]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/ia64/kernel/efi.c
Merge tag 'renesas-defconfig-fixes-for-v3.19' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-focal-kernel.git] / arch / ia64 / kernel / efi.c
1 /*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9
5 * April 30, 1999
6 *
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 *
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
18 *
19 * Implemented EFI runtime services and virtual mode calls. --davidm
20 *
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
23 */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG 0
46
47 static __initdata unsigned long palo_phys;
48
49 static __initdata efi_config_table_type_t arch_tables[] = {
50 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51 {NULL_GUID, NULL, 0},
52 };
53
54 extern efi_status_t efi_call_phys (void *, ...);
55
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58
59 #define efi_call_virt(f, args...) (*(f))(args)
60
61 #define STUB_GET_TIME(prefix, adjust_arg) \
62 static efi_status_t \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
64 { \
65 struct ia64_fpreg fr[6]; \
66 efi_time_cap_t *atc = NULL; \
67 efi_status_t ret; \
68 \
69 if (tc) \
70 atc = adjust_arg(tc); \
71 ia64_save_scratch_fpregs(fr); \
72 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
73 adjust_arg(tm), atc); \
74 ia64_load_scratch_fpregs(fr); \
75 return ret; \
76 }
77
78 #define STUB_SET_TIME(prefix, adjust_arg) \
79 static efi_status_t \
80 prefix##_set_time (efi_time_t *tm) \
81 { \
82 struct ia64_fpreg fr[6]; \
83 efi_status_t ret; \
84 \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
87 adjust_arg(tm)); \
88 ia64_load_scratch_fpregs(fr); \
89 return ret; \
90 }
91
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
93 static efi_status_t \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
95 efi_time_t *tm) \
96 { \
97 struct ia64_fpreg fr[6]; \
98 efi_status_t ret; \
99 \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix( \
102 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
103 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
104 ia64_load_scratch_fpregs(fr); \
105 return ret; \
106 }
107
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
109 static efi_status_t \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
111 { \
112 struct ia64_fpreg fr[6]; \
113 efi_time_t *atm = NULL; \
114 efi_status_t ret; \
115 \
116 if (tm) \
117 atm = adjust_arg(tm); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix( \
120 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
121 enabled, atm); \
122 ia64_load_scratch_fpregs(fr); \
123 return ret; \
124 }
125
126 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
129 unsigned long *data_size, void *data) \
130 { \
131 struct ia64_fpreg fr[6]; \
132 u32 *aattr = NULL; \
133 efi_status_t ret; \
134 \
135 if (attr) \
136 aattr = adjust_arg(attr); \
137 ia64_save_scratch_fpregs(fr); \
138 ret = efi_call_##prefix( \
139 (efi_get_variable_t *) __va(runtime->get_variable), \
140 adjust_arg(name), adjust_arg(vendor), aattr, \
141 adjust_arg(data_size), adjust_arg(data)); \
142 ia64_load_scratch_fpregs(fr); \
143 return ret; \
144 }
145
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
147 static efi_status_t \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
149 efi_guid_t *vendor) \
150 { \
151 struct ia64_fpreg fr[6]; \
152 efi_status_t ret; \
153 \
154 ia64_save_scratch_fpregs(fr); \
155 ret = efi_call_##prefix( \
156 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
157 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
158 ia64_load_scratch_fpregs(fr); \
159 return ret; \
160 }
161
162 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
163 static efi_status_t \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
165 u32 attr, unsigned long data_size, \
166 void *data) \
167 { \
168 struct ia64_fpreg fr[6]; \
169 efi_status_t ret; \
170 \
171 ia64_save_scratch_fpregs(fr); \
172 ret = efi_call_##prefix( \
173 (efi_set_variable_t *) __va(runtime->set_variable), \
174 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
175 adjust_arg(data)); \
176 ia64_load_scratch_fpregs(fr); \
177 return ret; \
178 }
179
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
181 static efi_status_t \
182 prefix##_get_next_high_mono_count (u32 *count) \
183 { \
184 struct ia64_fpreg fr[6]; \
185 efi_status_t ret; \
186 \
187 ia64_save_scratch_fpregs(fr); \
188 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
189 __va(runtime->get_next_high_mono_count), \
190 adjust_arg(count)); \
191 ia64_load_scratch_fpregs(fr); \
192 return ret; \
193 }
194
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
196 static void \
197 prefix##_reset_system (int reset_type, efi_status_t status, \
198 unsigned long data_size, efi_char16_t *data) \
199 { \
200 struct ia64_fpreg fr[6]; \
201 efi_char16_t *adata = NULL; \
202 \
203 if (data) \
204 adata = adjust_arg(data); \
205 \
206 ia64_save_scratch_fpregs(fr); \
207 efi_call_##prefix( \
208 (efi_reset_system_t *) __va(runtime->reset_system), \
209 reset_type, status, data_size, adata); \
210 /* should not return, but just in case... */ \
211 ia64_load_scratch_fpregs(fr); \
212 }
213
214 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
215
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225
226 #define id(arg) arg
227
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241 efi_time_t tm;
242
243 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244 memset(ts, 0, sizeof(*ts));
245 return;
246 }
247
248 ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249 tm.hour, tm.minute, tm.second);
250 ts->tv_nsec = tm.nanosecond;
251 }
252
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256 if (!(md->attribute & EFI_MEMORY_WB))
257 return 0;
258
259 switch (md->type) {
260 case EFI_LOADER_CODE:
261 case EFI_LOADER_DATA:
262 case EFI_BOOT_SERVICES_CODE:
263 case EFI_BOOT_SERVICES_DATA:
264 case EFI_CONVENTIONAL_MEMORY:
265 return 1;
266 }
267 return 0;
268 }
269
270 typedef struct kern_memdesc {
271 u64 attribute;
272 u64 start;
273 u64 num_pages;
274 } kern_memdesc_t;
275
276 static kern_memdesc_t *kern_memmap;
277
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289 return (md->phys_addr + efi_md_size(md));
290 }
291
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295 return (md->attribute & EFI_MEMORY_WB);
296 }
297
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301 return (md->attribute & EFI_MEMORY_UC);
302 }
303
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307 kern_memdesc_t *k;
308 u64 start, end, voff;
309
310 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311 for (k = kern_memmap; k->start != ~0UL; k++) {
312 if (k->attribute != attr)
313 continue;
314 start = PAGE_ALIGN(k->start);
315 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316 if (start < end)
317 if ((*callback)(start + voff, end + voff, arg) < 0)
318 return;
319 }
320 }
321
322 /*
323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
324 * descriptor that has memory that is available for OS use.
325 */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329 walk(callback, arg, EFI_MEMORY_WB);
330 }
331
332 /*
333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
334 * descriptor that has memory that is available for uncached allocator.
335 */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339 walk(callback, arg, EFI_MEMORY_UC);
340 }
341
342 /*
343 * Look for the PAL_CODE region reported by EFI and map it using an
344 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
345 * Abstraction Layer chapter 11 in ADAG
346 */
347 void *
348 efi_get_pal_addr (void)
349 {
350 void *efi_map_start, *efi_map_end, *p;
351 efi_memory_desc_t *md;
352 u64 efi_desc_size;
353 int pal_code_count = 0;
354 u64 vaddr, mask;
355
356 efi_map_start = __va(ia64_boot_param->efi_memmap);
357 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
358 efi_desc_size = ia64_boot_param->efi_memdesc_size;
359
360 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361 md = p;
362 if (md->type != EFI_PAL_CODE)
363 continue;
364
365 if (++pal_code_count > 1) {
366 printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367 "dropped @ %llx\n", md->phys_addr);
368 continue;
369 }
370 /*
371 * The only ITLB entry in region 7 that is used is the one
372 * installed by __start(). That entry covers a 64MB range.
373 */
374 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375 vaddr = PAGE_OFFSET + md->phys_addr;
376
377 /*
378 * We must check that the PAL mapping won't overlap with the
379 * kernel mapping.
380 *
381 * PAL code is guaranteed to be aligned on a power of 2 between
382 * 4k and 256KB and that only one ITR is needed to map it. This
383 * implies that the PAL code is always aligned on its size,
384 * i.e., the closest matching page size supported by the TLB.
385 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 * it is bigger than 64MB (very unlikely!). So for now the
387 * following test is enough to determine whether or not we need
388 * a dedicated ITR for the PAL code.
389 */
390 if ((vaddr & mask) == (KERNEL_START & mask)) {
391 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392 __func__);
393 continue;
394 }
395
396 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397 panic("Whoa! PAL code size bigger than a granule!");
398
399 #if EFI_DEBUG
400 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
401
402 printk(KERN_INFO "CPU %d: mapping PAL code "
403 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404 smp_processor_id(), md->phys_addr,
405 md->phys_addr + efi_md_size(md),
406 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408 return __va(md->phys_addr);
409 }
410 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411 __func__);
412 return NULL;
413 }
414
415
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418 u8 sum = 0;
419 u8 *end = buffer + length;
420
421 while (buffer < end)
422 sum = (u8) (sum + *(buffer++));
423
424 return sum;
425 }
426
427 /*
428 * Parse and handle PALO table which is published at:
429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430 */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433 struct palo_table *palo = __va(phys_addr);
434 u8 checksum;
435
436 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437 printk(KERN_INFO "PALO signature incorrect.\n");
438 return;
439 }
440
441 checksum = palo_checksum((u8 *)palo, palo->length);
442 if (checksum) {
443 printk(KERN_INFO "PALO checksum incorrect.\n");
444 return;
445 }
446
447 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449
450 void
451 efi_map_pal_code (void)
452 {
453 void *pal_vaddr = efi_get_pal_addr ();
454 u64 psr;
455
456 if (!pal_vaddr)
457 return;
458
459 /*
460 * Cannot write to CRx with PSR.ic=1
461 */
462 psr = ia64_clear_ic();
463 ia64_itr(0x1, IA64_TR_PALCODE,
464 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466 IA64_GRANULE_SHIFT);
467 paravirt_dv_serialize_data();
468 ia64_set_psr(psr); /* restore psr */
469 }
470
471 void __init
472 efi_init (void)
473 {
474 void *efi_map_start, *efi_map_end;
475 efi_char16_t *c16;
476 u64 efi_desc_size;
477 char *cp, vendor[100] = "unknown";
478 int i;
479
480 set_bit(EFI_BOOT, &efi.flags);
481 set_bit(EFI_64BIT, &efi.flags);
482
483 /*
484 * It's too early to be able to use the standard kernel command line
485 * support...
486 */
487 for (cp = boot_command_line; *cp; ) {
488 if (memcmp(cp, "mem=", 4) == 0) {
489 mem_limit = memparse(cp + 4, &cp);
490 } else if (memcmp(cp, "max_addr=", 9) == 0) {
491 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
492 } else if (memcmp(cp, "min_addr=", 9) == 0) {
493 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
494 } else {
495 while (*cp != ' ' && *cp)
496 ++cp;
497 while (*cp == ' ')
498 ++cp;
499 }
500 }
501 if (min_addr != 0UL)
502 printk(KERN_INFO "Ignoring memory below %lluMB\n",
503 min_addr >> 20);
504 if (max_addr != ~0UL)
505 printk(KERN_INFO "Ignoring memory above %lluMB\n",
506 max_addr >> 20);
507
508 efi.systab = __va(ia64_boot_param->efi_systab);
509
510 /*
511 * Verify the EFI Table
512 */
513 if (efi.systab == NULL)
514 panic("Whoa! Can't find EFI system table.\n");
515 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
516 panic("Whoa! EFI system table signature incorrect\n");
517 if ((efi.systab->hdr.revision >> 16) == 0)
518 printk(KERN_WARNING "Warning: EFI system table version "
519 "%d.%02d, expected 1.00 or greater\n",
520 efi.systab->hdr.revision >> 16,
521 efi.systab->hdr.revision & 0xffff);
522
523 /* Show what we know for posterity */
524 c16 = __va(efi.systab->fw_vendor);
525 if (c16) {
526 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
527 vendor[i] = *c16++;
528 vendor[i] = '\0';
529 }
530
531 printk(KERN_INFO "EFI v%u.%.02u by %s:",
532 efi.systab->hdr.revision >> 16,
533 efi.systab->hdr.revision & 0xffff, vendor);
534
535 set_bit(EFI_SYSTEM_TABLES, &efi.flags);
536
537 palo_phys = EFI_INVALID_TABLE_ADDR;
538
539 if (efi_config_init(arch_tables) != 0)
540 return;
541
542 if (palo_phys != EFI_INVALID_TABLE_ADDR)
543 handle_palo(palo_phys);
544
545 runtime = __va(efi.systab->runtime);
546 efi.get_time = phys_get_time;
547 efi.set_time = phys_set_time;
548 efi.get_wakeup_time = phys_get_wakeup_time;
549 efi.set_wakeup_time = phys_set_wakeup_time;
550 efi.get_variable = phys_get_variable;
551 efi.get_next_variable = phys_get_next_variable;
552 efi.set_variable = phys_set_variable;
553 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
554 efi.reset_system = phys_reset_system;
555
556 efi_map_start = __va(ia64_boot_param->efi_memmap);
557 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
558 efi_desc_size = ia64_boot_param->efi_memdesc_size;
559
560 #if EFI_DEBUG
561 /* print EFI memory map: */
562 {
563 efi_memory_desc_t *md;
564 void *p;
565
566 for (i = 0, p = efi_map_start; p < efi_map_end;
567 ++i, p += efi_desc_size)
568 {
569 const char *unit;
570 unsigned long size;
571 char buf[64];
572
573 md = p;
574 size = md->num_pages << EFI_PAGE_SHIFT;
575
576 if ((size >> 40) > 0) {
577 size >>= 40;
578 unit = "TB";
579 } else if ((size >> 30) > 0) {
580 size >>= 30;
581 unit = "GB";
582 } else if ((size >> 20) > 0) {
583 size >>= 20;
584 unit = "MB";
585 } else {
586 size >>= 10;
587 unit = "KB";
588 }
589
590 printk("mem%02d: %s "
591 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
592 i, efi_md_typeattr_format(buf, sizeof(buf), md),
593 md->phys_addr,
594 md->phys_addr + efi_md_size(md), size, unit);
595 }
596 }
597 #endif
598
599 efi_map_pal_code();
600 efi_enter_virtual_mode();
601 }
602
603 void
604 efi_enter_virtual_mode (void)
605 {
606 void *efi_map_start, *efi_map_end, *p;
607 efi_memory_desc_t *md;
608 efi_status_t status;
609 u64 efi_desc_size;
610
611 efi_map_start = __va(ia64_boot_param->efi_memmap);
612 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
613 efi_desc_size = ia64_boot_param->efi_memdesc_size;
614
615 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
616 md = p;
617 if (md->attribute & EFI_MEMORY_RUNTIME) {
618 /*
619 * Some descriptors have multiple bits set, so the
620 * order of the tests is relevant.
621 */
622 if (md->attribute & EFI_MEMORY_WB) {
623 md->virt_addr = (u64) __va(md->phys_addr);
624 } else if (md->attribute & EFI_MEMORY_UC) {
625 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
626 } else if (md->attribute & EFI_MEMORY_WC) {
627 #if 0
628 md->virt_addr = ia64_remap(md->phys_addr,
629 (_PAGE_A |
630 _PAGE_P |
631 _PAGE_D |
632 _PAGE_MA_WC |
633 _PAGE_PL_0 |
634 _PAGE_AR_RW));
635 #else
636 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
637 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
638 #endif
639 } else if (md->attribute & EFI_MEMORY_WT) {
640 #if 0
641 md->virt_addr = ia64_remap(md->phys_addr,
642 (_PAGE_A |
643 _PAGE_P |
644 _PAGE_D |
645 _PAGE_MA_WT |
646 _PAGE_PL_0 |
647 _PAGE_AR_RW));
648 #else
649 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
650 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
651 #endif
652 }
653 }
654 }
655
656 status = efi_call_phys(__va(runtime->set_virtual_address_map),
657 ia64_boot_param->efi_memmap_size,
658 efi_desc_size,
659 ia64_boot_param->efi_memdesc_version,
660 ia64_boot_param->efi_memmap);
661 if (status != EFI_SUCCESS) {
662 printk(KERN_WARNING "warning: unable to switch EFI into "
663 "virtual mode (status=%lu)\n", status);
664 return;
665 }
666
667 set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
668
669 /*
670 * Now that EFI is in virtual mode, we call the EFI functions more
671 * efficiently:
672 */
673 efi.get_time = virt_get_time;
674 efi.set_time = virt_set_time;
675 efi.get_wakeup_time = virt_get_wakeup_time;
676 efi.set_wakeup_time = virt_set_wakeup_time;
677 efi.get_variable = virt_get_variable;
678 efi.get_next_variable = virt_get_next_variable;
679 efi.set_variable = virt_set_variable;
680 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
681 efi.reset_system = virt_reset_system;
682 }
683
684 /*
685 * Walk the EFI memory map looking for the I/O port range. There can only be
686 * one entry of this type, other I/O port ranges should be described via ACPI.
687 */
688 u64
689 efi_get_iobase (void)
690 {
691 void *efi_map_start, *efi_map_end, *p;
692 efi_memory_desc_t *md;
693 u64 efi_desc_size;
694
695 efi_map_start = __va(ia64_boot_param->efi_memmap);
696 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
697 efi_desc_size = ia64_boot_param->efi_memdesc_size;
698
699 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
700 md = p;
701 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
702 if (md->attribute & EFI_MEMORY_UC)
703 return md->phys_addr;
704 }
705 }
706 return 0;
707 }
708
709 static struct kern_memdesc *
710 kern_memory_descriptor (unsigned long phys_addr)
711 {
712 struct kern_memdesc *md;
713
714 for (md = kern_memmap; md->start != ~0UL; md++) {
715 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
716 return md;
717 }
718 return NULL;
719 }
720
721 static efi_memory_desc_t *
722 efi_memory_descriptor (unsigned long phys_addr)
723 {
724 void *efi_map_start, *efi_map_end, *p;
725 efi_memory_desc_t *md;
726 u64 efi_desc_size;
727
728 efi_map_start = __va(ia64_boot_param->efi_memmap);
729 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
730 efi_desc_size = ia64_boot_param->efi_memdesc_size;
731
732 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
733 md = p;
734
735 if (phys_addr - md->phys_addr < efi_md_size(md))
736 return md;
737 }
738 return NULL;
739 }
740
741 static int
742 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
743 {
744 void *efi_map_start, *efi_map_end, *p;
745 efi_memory_desc_t *md;
746 u64 efi_desc_size;
747 unsigned long end;
748
749 efi_map_start = __va(ia64_boot_param->efi_memmap);
750 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
751 efi_desc_size = ia64_boot_param->efi_memdesc_size;
752
753 end = phys_addr + size;
754
755 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
756 md = p;
757 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
758 return 1;
759 }
760 return 0;
761 }
762
763 u32
764 efi_mem_type (unsigned long phys_addr)
765 {
766 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
767
768 if (md)
769 return md->type;
770 return 0;
771 }
772
773 u64
774 efi_mem_attributes (unsigned long phys_addr)
775 {
776 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
777
778 if (md)
779 return md->attribute;
780 return 0;
781 }
782 EXPORT_SYMBOL(efi_mem_attributes);
783
784 u64
785 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
786 {
787 unsigned long end = phys_addr + size;
788 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789 u64 attr;
790
791 if (!md)
792 return 0;
793
794 /*
795 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
796 * the kernel that firmware needs this region mapped.
797 */
798 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
799 do {
800 unsigned long md_end = efi_md_end(md);
801
802 if (end <= md_end)
803 return attr;
804
805 md = efi_memory_descriptor(md_end);
806 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
807 return 0;
808 } while (md);
809 return 0; /* never reached */
810 }
811
812 u64
813 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
814 {
815 unsigned long end = phys_addr + size;
816 struct kern_memdesc *md;
817 u64 attr;
818
819 /*
820 * This is a hack for ioremap calls before we set up kern_memmap.
821 * Maybe we should do efi_memmap_init() earlier instead.
822 */
823 if (!kern_memmap) {
824 attr = efi_mem_attribute(phys_addr, size);
825 if (attr & EFI_MEMORY_WB)
826 return EFI_MEMORY_WB;
827 return 0;
828 }
829
830 md = kern_memory_descriptor(phys_addr);
831 if (!md)
832 return 0;
833
834 attr = md->attribute;
835 do {
836 unsigned long md_end = kmd_end(md);
837
838 if (end <= md_end)
839 return attr;
840
841 md = kern_memory_descriptor(md_end);
842 if (!md || md->attribute != attr)
843 return 0;
844 } while (md);
845 return 0; /* never reached */
846 }
847 EXPORT_SYMBOL(kern_mem_attribute);
848
849 int
850 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
851 {
852 u64 attr;
853
854 /*
855 * /dev/mem reads and writes use copy_to_user(), which implicitly
856 * uses a granule-sized kernel identity mapping. It's really
857 * only safe to do this for regions in kern_memmap. For more
858 * details, see Documentation/ia64/aliasing.txt.
859 */
860 attr = kern_mem_attribute(phys_addr, size);
861 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
862 return 1;
863 return 0;
864 }
865
866 int
867 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
868 {
869 unsigned long phys_addr = pfn << PAGE_SHIFT;
870 u64 attr;
871
872 attr = efi_mem_attribute(phys_addr, size);
873
874 /*
875 * /dev/mem mmap uses normal user pages, so we don't need the entire
876 * granule, but the entire region we're mapping must support the same
877 * attribute.
878 */
879 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
880 return 1;
881
882 /*
883 * Intel firmware doesn't tell us about all the MMIO regions, so
884 * in general we have to allow mmap requests. But if EFI *does*
885 * tell us about anything inside this region, we should deny it.
886 * The user can always map a smaller region to avoid the overlap.
887 */
888 if (efi_memmap_intersects(phys_addr, size))
889 return 0;
890
891 return 1;
892 }
893
894 pgprot_t
895 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
896 pgprot_t vma_prot)
897 {
898 unsigned long phys_addr = pfn << PAGE_SHIFT;
899 u64 attr;
900
901 /*
902 * For /dev/mem mmap, we use user mappings, but if the region is
903 * in kern_memmap (and hence may be covered by a kernel mapping),
904 * we must use the same attribute as the kernel mapping.
905 */
906 attr = kern_mem_attribute(phys_addr, size);
907 if (attr & EFI_MEMORY_WB)
908 return pgprot_cacheable(vma_prot);
909 else if (attr & EFI_MEMORY_UC)
910 return pgprot_noncached(vma_prot);
911
912 /*
913 * Some chipsets don't support UC access to memory. If
914 * WB is supported, we prefer that.
915 */
916 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
917 return pgprot_cacheable(vma_prot);
918
919 return pgprot_noncached(vma_prot);
920 }
921
922 int __init
923 efi_uart_console_only(void)
924 {
925 efi_status_t status;
926 char *s, name[] = "ConOut";
927 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
928 efi_char16_t *utf16, name_utf16[32];
929 unsigned char data[1024];
930 unsigned long size = sizeof(data);
931 struct efi_generic_dev_path *hdr, *end_addr;
932 int uart = 0;
933
934 /* Convert to UTF-16 */
935 utf16 = name_utf16;
936 s = name;
937 while (*s)
938 *utf16++ = *s++ & 0x7f;
939 *utf16 = 0;
940
941 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
942 if (status != EFI_SUCCESS) {
943 printk(KERN_ERR "No EFI %s variable?\n", name);
944 return 0;
945 }
946
947 hdr = (struct efi_generic_dev_path *) data;
948 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
949 while (hdr < end_addr) {
950 if (hdr->type == EFI_DEV_MSG &&
951 hdr->sub_type == EFI_DEV_MSG_UART)
952 uart = 1;
953 else if (hdr->type == EFI_DEV_END_PATH ||
954 hdr->type == EFI_DEV_END_PATH2) {
955 if (!uart)
956 return 0;
957 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
958 return 1;
959 uart = 0;
960 }
961 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
962 }
963 printk(KERN_ERR "Malformed %s value\n", name);
964 return 0;
965 }
966
967 /*
968 * Look for the first granule aligned memory descriptor memory
969 * that is big enough to hold EFI memory map. Make sure this
970 * descriptor is atleast granule sized so it does not get trimmed
971 */
972 struct kern_memdesc *
973 find_memmap_space (void)
974 {
975 u64 contig_low=0, contig_high=0;
976 u64 as = 0, ae;
977 void *efi_map_start, *efi_map_end, *p, *q;
978 efi_memory_desc_t *md, *pmd = NULL, *check_md;
979 u64 space_needed, efi_desc_size;
980 unsigned long total_mem = 0;
981
982 efi_map_start = __va(ia64_boot_param->efi_memmap);
983 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
984 efi_desc_size = ia64_boot_param->efi_memdesc_size;
985
986 /*
987 * Worst case: we need 3 kernel descriptors for each efi descriptor
988 * (if every entry has a WB part in the middle, and UC head and tail),
989 * plus one for the end marker.
990 */
991 space_needed = sizeof(kern_memdesc_t) *
992 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
993
994 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
995 md = p;
996 if (!efi_wb(md)) {
997 continue;
998 }
999 if (pmd == NULL || !efi_wb(pmd) ||
1000 efi_md_end(pmd) != md->phys_addr) {
1001 contig_low = GRANULEROUNDUP(md->phys_addr);
1002 contig_high = efi_md_end(md);
1003 for (q = p + efi_desc_size; q < efi_map_end;
1004 q += efi_desc_size) {
1005 check_md = q;
1006 if (!efi_wb(check_md))
1007 break;
1008 if (contig_high != check_md->phys_addr)
1009 break;
1010 contig_high = efi_md_end(check_md);
1011 }
1012 contig_high = GRANULEROUNDDOWN(contig_high);
1013 }
1014 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1015 continue;
1016
1017 /* Round ends inward to granule boundaries */
1018 as = max(contig_low, md->phys_addr);
1019 ae = min(contig_high, efi_md_end(md));
1020
1021 /* keep within max_addr= and min_addr= command line arg */
1022 as = max(as, min_addr);
1023 ae = min(ae, max_addr);
1024 if (ae <= as)
1025 continue;
1026
1027 /* avoid going over mem= command line arg */
1028 if (total_mem + (ae - as) > mem_limit)
1029 ae -= total_mem + (ae - as) - mem_limit;
1030
1031 if (ae <= as)
1032 continue;
1033
1034 if (ae - as > space_needed)
1035 break;
1036 }
1037 if (p >= efi_map_end)
1038 panic("Can't allocate space for kernel memory descriptors");
1039
1040 return __va(as);
1041 }
1042
1043 /*
1044 * Walk the EFI memory map and gather all memory available for kernel
1045 * to use. We can allocate partial granules only if the unavailable
1046 * parts exist, and are WB.
1047 */
1048 unsigned long
1049 efi_memmap_init(u64 *s, u64 *e)
1050 {
1051 struct kern_memdesc *k, *prev = NULL;
1052 u64 contig_low=0, contig_high=0;
1053 u64 as, ae, lim;
1054 void *efi_map_start, *efi_map_end, *p, *q;
1055 efi_memory_desc_t *md, *pmd = NULL, *check_md;
1056 u64 efi_desc_size;
1057 unsigned long total_mem = 0;
1058
1059 k = kern_memmap = find_memmap_space();
1060
1061 efi_map_start = __va(ia64_boot_param->efi_memmap);
1062 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1063 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1064
1065 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1066 md = p;
1067 if (!efi_wb(md)) {
1068 if (efi_uc(md) &&
1069 (md->type == EFI_CONVENTIONAL_MEMORY ||
1070 md->type == EFI_BOOT_SERVICES_DATA)) {
1071 k->attribute = EFI_MEMORY_UC;
1072 k->start = md->phys_addr;
1073 k->num_pages = md->num_pages;
1074 k++;
1075 }
1076 continue;
1077 }
1078 if (pmd == NULL || !efi_wb(pmd) ||
1079 efi_md_end(pmd) != md->phys_addr) {
1080 contig_low = GRANULEROUNDUP(md->phys_addr);
1081 contig_high = efi_md_end(md);
1082 for (q = p + efi_desc_size; q < efi_map_end;
1083 q += efi_desc_size) {
1084 check_md = q;
1085 if (!efi_wb(check_md))
1086 break;
1087 if (contig_high != check_md->phys_addr)
1088 break;
1089 contig_high = efi_md_end(check_md);
1090 }
1091 contig_high = GRANULEROUNDDOWN(contig_high);
1092 }
1093 if (!is_memory_available(md))
1094 continue;
1095
1096 /*
1097 * Round ends inward to granule boundaries
1098 * Give trimmings to uncached allocator
1099 */
1100 if (md->phys_addr < contig_low) {
1101 lim = min(efi_md_end(md), contig_low);
1102 if (efi_uc(md)) {
1103 if (k > kern_memmap &&
1104 (k-1)->attribute == EFI_MEMORY_UC &&
1105 kmd_end(k-1) == md->phys_addr) {
1106 (k-1)->num_pages +=
1107 (lim - md->phys_addr)
1108 >> EFI_PAGE_SHIFT;
1109 } else {
1110 k->attribute = EFI_MEMORY_UC;
1111 k->start = md->phys_addr;
1112 k->num_pages = (lim - md->phys_addr)
1113 >> EFI_PAGE_SHIFT;
1114 k++;
1115 }
1116 }
1117 as = contig_low;
1118 } else
1119 as = md->phys_addr;
1120
1121 if (efi_md_end(md) > contig_high) {
1122 lim = max(md->phys_addr, contig_high);
1123 if (efi_uc(md)) {
1124 if (lim == md->phys_addr && k > kern_memmap &&
1125 (k-1)->attribute == EFI_MEMORY_UC &&
1126 kmd_end(k-1) == md->phys_addr) {
1127 (k-1)->num_pages += md->num_pages;
1128 } else {
1129 k->attribute = EFI_MEMORY_UC;
1130 k->start = lim;
1131 k->num_pages = (efi_md_end(md) - lim)
1132 >> EFI_PAGE_SHIFT;
1133 k++;
1134 }
1135 }
1136 ae = contig_high;
1137 } else
1138 ae = efi_md_end(md);
1139
1140 /* keep within max_addr= and min_addr= command line arg */
1141 as = max(as, min_addr);
1142 ae = min(ae, max_addr);
1143 if (ae <= as)
1144 continue;
1145
1146 /* avoid going over mem= command line arg */
1147 if (total_mem + (ae - as) > mem_limit)
1148 ae -= total_mem + (ae - as) - mem_limit;
1149
1150 if (ae <= as)
1151 continue;
1152 if (prev && kmd_end(prev) == md->phys_addr) {
1153 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1154 total_mem += ae - as;
1155 continue;
1156 }
1157 k->attribute = EFI_MEMORY_WB;
1158 k->start = as;
1159 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1160 total_mem += ae - as;
1161 prev = k++;
1162 }
1163 k->start = ~0L; /* end-marker */
1164
1165 /* reserve the memory we are using for kern_memmap */
1166 *s = (u64)kern_memmap;
1167 *e = (u64)++k;
1168
1169 return total_mem;
1170 }
1171
1172 void
1173 efi_initialize_iomem_resources(struct resource *code_resource,
1174 struct resource *data_resource,
1175 struct resource *bss_resource)
1176 {
1177 struct resource *res;
1178 void *efi_map_start, *efi_map_end, *p;
1179 efi_memory_desc_t *md;
1180 u64 efi_desc_size;
1181 char *name;
1182 unsigned long flags;
1183
1184 efi_map_start = __va(ia64_boot_param->efi_memmap);
1185 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1186 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1187
1188 res = NULL;
1189
1190 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1191 md = p;
1192
1193 if (md->num_pages == 0) /* should not happen */
1194 continue;
1195
1196 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1197 switch (md->type) {
1198
1199 case EFI_MEMORY_MAPPED_IO:
1200 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201 continue;
1202
1203 case EFI_LOADER_CODE:
1204 case EFI_LOADER_DATA:
1205 case EFI_BOOT_SERVICES_DATA:
1206 case EFI_BOOT_SERVICES_CODE:
1207 case EFI_CONVENTIONAL_MEMORY:
1208 if (md->attribute & EFI_MEMORY_WP) {
1209 name = "System ROM";
1210 flags |= IORESOURCE_READONLY;
1211 } else if (md->attribute == EFI_MEMORY_UC)
1212 name = "Uncached RAM";
1213 else
1214 name = "System RAM";
1215 break;
1216
1217 case EFI_ACPI_MEMORY_NVS:
1218 name = "ACPI Non-volatile Storage";
1219 break;
1220
1221 case EFI_UNUSABLE_MEMORY:
1222 name = "reserved";
1223 flags |= IORESOURCE_DISABLED;
1224 break;
1225
1226 case EFI_RESERVED_TYPE:
1227 case EFI_RUNTIME_SERVICES_CODE:
1228 case EFI_RUNTIME_SERVICES_DATA:
1229 case EFI_ACPI_RECLAIM_MEMORY:
1230 default:
1231 name = "reserved";
1232 break;
1233 }
1234
1235 if ((res = kzalloc(sizeof(struct resource),
1236 GFP_KERNEL)) == NULL) {
1237 printk(KERN_ERR
1238 "failed to allocate resource for iomem\n");
1239 return;
1240 }
1241
1242 res->name = name;
1243 res->start = md->phys_addr;
1244 res->end = md->phys_addr + efi_md_size(md) - 1;
1245 res->flags = flags;
1246
1247 if (insert_resource(&iomem_resource, res) < 0)
1248 kfree(res);
1249 else {
1250 /*
1251 * We don't know which region contains
1252 * kernel data so we try it repeatedly and
1253 * let the resource manager test it.
1254 */
1255 insert_resource(res, code_resource);
1256 insert_resource(res, data_resource);
1257 insert_resource(res, bss_resource);
1258 #ifdef CONFIG_KEXEC
1259 insert_resource(res, &efi_memmap_res);
1260 insert_resource(res, &boot_param_res);
1261 if (crashk_res.end > crashk_res.start)
1262 insert_resource(res, &crashk_res);
1263 #endif
1264 }
1265 }
1266 }
1267
1268 #ifdef CONFIG_KEXEC
1269 /* find a block of memory aligned to 64M exclude reserved regions
1270 rsvd_regions are sorted
1271 */
1272 unsigned long __init
1273 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1274 {
1275 int i;
1276 u64 start, end;
1277 u64 alignment = 1UL << _PAGE_SIZE_64M;
1278 void *efi_map_start, *efi_map_end, *p;
1279 efi_memory_desc_t *md;
1280 u64 efi_desc_size;
1281
1282 efi_map_start = __va(ia64_boot_param->efi_memmap);
1283 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1284 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1285
1286 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1287 md = p;
1288 if (!efi_wb(md))
1289 continue;
1290 start = ALIGN(md->phys_addr, alignment);
1291 end = efi_md_end(md);
1292 for (i = 0; i < n; i++) {
1293 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1294 if (__pa(r[i].start) > start + size)
1295 return start;
1296 start = ALIGN(__pa(r[i].end), alignment);
1297 if (i < n-1 &&
1298 __pa(r[i+1].start) < start + size)
1299 continue;
1300 else
1301 break;
1302 }
1303 }
1304 if (end > start + size)
1305 return start;
1306 }
1307
1308 printk(KERN_WARNING
1309 "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1310 return ~0UL;
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_CRASH_DUMP
1315 /* locate the size find a the descriptor at a certain address */
1316 unsigned long __init
1317 vmcore_find_descriptor_size (unsigned long address)
1318 {
1319 void *efi_map_start, *efi_map_end, *p;
1320 efi_memory_desc_t *md;
1321 u64 efi_desc_size;
1322 unsigned long ret = 0;
1323
1324 efi_map_start = __va(ia64_boot_param->efi_memmap);
1325 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1326 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1327
1328 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1329 md = p;
1330 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1331 && md->phys_addr == address) {
1332 ret = efi_md_size(md);
1333 break;
1334 }
1335 }
1336
1337 if (ret == 0)
1338 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1339
1340 return ret;
1341 }
1342 #endif