE_START(start);
1955 return sys_msync(addr, len + (start - addr), flags);
1956 }
1957
1958 struct sysctl32 {
1959 unsigned int name;
1960 int nlen;
1961 unsigned int oldval;
1962 unsigned int oldlenp;
1963 unsigned int newval;
1964 unsigned int newlen;
1965 unsigned int __unused[4];
1966 };
1967
1968 #ifdef CONFIG_SYSCTL
1969 asmlinkage long
1970 sys32_sysctl (struct sysctl32 __user *args)
1971 {
1972 struct sysctl32 a32;
1973 mm_segment_t old_fs = get_fs ();
1974 void __user *oldvalp, *newvalp;
1975 size_t oldlen;
1976 int __user *namep;
1977 long ret;
1978
1979 if (copy_from_user(&a32, args, sizeof(a32)))
1980 return -EFAULT;
1981
1982 /*
1983 * We need to pre-validate these because we have to disable address checking
1984 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1985 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1986 * addresses, we KNOW that access_ok() will always succeed, so this is an
1987 * expensive NOP, but so what...
1988 */
1989 namep = (int __user *) compat_ptr(a32.name);
1990 oldvalp = compat_ptr(a32.oldval);
1991 newvalp = compat_ptr(a32.newval);
1992
1993 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1994 || !access_ok(VERIFY_WRITE, namep, 0)
1995 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1996 || !access_ok(VERIFY_WRITE, newvalp, 0))
1997 return -EFAULT;
1998
1999 set_fs(KERNEL_DS);
2000 lock_kernel();
2001 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
2002 newvalp, (size_t) a32.newlen);
2003 unlock_kernel();
2004 set_fs(old_fs);
2005
2006 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
2007 return -EFAULT;
2008
2009 return ret;
2010 }
2011 #endif
2012
2013 asmlinkage long
2014 sys32_newuname (struct new_utsname __user *name)
2015 {
2016 int ret = sys_newuname(name);
2017
2018 if (!ret)
2019 if (copy_to_user(name->machine, "i686\0\0\0", 8))
2020 ret = -EFAULT;
2021 return ret;
2022 }
2023
2024 asmlinkage long
2025 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
2026 {
2027 uid_t a, b, c;
2028 int ret;
2029 mm_segment_t old_fs = get_fs();
2030
2031 set_fs(KERNEL_DS);
2032 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
2033 set_fs(old_fs);
2034
2035 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
2036 return -EFAULT;
2037 return ret;
2038 }
2039
2040 asmlinkage long
2041 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
2042 {
2043 gid_t a, b, c;
2044 int ret;
2045 mm_segment_t old_fs = get_fs();
2046
2047 set_fs(KERNEL_DS);
2048 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
2049 set_fs(old_fs);
2050
2051 if (ret)
2052 return ret;
2053
2054 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
2055 }
2056
2057 asmlinkage long
2058 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
2059 {
2060 /* Sign-extension of "offset" is important here... */
2061 return sys_lseek(fd, offset, whence);
2062 }
2063
2064 static int
2065 groups16_to_user(short __user *grouplist, struct group_info *group_info)
2066 {
2067 int i;
2068 short group;
2069
2070 for (i = 0; i < group_info->ngroups; i++) {
2071 group = (short)GROUP_AT(group_info, i);
2072 if (put_user(group, grouplist+i))
2073 return -EFAULT;
2074 }
2075
2076 return 0;
2077 }
2078
2079 static int
2080 groups16_from_user(struct group_info *group_info, short __user *grouplist)
2081 {
2082 int i;
2083 short group;
2084
2085 for (i = 0; i < group_info->ngroups; i++) {
2086 if (get_user(group, grouplist+i))
2087 return -EFAULT;
2088 GROUP_AT(group_info, i) = (gid_t)group;
2089 }
2090
2091 return 0;
2092 }
2093
2094 asmlinkage long
2095 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
2096 {
2097 int i;
2098
2099 if (gidsetsize < 0)
2100 return -EINVAL;
2101
2102 get_group_info(current->group_info);
2103 i = current->group_info->ngroups;
2104 if (gidsetsize) {
2105 if (i > gidsetsize) {
2106 i = -EINVAL;
2107 goto out;
2108 }
2109 if (groups16_to_user(grouplist, current->group_info)) {
2110 i = -EFAULT;
2111 goto out;
2112 }
2113 }
2114 out:
2115 put_group_info(current->group_info);
2116 return i;
2117 }
2118
2119 asmlinkage long
2120 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
2121 {
2122 struct group_info *group_info;
2123 int retval;
2124
2125 if (!capable(CAP_SETGID))
2126 return -EPERM;
2127 if ((unsigned)gidsetsize > NGROUPS_MAX)
2128 return -EINVAL;
2129
2130 group_info = groups_alloc(gidsetsize);
2131 if (!group_info)
2132 return -ENOMEM;
2133 retval = groups16_from_user(group_info, grouplist);
2134 if (retval) {
2135 put_group_info(group_info);
2136 return retval;
2137 }
2138
2139 retval = set_current_groups(group_info);
2140 put_group_info(group_info);
2141
2142 return retval;
2143 }
2144
2145 asmlinkage long
2146 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
2147 {
2148 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
2149 }
2150
2151 asmlinkage long
2152 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
2153 {
2154 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
2155 }
2156
2157 static int
2158 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
2159 {
2160 int err;
2161 u64 hdev;
2162
2163 if (clear_user(ubuf, sizeof(*ubuf)))
2164 return -EFAULT;
2165
2166 hdev = huge_encode_dev(kbuf->dev);
2167 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
2168 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
2169 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
2170 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
2171 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
2172 err |= __put_user(kbuf->mode, &ubuf->st_mode);
2173 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
2174 err |= __put_user(kbuf->uid, &ubuf->st_uid);
2175 err |= __put_user(kbuf->gid, &ubuf->st_gid);
2176 hdev = huge_encode_dev(kbuf->rdev);
2177 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2178 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2179 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2180 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2181 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2182 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2183 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2184 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2185 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2186 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2187 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2188 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2189 return err;
2190 }
2191
2192 asmlinkage long
2193 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2194 {
2195 struct kstat s;
2196 long ret = vfs_stat(filename, &s);
2197 if (!ret)
2198 ret = putstat64(statbuf, &s);
2199 return ret;
2200 }
2201
2202 asmlinkage long
2203 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2204 {
2205 struct kstat s;
2206 long ret = vfs_lstat(filename, &s);
2207 if (!ret)
2208 ret = putstat64(statbuf, &s);
2209 return ret;
2210 }
2211
2212 asmlinkage long
2213 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2214 {
2215 struct kstat s;
2216 long ret = vfs_fstat(fd, &s);
2217 if (!ret)
2218 ret = putstat64(statbuf, &s);
2219 return ret;
2220 }
2221
2222 struct sysinfo32 {
2223 s32 uptime;
2224 u32 loads[3];
2225 u32 totalram;
2226 u32 freeram;
2227 u32 sharedram;
2228 u32 bufferram;
2229 u32 totalswap;
2230 u32 freeswap;
2231 u16 procs;
2232 u16 pad;
2233 u32 totalhigh;
2234 u32 freehigh;
2235 u32 mem_unit;
2236 char _f[8];
2237 };
2238
2239 asmlinkage long
2240 sys32_sysinfo (struct sysinfo32 __user *info)
2241 {
2242 struct sysinfo s;
2243 long ret, err;
2244 int bitcount = 0;
2245 mm_segment_t old_fs = get_fs();
2246
2247 set_fs(KERNEL_DS);
2248 ret = sys_sysinfo((struct sysinfo __user *) &s);
2249 set_fs(old_fs);
2250 /* Check to see if any memory value is too large for 32-bit and
2251 * scale down if needed.
2252 */
2253 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2254 while (s.mem_unit < PAGE_SIZE) {
2255 s.mem_unit <<= 1;
2256 bitcount++;
2257 }
2258 s.totalram >>= bitcount;
2259 s.freeram >>= bitcount;
2260 s.sharedram >>= bitcount;
2261 s.bufferram >>= bitcount;
2262 s.totalswap >>= bitcount;
2263 s.freeswap >>= bitcount;
2264 s.totalhigh >>= bitcount;
2265 s.freehigh >>= bitcount;
2266 }
2267
2268 if (!access_ok(VERIFY_WRITE, info, sizeof(*info)))
2269 return -EFAULT;
2270
2271 err = __put_user(s.uptime, &info->uptime);
2272 err |= __put_user(s.loads[0], &info->loads[0]);
2273 err |= __put_user(s.loads[1], &info->loads[1]);
2274 err |= __put_user(s.loads[2], &info->loads[2]);
2275 err |= __put_user(s.totalram, &info->totalram);
2276 err |= __put_user(s.freeram, &info->freeram);
2277 err |= __put_user(s.sharedram, &info->sharedram);
2278 err |= __put_user(s.bufferram, &info->bufferram);
2279 err |= __put_user(s.totalswap, &info->totalswap);
2280 err |= __put_user(s.freeswap, &info->freeswap);
2281 err |= __put_user(s.procs, &info->procs);
2282 err |= __put_user (s.totalhigh, &info->totalhigh);
2283 err |= __put_user (s.freehigh, &info->freehigh);
2284 err |= __put_user (s.mem_unit, &info->mem_unit);
2285 if (err)
2286 return -EFAULT;
2287 return ret;
2288 }
2289
2290 asmlinkage long
2291 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2292 {
2293 mm_segment_t old_fs = get_fs();
2294 struct timespec t;
2295 long ret;
2296
2297 set_fs(KERNEL_DS);
2298 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2299 set_fs(old_fs);
2300 if (put_compat_timespec(&t, interval))
2301 return -EFAULT;
2302 return ret;
2303 }
2304
2305 asmlinkage long
2306 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2307 {
2308 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2309 }
2310
2311 asmlinkage long
2312 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2313 {
2314 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2315 }
2316
2317 asmlinkage long
2318 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2319 {
2320 mm_segment_t old_fs = get_fs();
2321 long ret;
2322 off_t of;
2323
2324 if (offset && get_user(of, offset))
2325 return -EFAULT;
2326
2327 set_fs(KERNEL_DS);
2328 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2329 set_fs(old_fs);
2330
2331 if (offset && put_user(of, offset))
2332 return -EFAULT;
2333
2334 return ret;
2335 }
2336
2337 asmlinkage long
2338 sys32_personality (unsigned int personality)
2339 {
2340 long ret;
2341
2342 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2343 personality = PER_LINUX32;
2344 ret = sys_personality(personality);
2345 if (ret == PER_LINUX32)
2346 ret = PER_LINUX;
2347 return ret;
2348 }
2349
2350 asmlinkage unsigned long
2351 sys32_brk (unsigned int brk)
2352 {
2353 unsigned long ret, obrk;
2354 struct mm_struct *mm = current->mm;
2355
2356 obrk = mm->brk;
2357 ret = sys_brk(brk);
2358 if (ret < obrk)
2359 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2360 return ret;
2361 }
2362
2363 /* Structure for ia32 emulation on ia64 */
2364 struct epoll_event32
2365 {
2366 u32 events;
2367 u32 data[2];
2368 };
2369
2370 asmlinkage long
2371 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2372 {
2373 mm_segment_t old_fs = get_fs();
2374 struct epoll_event event64;
2375 int error;
2376 u32 data_halfword;
2377
2378 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2379 return -EFAULT;
2380
2381 __get_user(event64.events, &event->events);
2382 __get_user(data_halfword, &event->data[0]);
2383 event64.data = data_halfword;
2384 __get_user(data_halfword, &event->data[1]);
2385 event64.data |= (u64)data_halfword << 32;
2386
2387 set_fs(KERNEL_DS);
2388 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2389 set_fs(old_fs);
2390
2391 return error;
2392 }
2393
2394 asmlinkage long
2395 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2396 int timeout)
2397 {
2398 struct epoll_event *events64 = NULL;
2399 mm_segment_t old_fs = get_fs();
2400 int numevents, size;
2401 int evt_idx;
2402 int do_free_pages = 0;
2403
2404 if (maxevents <= 0) {
2405 return -EINVAL;
2406 }
2407
2408 /* Verify that the area passed by the user is writeable */
2409 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2410 return -EFAULT;
2411
2412 /*
2413 * Allocate space for the intermediate copy. If the space needed
2414 * is large enough to cause kmalloc to fail, then try again with
2415 * __get_free_pages.
2416 */
2417 size = maxevents * sizeof(struct epoll_event);
2418 events64 = kmalloc(size, GFP_KERNEL);
2419 if (events64 == NULL) {
2420 events64 = (struct epoll_event *)
2421 __get_free_pages(GFP_KERNEL, get_order(size));
2422 if (events64 == NULL)
2423 return -ENOMEM;
2424 do_free_pages = 1;
2425 }
2426
2427 /* Do the system call */
2428 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2429 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2430 maxevents, timeout);
2431 set_fs(old_fs);
2432
2433 /* Don't modify userspace memory if we're returning an error */
2434 if (numevents > 0) {
2435 /* Translate the 64-bit structures back into the 32-bit
2436 structures */
2437 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2438 __put_user(events64[evt_idx].events,
2439 &events[evt_idx].events);
2440 __put_user((u32)events64[evt_idx].data,
2441 &events[evt_idx].data[0]);
2442 __put_user((u32)(events64[evt_idx].data >> 32),
2443 &events[evt_idx].data[1]);
2444 }
2445 }
2446
2447 if (do_free_pages)
2448 free_pages((unsigned long) events64, get_order(size));
2449 else
2450 kfree(events64);
2451 return numevents;
2452 }
2453
2454 /*
2455 * Get a yet unused TLS descriptor index.
2456 */
2457 static int
2458 get_free_idx (void)
2459 {
2460 struct thread_struct *t = &current->thread;
2461 int idx;
2462
2463 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2464 if (desc_empty(t->tls_array + idx))
2465 return idx + GDT_ENTRY_TLS_MIN;
2466 return -ESRCH;
2467 }
2468
2469 /*
2470 * Set a given TLS descriptor:
2471 */
2472 asmlinkage int
2473 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2474 {
2475 struct thread_struct *t = &current->thread;
2476 struct ia32_user_desc info;
2477 struct desc_struct *desc;
2478 int cpu, idx;
2479
2480 if (copy_from_user(&info, u_info, sizeof(info)))
2481 return -EFAULT;
2482 idx = info.entry_number;
2483
2484 /*
2485 * index -1 means the kernel should try to find and allocate an empty descriptor:
2486 */
2487 if (idx == -1) {
2488 idx = get_free_idx();
2489 if (idx < 0)
2490 return idx;
2491 if (put_user(idx, &u_info->entry_number))
2492 return -EFAULT;
2493 }
2494
2495 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2496 return -EINVAL;
2497
2498 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
2499
2500 cpu = smp_processor_id();
2501
2502 if (LDT_empty(&info)) {
2503 desc->a = 0;
2504 desc->b = 0;
2505 } else {
2506 desc->a = LDT_entry_a(&info);
2507 desc->b = LDT_entry_b(&info);
2508 }
2509 load_TLS(t, cpu);
2510 return 0;
2511 }
2512
2513 /*
2514 * Get the current Thread-Local Storage area:
2515 */
2516
2517 #define GET_BASE(desc) ( \
2518 (((desc)->a >> 16) & 0x0000ffff) | \
2519 (((desc)->b << 16) & 0x00ff0000) | \
2520 ( (desc)->b & 0xff000000) )
2521
2522 #define GET_LIMIT(desc) ( \
2523 ((desc)->a & 0x0ffff) | \
2524 ((desc)->b & 0xf0000) )
2525
2526 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2527 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2528 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2529 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2530 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2531 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2532
2533 asmlinkage int
2534 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2535 {
2536 struct ia32_user_desc info;
2537 struct desc_struct *desc;
2538 int idx;
2539
2540 if (get_user(idx, &u_info->entry_number))
2541 return -EFAULT;
2542 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2543 return -EINVAL;
2544
2545 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2546
2547 info.entry_number = idx;
2548 info.base_addr = GET_BASE(desc);
2549 info.limit = GET_LIMIT(desc);
2550 info.seg_32bit = GET_32BIT(desc);
2551 info.contents = GET_CONTENTS(desc);
2552 info.read_exec_only = !GET_WRITABLE(desc);
2553 info.limit_in_pages = GET_LIMIT_PAGES(desc);
2554 info.seg_not_present = !GET_PRESENT(desc);
2555 info.useable = GET_USEABLE(desc);
2556
2557 if (copy_to_user(u_info, &info, sizeof(info)))
2558 return -EFAULT;
2559 return 0;
2560 }
2561
2562 asmlinkage long
2563 sys32_timer_create(u32 clock, struct compat_sigevent __user *se32, timer_t __user *timer_id)
2564 {
2565 struct sigevent se;
2566 mm_segment_t oldfs;
2567 timer_t t;
2568 long err;
2569
2570 if (se32 == NULL)
2571 return sys_timer_create(clock, NULL, timer_id);
2572
2573 if (get_compat_sigevent(&se, se32))
2574 return -EFAULT;
2575
2576 if (!access_ok(VERIFY_WRITE,timer_id,sizeof(timer_t)))
2577 return -EFAULT;
2578
2579 oldfs = get_fs();
2580 set_fs(KERNEL_DS);
2581 err = sys_timer_create(clock, (struct sigevent __user *) &se, (timer_t __user *) &t);
2582 set_fs(oldfs);
2583
2584 if (!err)
2585 err = __put_user (t, timer_id);
2586
2587 return err;
2588 }
2589
2590 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
2591 __u32 len_low, __u32 len_high, int advice)
2592 {
2593 return sys_fadvise64_64(fd,
2594 (((u64)offset_high)<<32) | offset_low,
2595 (((u64)len_high)<<32) | len_low,
2596 advice);
2597 }
2598
2599 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
2600
2601 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
2602 {
2603 uid_t sruid, seuid;
2604
2605 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2606 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2607 return sys_setreuid(sruid, seuid);
2608 }
2609
2610 asmlinkage long
2611 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
2612 compat_uid_t suid)
2613 {
2614 uid_t sruid, seuid, ssuid;
2615
2616 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2617 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2618 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
2619 return sys_setresuid(sruid, seuid, ssuid);
2620 }
2621
2622 asmlinkage long
2623 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
2624 {
2625 gid_t srgid, segid;
2626
2627 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2628 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2629 return sys_setregid(srgid, segid);
2630 }
2631
2632 asmlinkage long
2633 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
2634 compat_gid_t sgid)
2635 {
2636 gid_t srgid, segid, ssgid;
2637
2638 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2639 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2640 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
2641 return sys_setresgid(srgid, segid, ssgid);
2642 }
2643
2644 /* Handle adjtimex compatibility. */
2645
2646 struct timex32 {
2647 u32 modes;
2648 s32 offset, freq, maxerror, esterror;
2649 s32 status, constant, precision, tolerance;
2650 struct compat_timeval time;
2651 s32 tick;
2652 s32 ppsfreq, jitter, shift, stabil;
2653 s32 jitcnt, calcnt, errcnt, stbcnt;
2654 s32 :32; s32 :32; s32 :32; s32 :32;
2655 s32 :32; s32 :32; s32 :32; s32 :32;
2656 s32 :32; s32 :32; s32 :32; s32 :32;
2657 };
2658
2659 extern int do_adjtimex(struct timex *);
2660
2661 asmlinkage long
2662 sys32_adjtimex(struct timex32 *utp)
2663 {
2664 struct timex txc;
2665 int ret;
2666
2667 memset(&txc, 0, sizeof(struct timex));
2668
2669 if(get_user(txc.modes, &utp->modes) ||
2670 __get_user(txc.offset, &utp->offset) ||
2671 __get_user(txc.freq, &utp->freq) ||
2672 __get_user(txc.maxerror, &utp->maxerror) ||
2673 __get_user(txc.esterror, &utp->esterror) ||
2674 __get_user(txc.status, &utp->status) ||
2675 __get_user(txc.constant, &utp->constant) ||
2676 __get_user(txc.precision, &utp->precision) ||
2677 __get_user(txc.tolerance, &utp->tolerance) ||
2678 __get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2679 __get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2680 __get_user(txc.tick, &utp->tick) ||
2681 __get_user(txc.ppsfreq, &utp->ppsfreq) ||
2682 __get_user(txc.jitter, &utp->jitter) ||
2683 __get_user(txc.shift, &utp->shift) ||
2684 __get_user(txc.stabil, &utp->stabil) ||
2685 __get_user(txc.jitcnt, &utp->jitcnt) ||
2686 __get_user(txc.calcnt, &utp->calcnt) ||
2687 __get_user(txc.errcnt, &utp->errcnt) ||
2688 __get_user(txc.stbcnt, &utp->stbcnt))
2689 return -EFAULT;
2690
2691 ret = do_adjtimex(&txc);
2692
2693 if(put_user(txc.modes, &utp->modes) ||
2694 __put_user(txc.offset, &utp->offset) ||
2695 __put_user(txc.freq, &utp->freq) ||
2696 __put_user(txc.maxerror, &utp->maxerror) ||
2697 __put_user(txc.esterror, &utp->esterror) ||
2698 __put_user(txc.status, &utp->status) ||
2699 __put_user(txc.constant, &utp->constant) ||
2700 __put_user(txc.precision, &utp->precision) ||
2701 __put_user(txc.tolerance, &utp->tolerance) ||
2702 __put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
2703 __put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
2704 __put_user(txc.tick, &utp->tick) ||
2705 __put_user(txc.ppsfreq, &utp->ppsfreq) ||
2706 __put_user(txc.jitter, &utp->jitter) ||
2707 __put_user(txc.shift, &utp->shift) ||
2708 __put_user(txc.stabil, &utp->stabil) ||
2709 __put_user(txc.jitcnt, &utp->jitcnt) ||
2710 __put_user(txc.calcnt, &utp->calcnt) ||
2711 __put_user(txc.errcnt, &utp->errcnt) ||
2712 __put_user(txc.stbcnt, &utp->stbcnt))
2713 ret = -EFAULT;
2714
2715 return ret;
2716 }
2717 #endif /* NOTYET */