]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/ia64/kernel/efi.c
avr32: replace simple_strtoul() with kstrtoul()
[mirror_ubuntu-jammy-kernel.git] / arch / ia64 / kernel / efi.c
1 /*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls. --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
23 */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG 0
46
47 static __initdata unsigned long palo_phys;
48
49 static __initdata efi_config_table_type_t arch_tables[] = {
50 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51 {NULL_GUID, NULL, 0},
52 };
53
54 extern efi_status_t efi_call_phys (void *, ...);
55
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58
59 #define efi_call_virt(f, args...) (*(f))(args)
60
61 #define STUB_GET_TIME(prefix, adjust_arg) \
62 static efi_status_t \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
64 { \
65 struct ia64_fpreg fr[6]; \
66 efi_time_cap_t *atc = NULL; \
67 efi_status_t ret; \
68 \
69 if (tc) \
70 atc = adjust_arg(tc); \
71 ia64_save_scratch_fpregs(fr); \
72 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
73 adjust_arg(tm), atc); \
74 ia64_load_scratch_fpregs(fr); \
75 return ret; \
76 }
77
78 #define STUB_SET_TIME(prefix, adjust_arg) \
79 static efi_status_t \
80 prefix##_set_time (efi_time_t *tm) \
81 { \
82 struct ia64_fpreg fr[6]; \
83 efi_status_t ret; \
84 \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
87 adjust_arg(tm)); \
88 ia64_load_scratch_fpregs(fr); \
89 return ret; \
90 }
91
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
93 static efi_status_t \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
95 efi_time_t *tm) \
96 { \
97 struct ia64_fpreg fr[6]; \
98 efi_status_t ret; \
99 \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix( \
102 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
103 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
104 ia64_load_scratch_fpregs(fr); \
105 return ret; \
106 }
107
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
109 static efi_status_t \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
111 { \
112 struct ia64_fpreg fr[6]; \
113 efi_time_t *atm = NULL; \
114 efi_status_t ret; \
115 \
116 if (tm) \
117 atm = adjust_arg(tm); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix( \
120 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
121 enabled, atm); \
122 ia64_load_scratch_fpregs(fr); \
123 return ret; \
124 }
125
126 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
129 unsigned long *data_size, void *data) \
130 { \
131 struct ia64_fpreg fr[6]; \
132 u32 *aattr = NULL; \
133 efi_status_t ret; \
134 \
135 if (attr) \
136 aattr = adjust_arg(attr); \
137 ia64_save_scratch_fpregs(fr); \
138 ret = efi_call_##prefix( \
139 (efi_get_variable_t *) __va(runtime->get_variable), \
140 adjust_arg(name), adjust_arg(vendor), aattr, \
141 adjust_arg(data_size), adjust_arg(data)); \
142 ia64_load_scratch_fpregs(fr); \
143 return ret; \
144 }
145
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
147 static efi_status_t \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
149 efi_guid_t *vendor) \
150 { \
151 struct ia64_fpreg fr[6]; \
152 efi_status_t ret; \
153 \
154 ia64_save_scratch_fpregs(fr); \
155 ret = efi_call_##prefix( \
156 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
157 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
158 ia64_load_scratch_fpregs(fr); \
159 return ret; \
160 }
161
162 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
163 static efi_status_t \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
165 u32 attr, unsigned long data_size, \
166 void *data) \
167 { \
168 struct ia64_fpreg fr[6]; \
169 efi_status_t ret; \
170 \
171 ia64_save_scratch_fpregs(fr); \
172 ret = efi_call_##prefix( \
173 (efi_set_variable_t *) __va(runtime->set_variable), \
174 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
175 adjust_arg(data)); \
176 ia64_load_scratch_fpregs(fr); \
177 return ret; \
178 }
179
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
181 static efi_status_t \
182 prefix##_get_next_high_mono_count (u32 *count) \
183 { \
184 struct ia64_fpreg fr[6]; \
185 efi_status_t ret; \
186 \
187 ia64_save_scratch_fpregs(fr); \
188 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
189 __va(runtime->get_next_high_mono_count), \
190 adjust_arg(count)); \
191 ia64_load_scratch_fpregs(fr); \
192 return ret; \
193 }
194
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
196 static void \
197 prefix##_reset_system (int reset_type, efi_status_t status, \
198 unsigned long data_size, efi_char16_t *data) \
199 { \
200 struct ia64_fpreg fr[6]; \
201 efi_char16_t *adata = NULL; \
202 \
203 if (data) \
204 adata = adjust_arg(data); \
205 \
206 ia64_save_scratch_fpregs(fr); \
207 efi_call_##prefix( \
208 (efi_reset_system_t *) __va(runtime->reset_system), \
209 reset_type, status, data_size, adata); \
210 /* should not return, but just in case... */ \
211 ia64_load_scratch_fpregs(fr); \
212 }
213
214 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
215
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225
226 #define id(arg) arg
227
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241 efi_time_t tm;
242
243 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244 memset(ts, 0, sizeof(*ts));
245 return;
246 }
247
248 ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249 tm.hour, tm.minute, tm.second);
250 ts->tv_nsec = tm.nanosecond;
251 }
252
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256 if (!(md->attribute & EFI_MEMORY_WB))
257 return 0;
258
259 switch (md->type) {
260 case EFI_LOADER_CODE:
261 case EFI_LOADER_DATA:
262 case EFI_BOOT_SERVICES_CODE:
263 case EFI_BOOT_SERVICES_DATA:
264 case EFI_CONVENTIONAL_MEMORY:
265 return 1;
266 }
267 return 0;
268 }
269
270 typedef struct kern_memdesc {
271 u64 attribute;
272 u64 start;
273 u64 num_pages;
274 } kern_memdesc_t;
275
276 static kern_memdesc_t *kern_memmap;
277
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289 return (md->phys_addr + efi_md_size(md));
290 }
291
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295 return (md->attribute & EFI_MEMORY_WB);
296 }
297
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301 return (md->attribute & EFI_MEMORY_UC);
302 }
303
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307 kern_memdesc_t *k;
308 u64 start, end, voff;
309
310 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311 for (k = kern_memmap; k->start != ~0UL; k++) {
312 if (k->attribute != attr)
313 continue;
314 start = PAGE_ALIGN(k->start);
315 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316 if (start < end)
317 if ((*callback)(start + voff, end + voff, arg) < 0)
318 return;
319 }
320 }
321
322 /*
323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
324 * descriptor that has memory that is available for OS use.
325 */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329 walk(callback, arg, EFI_MEMORY_WB);
330 }
331
332 /*
333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
334 * descriptor that has memory that is available for uncached allocator.
335 */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339 walk(callback, arg, EFI_MEMORY_UC);
340 }
341
342 /*
343 * Look for the PAL_CODE region reported by EFI and map it using an
344 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
345 * Abstraction Layer chapter 11 in ADAG
346 */
347 void *
348 efi_get_pal_addr (void)
349 {
350 void *efi_map_start, *efi_map_end, *p;
351 efi_memory_desc_t *md;
352 u64 efi_desc_size;
353 int pal_code_count = 0;
354 u64 vaddr, mask;
355
356 efi_map_start = __va(ia64_boot_param->efi_memmap);
357 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
358 efi_desc_size = ia64_boot_param->efi_memdesc_size;
359
360 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361 md = p;
362 if (md->type != EFI_PAL_CODE)
363 continue;
364
365 if (++pal_code_count > 1) {
366 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367 "dropped @ %llx\n", md->phys_addr);
368 continue;
369 }
370 /*
371 * The only ITLB entry in region 7 that is used is the one
372 * installed by __start(). That entry covers a 64MB range.
373 */
374 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375 vaddr = PAGE_OFFSET + md->phys_addr;
376
377 /*
378 * We must check that the PAL mapping won't overlap with the
379 * kernel mapping.
380 *
381 * PAL code is guaranteed to be aligned on a power of 2 between
382 * 4k and 256KB and that only one ITR is needed to map it. This
383 * implies that the PAL code is always aligned on its size,
384 * i.e., the closest matching page size supported by the TLB.
385 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 * it is bigger than 64MB (very unlikely!). So for now the
387 * following test is enough to determine whether or not we need
388 * a dedicated ITR for the PAL code.
389 */
390 if ((vaddr & mask) == (KERNEL_START & mask)) {
391 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392 __func__);
393 continue;
394 }
395
396 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397 panic("Whoa! PAL code size bigger than a granule!");
398
399 #if EFI_DEBUG
400 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
401
402 printk(KERN_INFO "CPU %d: mapping PAL code "
403 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404 smp_processor_id(), md->phys_addr,
405 md->phys_addr + efi_md_size(md),
406 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408 return __va(md->phys_addr);
409 }
410 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411 __func__);
412 return NULL;
413 }
414
415
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418 u8 sum = 0;
419 u8 *end = buffer + length;
420
421 while (buffer < end)
422 sum = (u8) (sum + *(buffer++));
423
424 return sum;
425 }
426
427 /*
428 * Parse and handle PALO table which is published at:
429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430 */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433 struct palo_table *palo = __va(phys_addr);
434 u8 checksum;
435
436 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437 printk(KERN_INFO "PALO signature incorrect.\n");
438 return;
439 }
440
441 checksum = palo_checksum((u8 *)palo, palo->length);
442 if (checksum) {
443 printk(KERN_INFO "PALO checksum incorrect.\n");
444 return;
445 }
446
447 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449
450 void
451 efi_map_pal_code (void)
452 {
453 void *pal_vaddr = efi_get_pal_addr ();
454 u64 psr;
455
456 if (!pal_vaddr)
457 return;
458
459 /*
460 * Cannot write to CRx with PSR.ic=1
461 */
462 psr = ia64_clear_ic();
463 ia64_itr(0x1, IA64_TR_PALCODE,
464 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466 IA64_GRANULE_SHIFT);
467 paravirt_dv_serialize_data();
468 ia64_set_psr(psr); /* restore psr */
469 }
470
471 void __init
472 efi_init (void)
473 {
474 void *efi_map_start, *efi_map_end;
475 efi_char16_t *c16;
476 u64 efi_desc_size;
477 char *cp, vendor[100] = "unknown";
478 int i;
479
480 /*
481 * It's too early to be able to use the standard kernel command line
482 * support...
483 */
484 for (cp = boot_command_line; *cp; ) {
485 if (memcmp(cp, "mem=", 4) == 0) {
486 mem_limit = memparse(cp + 4, &cp);
487 } else if (memcmp(cp, "max_addr=", 9) == 0) {
488 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
489 } else if (memcmp(cp, "min_addr=", 9) == 0) {
490 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
491 } else {
492 while (*cp != ' ' && *cp)
493 ++cp;
494 while (*cp == ' ')
495 ++cp;
496 }
497 }
498 if (min_addr != 0UL)
499 printk(KERN_INFO "Ignoring memory below %lluMB\n",
500 min_addr >> 20);
501 if (max_addr != ~0UL)
502 printk(KERN_INFO "Ignoring memory above %lluMB\n",
503 max_addr >> 20);
504
505 efi.systab = __va(ia64_boot_param->efi_systab);
506
507 /*
508 * Verify the EFI Table
509 */
510 if (efi.systab == NULL)
511 panic("Whoa! Can't find EFI system table.\n");
512 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
513 panic("Whoa! EFI system table signature incorrect\n");
514 if ((efi.systab->hdr.revision >> 16) == 0)
515 printk(KERN_WARNING "Warning: EFI system table version "
516 "%d.%02d, expected 1.00 or greater\n",
517 efi.systab->hdr.revision >> 16,
518 efi.systab->hdr.revision & 0xffff);
519
520 /* Show what we know for posterity */
521 c16 = __va(efi.systab->fw_vendor);
522 if (c16) {
523 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
524 vendor[i] = *c16++;
525 vendor[i] = '\0';
526 }
527
528 printk(KERN_INFO "EFI v%u.%.02u by %s:",
529 efi.systab->hdr.revision >> 16,
530 efi.systab->hdr.revision & 0xffff, vendor);
531
532 palo_phys = EFI_INVALID_TABLE_ADDR;
533
534 if (efi_config_init(arch_tables) != 0)
535 return;
536
537 if (palo_phys != EFI_INVALID_TABLE_ADDR)
538 handle_palo(palo_phys);
539
540 runtime = __va(efi.systab->runtime);
541 efi.get_time = phys_get_time;
542 efi.set_time = phys_set_time;
543 efi.get_wakeup_time = phys_get_wakeup_time;
544 efi.set_wakeup_time = phys_set_wakeup_time;
545 efi.get_variable = phys_get_variable;
546 efi.get_next_variable = phys_get_next_variable;
547 efi.set_variable = phys_set_variable;
548 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
549 efi.reset_system = phys_reset_system;
550
551 efi_map_start = __va(ia64_boot_param->efi_memmap);
552 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
553 efi_desc_size = ia64_boot_param->efi_memdesc_size;
554
555 #if EFI_DEBUG
556 /* print EFI memory map: */
557 {
558 efi_memory_desc_t *md;
559 void *p;
560
561 for (i = 0, p = efi_map_start; p < efi_map_end;
562 ++i, p += efi_desc_size)
563 {
564 const char *unit;
565 unsigned long size;
566
567 md = p;
568 size = md->num_pages << EFI_PAGE_SHIFT;
569
570 if ((size >> 40) > 0) {
571 size >>= 40;
572 unit = "TB";
573 } else if ((size >> 30) > 0) {
574 size >>= 30;
575 unit = "GB";
576 } else if ((size >> 20) > 0) {
577 size >>= 20;
578 unit = "MB";
579 } else {
580 size >>= 10;
581 unit = "KB";
582 }
583
584 printk("mem%02d: type=%2u, attr=0x%016lx, "
585 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
586 i, md->type, md->attribute, md->phys_addr,
587 md->phys_addr + efi_md_size(md), size, unit);
588 }
589 }
590 #endif
591
592 efi_map_pal_code();
593 efi_enter_virtual_mode();
594 }
595
596 void
597 efi_enter_virtual_mode (void)
598 {
599 void *efi_map_start, *efi_map_end, *p;
600 efi_memory_desc_t *md;
601 efi_status_t status;
602 u64 efi_desc_size;
603
604 efi_map_start = __va(ia64_boot_param->efi_memmap);
605 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
606 efi_desc_size = ia64_boot_param->efi_memdesc_size;
607
608 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
609 md = p;
610 if (md->attribute & EFI_MEMORY_RUNTIME) {
611 /*
612 * Some descriptors have multiple bits set, so the
613 * order of the tests is relevant.
614 */
615 if (md->attribute & EFI_MEMORY_WB) {
616 md->virt_addr = (u64) __va(md->phys_addr);
617 } else if (md->attribute & EFI_MEMORY_UC) {
618 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
619 } else if (md->attribute & EFI_MEMORY_WC) {
620 #if 0
621 md->virt_addr = ia64_remap(md->phys_addr,
622 (_PAGE_A |
623 _PAGE_P |
624 _PAGE_D |
625 _PAGE_MA_WC |
626 _PAGE_PL_0 |
627 _PAGE_AR_RW));
628 #else
629 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
630 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
631 #endif
632 } else if (md->attribute & EFI_MEMORY_WT) {
633 #if 0
634 md->virt_addr = ia64_remap(md->phys_addr,
635 (_PAGE_A |
636 _PAGE_P |
637 _PAGE_D |
638 _PAGE_MA_WT |
639 _PAGE_PL_0 |
640 _PAGE_AR_RW));
641 #else
642 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
643 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
644 #endif
645 }
646 }
647 }
648
649 status = efi_call_phys(__va(runtime->set_virtual_address_map),
650 ia64_boot_param->efi_memmap_size,
651 efi_desc_size,
652 ia64_boot_param->efi_memdesc_version,
653 ia64_boot_param->efi_memmap);
654 if (status != EFI_SUCCESS) {
655 printk(KERN_WARNING "warning: unable to switch EFI into "
656 "virtual mode (status=%lu)\n", status);
657 return;
658 }
659
660 /*
661 * Now that EFI is in virtual mode, we call the EFI functions more
662 * efficiently:
663 */
664 efi.get_time = virt_get_time;
665 efi.set_time = virt_set_time;
666 efi.get_wakeup_time = virt_get_wakeup_time;
667 efi.set_wakeup_time = virt_set_wakeup_time;
668 efi.get_variable = virt_get_variable;
669 efi.get_next_variable = virt_get_next_variable;
670 efi.set_variable = virt_set_variable;
671 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
672 efi.reset_system = virt_reset_system;
673 }
674
675 /*
676 * Walk the EFI memory map looking for the I/O port range. There can only be
677 * one entry of this type, other I/O port ranges should be described via ACPI.
678 */
679 u64
680 efi_get_iobase (void)
681 {
682 void *efi_map_start, *efi_map_end, *p;
683 efi_memory_desc_t *md;
684 u64 efi_desc_size;
685
686 efi_map_start = __va(ia64_boot_param->efi_memmap);
687 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
688 efi_desc_size = ia64_boot_param->efi_memdesc_size;
689
690 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
691 md = p;
692 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
693 if (md->attribute & EFI_MEMORY_UC)
694 return md->phys_addr;
695 }
696 }
697 return 0;
698 }
699
700 static struct kern_memdesc *
701 kern_memory_descriptor (unsigned long phys_addr)
702 {
703 struct kern_memdesc *md;
704
705 for (md = kern_memmap; md->start != ~0UL; md++) {
706 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
707 return md;
708 }
709 return NULL;
710 }
711
712 static efi_memory_desc_t *
713 efi_memory_descriptor (unsigned long phys_addr)
714 {
715 void *efi_map_start, *efi_map_end, *p;
716 efi_memory_desc_t *md;
717 u64 efi_desc_size;
718
719 efi_map_start = __va(ia64_boot_param->efi_memmap);
720 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
721 efi_desc_size = ia64_boot_param->efi_memdesc_size;
722
723 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
724 md = p;
725
726 if (phys_addr - md->phys_addr < efi_md_size(md))
727 return md;
728 }
729 return NULL;
730 }
731
732 static int
733 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
734 {
735 void *efi_map_start, *efi_map_end, *p;
736 efi_memory_desc_t *md;
737 u64 efi_desc_size;
738 unsigned long end;
739
740 efi_map_start = __va(ia64_boot_param->efi_memmap);
741 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
742 efi_desc_size = ia64_boot_param->efi_memdesc_size;
743
744 end = phys_addr + size;
745
746 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
747 md = p;
748 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
749 return 1;
750 }
751 return 0;
752 }
753
754 u32
755 efi_mem_type (unsigned long phys_addr)
756 {
757 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
758
759 if (md)
760 return md->type;
761 return 0;
762 }
763
764 u64
765 efi_mem_attributes (unsigned long phys_addr)
766 {
767 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
768
769 if (md)
770 return md->attribute;
771 return 0;
772 }
773 EXPORT_SYMBOL(efi_mem_attributes);
774
775 u64
776 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
777 {
778 unsigned long end = phys_addr + size;
779 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
780 u64 attr;
781
782 if (!md)
783 return 0;
784
785 /*
786 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
787 * the kernel that firmware needs this region mapped.
788 */
789 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
790 do {
791 unsigned long md_end = efi_md_end(md);
792
793 if (end <= md_end)
794 return attr;
795
796 md = efi_memory_descriptor(md_end);
797 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
798 return 0;
799 } while (md);
800 return 0; /* never reached */
801 }
802
803 u64
804 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
805 {
806 unsigned long end = phys_addr + size;
807 struct kern_memdesc *md;
808 u64 attr;
809
810 /*
811 * This is a hack for ioremap calls before we set up kern_memmap.
812 * Maybe we should do efi_memmap_init() earlier instead.
813 */
814 if (!kern_memmap) {
815 attr = efi_mem_attribute(phys_addr, size);
816 if (attr & EFI_MEMORY_WB)
817 return EFI_MEMORY_WB;
818 return 0;
819 }
820
821 md = kern_memory_descriptor(phys_addr);
822 if (!md)
823 return 0;
824
825 attr = md->attribute;
826 do {
827 unsigned long md_end = kmd_end(md);
828
829 if (end <= md_end)
830 return attr;
831
832 md = kern_memory_descriptor(md_end);
833 if (!md || md->attribute != attr)
834 return 0;
835 } while (md);
836 return 0; /* never reached */
837 }
838 EXPORT_SYMBOL(kern_mem_attribute);
839
840 int
841 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
842 {
843 u64 attr;
844
845 /*
846 * /dev/mem reads and writes use copy_to_user(), which implicitly
847 * uses a granule-sized kernel identity mapping. It's really
848 * only safe to do this for regions in kern_memmap. For more
849 * details, see Documentation/ia64/aliasing.txt.
850 */
851 attr = kern_mem_attribute(phys_addr, size);
852 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
853 return 1;
854 return 0;
855 }
856
857 int
858 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
859 {
860 unsigned long phys_addr = pfn << PAGE_SHIFT;
861 u64 attr;
862
863 attr = efi_mem_attribute(phys_addr, size);
864
865 /*
866 * /dev/mem mmap uses normal user pages, so we don't need the entire
867 * granule, but the entire region we're mapping must support the same
868 * attribute.
869 */
870 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
871 return 1;
872
873 /*
874 * Intel firmware doesn't tell us about all the MMIO regions, so
875 * in general we have to allow mmap requests. But if EFI *does*
876 * tell us about anything inside this region, we should deny it.
877 * The user can always map a smaller region to avoid the overlap.
878 */
879 if (efi_memmap_intersects(phys_addr, size))
880 return 0;
881
882 return 1;
883 }
884
885 pgprot_t
886 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
887 pgprot_t vma_prot)
888 {
889 unsigned long phys_addr = pfn << PAGE_SHIFT;
890 u64 attr;
891
892 /*
893 * For /dev/mem mmap, we use user mappings, but if the region is
894 * in kern_memmap (and hence may be covered by a kernel mapping),
895 * we must use the same attribute as the kernel mapping.
896 */
897 attr = kern_mem_attribute(phys_addr, size);
898 if (attr & EFI_MEMORY_WB)
899 return pgprot_cacheable(vma_prot);
900 else if (attr & EFI_MEMORY_UC)
901 return pgprot_noncached(vma_prot);
902
903 /*
904 * Some chipsets don't support UC access to memory. If
905 * WB is supported, we prefer that.
906 */
907 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
908 return pgprot_cacheable(vma_prot);
909
910 return pgprot_noncached(vma_prot);
911 }
912
913 int __init
914 efi_uart_console_only(void)
915 {
916 efi_status_t status;
917 char *s, name[] = "ConOut";
918 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
919 efi_char16_t *utf16, name_utf16[32];
920 unsigned char data[1024];
921 unsigned long size = sizeof(data);
922 struct efi_generic_dev_path *hdr, *end_addr;
923 int uart = 0;
924
925 /* Convert to UTF-16 */
926 utf16 = name_utf16;
927 s = name;
928 while (*s)
929 *utf16++ = *s++ & 0x7f;
930 *utf16 = 0;
931
932 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
933 if (status != EFI_SUCCESS) {
934 printk(KERN_ERR "No EFI %s variable?\n", name);
935 return 0;
936 }
937
938 hdr = (struct efi_generic_dev_path *) data;
939 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
940 while (hdr < end_addr) {
941 if (hdr->type == EFI_DEV_MSG &&
942 hdr->sub_type == EFI_DEV_MSG_UART)
943 uart = 1;
944 else if (hdr->type == EFI_DEV_END_PATH ||
945 hdr->type == EFI_DEV_END_PATH2) {
946 if (!uart)
947 return 0;
948 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
949 return 1;
950 uart = 0;
951 }
952 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
953 }
954 printk(KERN_ERR "Malformed %s value\n", name);
955 return 0;
956 }
957
958 /*
959 * Look for the first granule aligned memory descriptor memory
960 * that is big enough to hold EFI memory map. Make sure this
961 * descriptor is atleast granule sized so it does not get trimmed
962 */
963 struct kern_memdesc *
964 find_memmap_space (void)
965 {
966 u64 contig_low=0, contig_high=0;
967 u64 as = 0, ae;
968 void *efi_map_start, *efi_map_end, *p, *q;
969 efi_memory_desc_t *md, *pmd = NULL, *check_md;
970 u64 space_needed, efi_desc_size;
971 unsigned long total_mem = 0;
972
973 efi_map_start = __va(ia64_boot_param->efi_memmap);
974 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
975 efi_desc_size = ia64_boot_param->efi_memdesc_size;
976
977 /*
978 * Worst case: we need 3 kernel descriptors for each efi descriptor
979 * (if every entry has a WB part in the middle, and UC head and tail),
980 * plus one for the end marker.
981 */
982 space_needed = sizeof(kern_memdesc_t) *
983 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
984
985 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
986 md = p;
987 if (!efi_wb(md)) {
988 continue;
989 }
990 if (pmd == NULL || !efi_wb(pmd) ||
991 efi_md_end(pmd) != md->phys_addr) {
992 contig_low = GRANULEROUNDUP(md->phys_addr);
993 contig_high = efi_md_end(md);
994 for (q = p + efi_desc_size; q < efi_map_end;
995 q += efi_desc_size) {
996 check_md = q;
997 if (!efi_wb(check_md))
998 break;
999 if (contig_high != check_md->phys_addr)
1000 break;
1001 contig_high = efi_md_end(check_md);
1002 }
1003 contig_high = GRANULEROUNDDOWN(contig_high);
1004 }
1005 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1006 continue;
1007
1008 /* Round ends inward to granule boundaries */
1009 as = max(contig_low, md->phys_addr);
1010 ae = min(contig_high, efi_md_end(md));
1011
1012 /* keep within max_addr= and min_addr= command line arg */
1013 as = max(as, min_addr);
1014 ae = min(ae, max_addr);
1015 if (ae <= as)
1016 continue;
1017
1018 /* avoid going over mem= command line arg */
1019 if (total_mem + (ae - as) > mem_limit)
1020 ae -= total_mem + (ae - as) - mem_limit;
1021
1022 if (ae <= as)
1023 continue;
1024
1025 if (ae - as > space_needed)
1026 break;
1027 }
1028 if (p >= efi_map_end)
1029 panic("Can't allocate space for kernel memory descriptors");
1030
1031 return __va(as);
1032 }
1033
1034 /*
1035 * Walk the EFI memory map and gather all memory available for kernel
1036 * to use. We can allocate partial granules only if the unavailable
1037 * parts exist, and are WB.
1038 */
1039 unsigned long
1040 efi_memmap_init(u64 *s, u64 *e)
1041 {
1042 struct kern_memdesc *k, *prev = NULL;
1043 u64 contig_low=0, contig_high=0;
1044 u64 as, ae, lim;
1045 void *efi_map_start, *efi_map_end, *p, *q;
1046 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1047 u64 efi_desc_size;
1048 unsigned long total_mem = 0;
1049
1050 k = kern_memmap = find_memmap_space();
1051
1052 efi_map_start = __va(ia64_boot_param->efi_memmap);
1053 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1054 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1055
1056 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1057 md = p;
1058 if (!efi_wb(md)) {
1059 if (efi_uc(md) &&
1060 (md->type == EFI_CONVENTIONAL_MEMORY ||
1061 md->type == EFI_BOOT_SERVICES_DATA)) {
1062 k->attribute = EFI_MEMORY_UC;
1063 k->start = md->phys_addr;
1064 k->num_pages = md->num_pages;
1065 k++;
1066 }
1067 continue;
1068 }
1069 if (pmd == NULL || !efi_wb(pmd) ||
1070 efi_md_end(pmd) != md->phys_addr) {
1071 contig_low = GRANULEROUNDUP(md->phys_addr);
1072 contig_high = efi_md_end(md);
1073 for (q = p + efi_desc_size; q < efi_map_end;
1074 q += efi_desc_size) {
1075 check_md = q;
1076 if (!efi_wb(check_md))
1077 break;
1078 if (contig_high != check_md->phys_addr)
1079 break;
1080 contig_high = efi_md_end(check_md);
1081 }
1082 contig_high = GRANULEROUNDDOWN(contig_high);
1083 }
1084 if (!is_memory_available(md))
1085 continue;
1086
1087 /*
1088 * Round ends inward to granule boundaries
1089 * Give trimmings to uncached allocator
1090 */
1091 if (md->phys_addr < contig_low) {
1092 lim = min(efi_md_end(md), contig_low);
1093 if (efi_uc(md)) {
1094 if (k > kern_memmap &&
1095 (k-1)->attribute == EFI_MEMORY_UC &&
1096 kmd_end(k-1) == md->phys_addr) {
1097 (k-1)->num_pages +=
1098 (lim - md->phys_addr)
1099 >> EFI_PAGE_SHIFT;
1100 } else {
1101 k->attribute = EFI_MEMORY_UC;
1102 k->start = md->phys_addr;
1103 k->num_pages = (lim - md->phys_addr)
1104 >> EFI_PAGE_SHIFT;
1105 k++;
1106 }
1107 }
1108 as = contig_low;
1109 } else
1110 as = md->phys_addr;
1111
1112 if (efi_md_end(md) > contig_high) {
1113 lim = max(md->phys_addr, contig_high);
1114 if (efi_uc(md)) {
1115 if (lim == md->phys_addr && k > kern_memmap &&
1116 (k-1)->attribute == EFI_MEMORY_UC &&
1117 kmd_end(k-1) == md->phys_addr) {
1118 (k-1)->num_pages += md->num_pages;
1119 } else {
1120 k->attribute = EFI_MEMORY_UC;
1121 k->start = lim;
1122 k->num_pages = (efi_md_end(md) - lim)
1123 >> EFI_PAGE_SHIFT;
1124 k++;
1125 }
1126 }
1127 ae = contig_high;
1128 } else
1129 ae = efi_md_end(md);
1130
1131 /* keep within max_addr= and min_addr= command line arg */
1132 as = max(as, min_addr);
1133 ae = min(ae, max_addr);
1134 if (ae <= as)
1135 continue;
1136
1137 /* avoid going over mem= command line arg */
1138 if (total_mem + (ae - as) > mem_limit)
1139 ae -= total_mem + (ae - as) - mem_limit;
1140
1141 if (ae <= as)
1142 continue;
1143 if (prev && kmd_end(prev) == md->phys_addr) {
1144 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1145 total_mem += ae - as;
1146 continue;
1147 }
1148 k->attribute = EFI_MEMORY_WB;
1149 k->start = as;
1150 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1151 total_mem += ae - as;
1152 prev = k++;
1153 }
1154 k->start = ~0L; /* end-marker */
1155
1156 /* reserve the memory we are using for kern_memmap */
1157 *s = (u64)kern_memmap;
1158 *e = (u64)++k;
1159
1160 return total_mem;
1161 }
1162
1163 void
1164 efi_initialize_iomem_resources(struct resource *code_resource,
1165 struct resource *data_resource,
1166 struct resource *bss_resource)
1167 {
1168 struct resource *res;
1169 void *efi_map_start, *efi_map_end, *p;
1170 efi_memory_desc_t *md;
1171 u64 efi_desc_size;
1172 char *name;
1173 unsigned long flags;
1174
1175 efi_map_start = __va(ia64_boot_param->efi_memmap);
1176 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1177 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1178
1179 res = NULL;
1180
1181 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1182 md = p;
1183
1184 if (md->num_pages == 0) /* should not happen */
1185 continue;
1186
1187 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1188 switch (md->type) {
1189
1190 case EFI_MEMORY_MAPPED_IO:
1191 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1192 continue;
1193
1194 case EFI_LOADER_CODE:
1195 case EFI_LOADER_DATA:
1196 case EFI_BOOT_SERVICES_DATA:
1197 case EFI_BOOT_SERVICES_CODE:
1198 case EFI_CONVENTIONAL_MEMORY:
1199 if (md->attribute & EFI_MEMORY_WP) {
1200 name = "System ROM";
1201 flags |= IORESOURCE_READONLY;
1202 } else if (md->attribute == EFI_MEMORY_UC)
1203 name = "Uncached RAM";
1204 else
1205 name = "System RAM";
1206 break;
1207
1208 case EFI_ACPI_MEMORY_NVS:
1209 name = "ACPI Non-volatile Storage";
1210 break;
1211
1212 case EFI_UNUSABLE_MEMORY:
1213 name = "reserved";
1214 flags |= IORESOURCE_DISABLED;
1215 break;
1216
1217 case EFI_RESERVED_TYPE:
1218 case EFI_RUNTIME_SERVICES_CODE:
1219 case EFI_RUNTIME_SERVICES_DATA:
1220 case EFI_ACPI_RECLAIM_MEMORY:
1221 default:
1222 name = "reserved";
1223 break;
1224 }
1225
1226 if ((res = kzalloc(sizeof(struct resource),
1227 GFP_KERNEL)) == NULL) {
1228 printk(KERN_ERR
1229 "failed to allocate resource for iomem\n");
1230 return;
1231 }
1232
1233 res->name = name;
1234 res->start = md->phys_addr;
1235 res->end = md->phys_addr + efi_md_size(md) - 1;
1236 res->flags = flags;
1237
1238 if (insert_resource(&iomem_resource, res) < 0)
1239 kfree(res);
1240 else {
1241 /*
1242 * We don't know which region contains
1243 * kernel data so we try it repeatedly and
1244 * let the resource manager test it.
1245 */
1246 insert_resource(res, code_resource);
1247 insert_resource(res, data_resource);
1248 insert_resource(res, bss_resource);
1249 #ifdef CONFIG_KEXEC
1250 insert_resource(res, &efi_memmap_res);
1251 insert_resource(res, &boot_param_res);
1252 if (crashk_res.end > crashk_res.start)
1253 insert_resource(res, &crashk_res);
1254 #endif
1255 }
1256 }
1257 }
1258
1259 #ifdef CONFIG_KEXEC
1260 /* find a block of memory aligned to 64M exclude reserved regions
1261 rsvd_regions are sorted
1262 */
1263 unsigned long __init
1264 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1265 {
1266 int i;
1267 u64 start, end;
1268 u64 alignment = 1UL << _PAGE_SIZE_64M;
1269 void *efi_map_start, *efi_map_end, *p;
1270 efi_memory_desc_t *md;
1271 u64 efi_desc_size;
1272
1273 efi_map_start = __va(ia64_boot_param->efi_memmap);
1274 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1275 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1276
1277 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1278 md = p;
1279 if (!efi_wb(md))
1280 continue;
1281 start = ALIGN(md->phys_addr, alignment);
1282 end = efi_md_end(md);
1283 for (i = 0; i < n; i++) {
1284 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1285 if (__pa(r[i].start) > start + size)
1286 return start;
1287 start = ALIGN(__pa(r[i].end), alignment);
1288 if (i < n-1 &&
1289 __pa(r[i+1].start) < start + size)
1290 continue;
1291 else
1292 break;
1293 }
1294 }
1295 if (end > start + size)
1296 return start;
1297 }
1298
1299 printk(KERN_WARNING
1300 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1301 return ~0UL;
1302 }
1303 #endif
1304
1305 #ifdef CONFIG_CRASH_DUMP
1306 /* locate the size find a the descriptor at a certain address */
1307 unsigned long __init
1308 vmcore_find_descriptor_size (unsigned long address)
1309 {
1310 void *efi_map_start, *efi_map_end, *p;
1311 efi_memory_desc_t *md;
1312 u64 efi_desc_size;
1313 unsigned long ret = 0;
1314
1315 efi_map_start = __va(ia64_boot_param->efi_memmap);
1316 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1317 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1318
1319 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1320 md = p;
1321 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1322 && md->phys_addr == address) {
1323 ret = efi_md_size(md);
1324 break;
1325 }
1326 }
1327
1328 if (ret == 0)
1329 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1330
1331 return ret;
1332 }
1333 #endif