]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kernel/kprobes.c
789881ca83d43606e389b65b481a8fc99083fb54
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
21 *
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
24 */
25
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/preempt.h>
32 #include <linux/moduleloader.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/kdebug.h>
36 #include <asm/sections.h>
37 #include <asm/uaccess.h>
38
39 extern void jprobe_inst_return(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 enum instruction_type {A, I, M, F, B, L, X, u};
45 static enum instruction_type bundle_encoding[32][3] = {
46 { M, I, I }, /* 00 */
47 { M, I, I }, /* 01 */
48 { M, I, I }, /* 02 */
49 { M, I, I }, /* 03 */
50 { M, L, X }, /* 04 */
51 { M, L, X }, /* 05 */
52 { u, u, u }, /* 06 */
53 { u, u, u }, /* 07 */
54 { M, M, I }, /* 08 */
55 { M, M, I }, /* 09 */
56 { M, M, I }, /* 0A */
57 { M, M, I }, /* 0B */
58 { M, F, I }, /* 0C */
59 { M, F, I }, /* 0D */
60 { M, M, F }, /* 0E */
61 { M, M, F }, /* 0F */
62 { M, I, B }, /* 10 */
63 { M, I, B }, /* 11 */
64 { M, B, B }, /* 12 */
65 { M, B, B }, /* 13 */
66 { u, u, u }, /* 14 */
67 { u, u, u }, /* 15 */
68 { B, B, B }, /* 16 */
69 { B, B, B }, /* 17 */
70 { M, M, B }, /* 18 */
71 { M, M, B }, /* 19 */
72 { u, u, u }, /* 1A */
73 { u, u, u }, /* 1B */
74 { M, F, B }, /* 1C */
75 { M, F, B }, /* 1D */
76 { u, u, u }, /* 1E */
77 { u, u, u }, /* 1F */
78 };
79
80 /*
81 * In this function we check to see if the instruction
82 * is IP relative instruction and update the kprobe
83 * inst flag accordingly
84 */
85 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
86 uint major_opcode,
87 unsigned long kprobe_inst,
88 struct kprobe *p)
89 {
90 p->ainsn.inst_flag = 0;
91 p->ainsn.target_br_reg = 0;
92
93 /* Check for Break instruction
94 * Bits 37:40 Major opcode to be zero
95 * Bits 27:32 X6 to be zero
96 * Bits 32:35 X3 to be zero
97 */
98 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
99 /* is a break instruction */
100 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
101 return;
102 }
103
104 if (bundle_encoding[template][slot] == B) {
105 switch (major_opcode) {
106 case INDIRECT_CALL_OPCODE:
107 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
108 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 break;
110 case IP_RELATIVE_PREDICT_OPCODE:
111 case IP_RELATIVE_BRANCH_OPCODE:
112 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 break;
114 case IP_RELATIVE_CALL_OPCODE:
115 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
116 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
117 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
118 break;
119 }
120 } else if (bundle_encoding[template][slot] == X) {
121 switch (major_opcode) {
122 case LONG_CALL_OPCODE:
123 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
124 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
125 break;
126 }
127 }
128 return;
129 }
130
131 /*
132 * In this function we check to see if the instruction
133 * on which we are inserting kprobe is supported.
134 * Returns 0 if supported
135 * Returns -EINVAL if unsupported
136 */
137 static int __kprobes unsupported_inst(uint template, uint slot,
138 uint major_opcode,
139 unsigned long kprobe_inst,
140 struct kprobe *p)
141 {
142 unsigned long addr = (unsigned long)p->addr;
143
144 if (bundle_encoding[template][slot] == I) {
145 switch (major_opcode) {
146 case 0x0: //I_UNIT_MISC_OPCODE:
147 /*
148 * Check for Integer speculation instruction
149 * - Bit 33-35 to be equal to 0x1
150 */
151 if (((kprobe_inst >> 33) & 0x7) == 1) {
152 printk(KERN_WARNING
153 "Kprobes on speculation inst at <0x%lx> not supported\n",
154 addr);
155 return -EINVAL;
156 }
157
158 /*
159 * IP relative mov instruction
160 * - Bit 27-35 to be equal to 0x30
161 */
162 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
163 printk(KERN_WARNING
164 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
165 addr);
166 return -EINVAL;
167
168 }
169 }
170 }
171 return 0;
172 }
173
174
175 /*
176 * In this function we check to see if the instruction
177 * (qp) cmpx.crel.ctype p1,p2=r2,r3
178 * on which we are inserting kprobe is cmp instruction
179 * with ctype as unc.
180 */
181 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
182 uint major_opcode,
183 unsigned long kprobe_inst)
184 {
185 cmp_inst_t cmp_inst;
186 uint ctype_unc = 0;
187
188 if (!((bundle_encoding[template][slot] == I) ||
189 (bundle_encoding[template][slot] == M)))
190 goto out;
191
192 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
193 (major_opcode == 0xE)))
194 goto out;
195
196 cmp_inst.l = kprobe_inst;
197 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
198 /* Integere compare - Register Register (A6 type)*/
199 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
200 &&(cmp_inst.f.c == 1))
201 ctype_unc = 1;
202 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
203 /* Integere compare - Immediate Register (A8 type)*/
204 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
205 ctype_unc = 1;
206 }
207 out:
208 return ctype_unc;
209 }
210
211 /*
212 * In this function we override the bundle with
213 * the break instruction at the given slot.
214 */
215 static void __kprobes prepare_break_inst(uint template, uint slot,
216 uint major_opcode,
217 unsigned long kprobe_inst,
218 struct kprobe *p)
219 {
220 unsigned long break_inst = BREAK_INST;
221 bundle_t *bundle = &p->ainsn.insn.bundle;
222
223 /*
224 * Copy the original kprobe_inst qualifying predicate(qp)
225 * to the break instruction iff !is_cmp_ctype_unc_inst
226 * because for cmp instruction with ctype equal to unc,
227 * which is a special instruction always needs to be
228 * executed regradless of qp
229 */
230 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
231 break_inst |= (0x3f & kprobe_inst);
232
233 switch (slot) {
234 case 0:
235 bundle->quad0.slot0 = break_inst;
236 break;
237 case 1:
238 bundle->quad0.slot1_p0 = break_inst;
239 bundle->quad1.slot1_p1 = break_inst >> (64-46);
240 break;
241 case 2:
242 bundle->quad1.slot2 = break_inst;
243 break;
244 }
245
246 /*
247 * Update the instruction flag, so that we can
248 * emulate the instruction properly after we
249 * single step on original instruction
250 */
251 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
252 }
253
254 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
255 unsigned long *kprobe_inst, uint *major_opcode)
256 {
257 unsigned long kprobe_inst_p0, kprobe_inst_p1;
258 unsigned int template;
259
260 template = bundle->quad0.template;
261
262 switch (slot) {
263 case 0:
264 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
265 *kprobe_inst = bundle->quad0.slot0;
266 break;
267 case 1:
268 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
269 kprobe_inst_p0 = bundle->quad0.slot1_p0;
270 kprobe_inst_p1 = bundle->quad1.slot1_p1;
271 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
272 break;
273 case 2:
274 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
275 *kprobe_inst = bundle->quad1.slot2;
276 break;
277 }
278 }
279
280 /* Returns non-zero if the addr is in the Interrupt Vector Table */
281 static inline int in_ivt_functions(unsigned long addr)
282 {
283 return (addr >= (unsigned long)__start_ivt_text
284 && addr < (unsigned long)__end_ivt_text);
285 }
286
287 static int __kprobes valid_kprobe_addr(int template, int slot,
288 unsigned long addr)
289 {
290 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
291 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
292 "at 0x%lx\n", addr);
293 return -EINVAL;
294 }
295
296 if (in_ivt_functions(addr)) {
297 printk(KERN_WARNING "Kprobes can't be inserted inside "
298 "IVT functions at 0x%lx\n", addr);
299 return -EINVAL;
300 }
301
302 if (slot == 1 && bundle_encoding[template][1] != L) {
303 printk(KERN_WARNING "Inserting kprobes on slot #1 "
304 "is not supported\n");
305 return -EINVAL;
306 }
307
308 return 0;
309 }
310
311 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
312 {
313 kcb->prev_kprobe.kp = kprobe_running();
314 kcb->prev_kprobe.status = kcb->kprobe_status;
315 }
316
317 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318 {
319 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
320 kcb->kprobe_status = kcb->prev_kprobe.status;
321 }
322
323 static inline void set_current_kprobe(struct kprobe *p,
324 struct kprobe_ctlblk *kcb)
325 {
326 __get_cpu_var(current_kprobe) = p;
327 }
328
329 static void kretprobe_trampoline(void)
330 {
331 }
332
333 /*
334 * At this point the target function has been tricked into
335 * returning into our trampoline. Lookup the associated instance
336 * and then:
337 * - call the handler function
338 * - cleanup by marking the instance as unused
339 * - long jump back to the original return address
340 */
341 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 {
343 struct kretprobe_instance *ri = NULL;
344 struct hlist_head *head;
345 struct hlist_node *node, *tmp;
346 unsigned long flags, orig_ret_address = 0;
347 unsigned long trampoline_address =
348 ((struct fnptr *)kretprobe_trampoline)->ip;
349
350 spin_lock_irqsave(&kretprobe_lock, flags);
351 head = kretprobe_inst_table_head(current);
352
353 /*
354 * It is possible to have multiple instances associated with a given
355 * task either because an multiple functions in the call path
356 * have a return probe installed on them, and/or more then one return
357 * return probe was registered for a target function.
358 *
359 * We can handle this because:
360 * - instances are always inserted at the head of the list
361 * - when multiple return probes are registered for the same
362 * function, the first instance's ret_addr will point to the
363 * real return address, and all the rest will point to
364 * kretprobe_trampoline
365 */
366 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
367 if (ri->task != current)
368 /* another task is sharing our hash bucket */
369 continue;
370
371 if (ri->rp && ri->rp->handler)
372 ri->rp->handler(ri, regs);
373
374 orig_ret_address = (unsigned long)ri->ret_addr;
375 recycle_rp_inst(ri);
376
377 if (orig_ret_address != trampoline_address)
378 /*
379 * This is the real return address. Any other
380 * instances associated with this task are for
381 * other calls deeper on the call stack
382 */
383 break;
384 }
385
386 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
387 regs->cr_iip = orig_ret_address;
388
389 reset_current_kprobe();
390 spin_unlock_irqrestore(&kretprobe_lock, flags);
391 preempt_enable_no_resched();
392
393 /*
394 * By returning a non-zero value, we are telling
395 * kprobe_handler() that we don't want the post_handler
396 * to run (and have re-enabled preemption)
397 */
398 return 1;
399 }
400
401 /* Called with kretprobe_lock held */
402 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
403 struct pt_regs *regs)
404 {
405 struct kretprobe_instance *ri;
406
407 if ((ri = get_free_rp_inst(rp)) != NULL) {
408 ri->rp = rp;
409 ri->task = current;
410 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
411
412 /* Replace the return addr with trampoline addr */
413 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
414
415 add_rp_inst(ri);
416 } else {
417 rp->nmissed++;
418 }
419 }
420
421 int __kprobes arch_prepare_kprobe(struct kprobe *p)
422 {
423 unsigned long addr = (unsigned long) p->addr;
424 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
425 unsigned long kprobe_inst=0;
426 unsigned int slot = addr & 0xf, template, major_opcode = 0;
427 bundle_t *bundle = &p->ainsn.insn.bundle;
428
429 memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
430 memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
431
432 template = bundle->quad0.template;
433
434 if(valid_kprobe_addr(template, slot, addr))
435 return -EINVAL;
436
437 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
438 if (slot == 1 && bundle_encoding[template][1] == L)
439 slot++;
440
441 /* Get kprobe_inst and major_opcode from the bundle */
442 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
443
444 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
445 return -EINVAL;
446
447 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
448
449 return 0;
450 }
451
452 void __kprobes arch_arm_kprobe(struct kprobe *p)
453 {
454 unsigned long addr = (unsigned long)p->addr;
455 unsigned long arm_addr = addr & ~0xFULL;
456
457 memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
458 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
459 }
460
461 void __kprobes arch_disarm_kprobe(struct kprobe *p)
462 {
463 unsigned long addr = (unsigned long)p->addr;
464 unsigned long arm_addr = addr & ~0xFULL;
465
466 /* p->opcode contains the original unaltered bundle */
467 memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
468 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
469 }
470
471 /*
472 * We are resuming execution after a single step fault, so the pt_regs
473 * structure reflects the register state after we executed the instruction
474 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
475 * the ip to point back to the original stack address. To set the IP address
476 * to original stack address, handle the case where we need to fixup the
477 * relative IP address and/or fixup branch register.
478 */
479 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
480 {
481 unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
482 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
483 unsigned long template;
484 int slot = ((unsigned long)p->addr & 0xf);
485
486 template = p->opcode.bundle.quad0.template;
487
488 if (slot == 1 && bundle_encoding[template][1] == L)
489 slot = 2;
490
491 if (p->ainsn.inst_flag) {
492
493 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
494 /* Fix relative IP address */
495 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
496 }
497
498 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
499 /*
500 * Fix target branch register, software convention is
501 * to use either b0 or b6 or b7, so just checking
502 * only those registers
503 */
504 switch (p->ainsn.target_br_reg) {
505 case 0:
506 if ((regs->b0 == bundle_addr) ||
507 (regs->b0 == bundle_addr + 0x10)) {
508 regs->b0 = (regs->b0 - bundle_addr) +
509 resume_addr;
510 }
511 break;
512 case 6:
513 if ((regs->b6 == bundle_addr) ||
514 (regs->b6 == bundle_addr + 0x10)) {
515 regs->b6 = (regs->b6 - bundle_addr) +
516 resume_addr;
517 }
518 break;
519 case 7:
520 if ((regs->b7 == bundle_addr) ||
521 (regs->b7 == bundle_addr + 0x10)) {
522 regs->b7 = (regs->b7 - bundle_addr) +
523 resume_addr;
524 }
525 break;
526 } /* end switch */
527 }
528 goto turn_ss_off;
529 }
530
531 if (slot == 2) {
532 if (regs->cr_iip == bundle_addr + 0x10) {
533 regs->cr_iip = resume_addr + 0x10;
534 }
535 } else {
536 if (regs->cr_iip == bundle_addr) {
537 regs->cr_iip = resume_addr;
538 }
539 }
540
541 turn_ss_off:
542 /* Turn off Single Step bit */
543 ia64_psr(regs)->ss = 0;
544 }
545
546 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
547 {
548 unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
549 unsigned long slot = (unsigned long)p->addr & 0xf;
550
551 /* single step inline if break instruction */
552 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
553 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
554 else
555 regs->cr_iip = bundle_addr & ~0xFULL;
556
557 if (slot > 2)
558 slot = 0;
559
560 ia64_psr(regs)->ri = slot;
561
562 /* turn on single stepping */
563 ia64_psr(regs)->ss = 1;
564 }
565
566 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
567 {
568 unsigned int slot = ia64_psr(regs)->ri;
569 unsigned int template, major_opcode;
570 unsigned long kprobe_inst;
571 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
572 bundle_t bundle;
573
574 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
575 template = bundle.quad0.template;
576
577 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
578 if (slot == 1 && bundle_encoding[template][1] == L)
579 slot++;
580
581 /* Get Kprobe probe instruction at given slot*/
582 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
583
584 /* For break instruction,
585 * Bits 37:40 Major opcode to be zero
586 * Bits 27:32 X6 to be zero
587 * Bits 32:35 X3 to be zero
588 */
589 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
590 /* Not a break instruction */
591 return 0;
592 }
593
594 /* Is a break instruction */
595 return 1;
596 }
597
598 static int __kprobes pre_kprobes_handler(struct die_args *args)
599 {
600 struct kprobe *p;
601 int ret = 0;
602 struct pt_regs *regs = args->regs;
603 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
604 struct kprobe_ctlblk *kcb;
605
606 /*
607 * We don't want to be preempted for the entire
608 * duration of kprobe processing
609 */
610 preempt_disable();
611 kcb = get_kprobe_ctlblk();
612
613 /* Handle recursion cases */
614 if (kprobe_running()) {
615 p = get_kprobe(addr);
616 if (p) {
617 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
618 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
619 ia64_psr(regs)->ss = 0;
620 goto no_kprobe;
621 }
622 /* We have reentered the pre_kprobe_handler(), since
623 * another probe was hit while within the handler.
624 * We here save the original kprobes variables and
625 * just single step on the instruction of the new probe
626 * without calling any user handlers.
627 */
628 save_previous_kprobe(kcb);
629 set_current_kprobe(p, kcb);
630 kprobes_inc_nmissed_count(p);
631 prepare_ss(p, regs);
632 kcb->kprobe_status = KPROBE_REENTER;
633 return 1;
634 } else if (args->err == __IA64_BREAK_JPROBE) {
635 /*
636 * jprobe instrumented function just completed
637 */
638 p = __get_cpu_var(current_kprobe);
639 if (p->break_handler && p->break_handler(p, regs)) {
640 goto ss_probe;
641 }
642 } else if (!is_ia64_break_inst(regs)) {
643 /* The breakpoint instruction was removed by
644 * another cpu right after we hit, no further
645 * handling of this interrupt is appropriate
646 */
647 ret = 1;
648 goto no_kprobe;
649 } else {
650 /* Not our break */
651 goto no_kprobe;
652 }
653 }
654
655 p = get_kprobe(addr);
656 if (!p) {
657 if (!is_ia64_break_inst(regs)) {
658 /*
659 * The breakpoint instruction was removed right
660 * after we hit it. Another cpu has removed
661 * either a probepoint or a debugger breakpoint
662 * at this address. In either case, no further
663 * handling of this interrupt is appropriate.
664 */
665 ret = 1;
666
667 }
668
669 /* Not one of our break, let kernel handle it */
670 goto no_kprobe;
671 }
672
673 set_current_kprobe(p, kcb);
674 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
675
676 if (p->pre_handler && p->pre_handler(p, regs))
677 /*
678 * Our pre-handler is specifically requesting that we just
679 * do a return. This is used for both the jprobe pre-handler
680 * and the kretprobe trampoline
681 */
682 return 1;
683
684 ss_probe:
685 prepare_ss(p, regs);
686 kcb->kprobe_status = KPROBE_HIT_SS;
687 return 1;
688
689 no_kprobe:
690 preempt_enable_no_resched();
691 return ret;
692 }
693
694 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
695 {
696 struct kprobe *cur = kprobe_running();
697 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
698
699 if (!cur)
700 return 0;
701
702 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
703 kcb->kprobe_status = KPROBE_HIT_SSDONE;
704 cur->post_handler(cur, regs, 0);
705 }
706
707 resume_execution(cur, regs);
708
709 /*Restore back the original saved kprobes variables and continue. */
710 if (kcb->kprobe_status == KPROBE_REENTER) {
711 restore_previous_kprobe(kcb);
712 goto out;
713 }
714 reset_current_kprobe();
715
716 out:
717 preempt_enable_no_resched();
718 return 1;
719 }
720
721 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
722 {
723 struct kprobe *cur = kprobe_running();
724 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
725
726
727 switch(kcb->kprobe_status) {
728 case KPROBE_HIT_SS:
729 case KPROBE_REENTER:
730 /*
731 * We are here because the instruction being single
732 * stepped caused a page fault. We reset the current
733 * kprobe and the instruction pointer points back to
734 * the probe address and allow the page fault handler
735 * to continue as a normal page fault.
736 */
737 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
738 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
739 if (kcb->kprobe_status == KPROBE_REENTER)
740 restore_previous_kprobe(kcb);
741 else
742 reset_current_kprobe();
743 preempt_enable_no_resched();
744 break;
745 case KPROBE_HIT_ACTIVE:
746 case KPROBE_HIT_SSDONE:
747 /*
748 * We increment the nmissed count for accounting,
749 * we can also use npre/npostfault count for accouting
750 * these specific fault cases.
751 */
752 kprobes_inc_nmissed_count(cur);
753
754 /*
755 * We come here because instructions in the pre/post
756 * handler caused the page_fault, this could happen
757 * if handler tries to access user space by
758 * copy_from_user(), get_user() etc. Let the
759 * user-specified handler try to fix it first.
760 */
761 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
762 return 1;
763
764 /*
765 * Let ia64_do_page_fault() fix it.
766 */
767 break;
768 default:
769 break;
770 }
771
772 return 0;
773 }
774
775 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
776 unsigned long val, void *data)
777 {
778 struct die_args *args = (struct die_args *)data;
779 int ret = NOTIFY_DONE;
780
781 if (args->regs && user_mode(args->regs))
782 return ret;
783
784 switch(val) {
785 case DIE_BREAK:
786 /* err is break number from ia64_bad_break() */
787 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
788 if (pre_kprobes_handler(args))
789 ret = NOTIFY_STOP;
790 break;
791 case DIE_FAULT:
792 /* err is vector number from ia64_fault() */
793 if (args->err == 36)
794 if (post_kprobes_handler(args->regs))
795 ret = NOTIFY_STOP;
796 break;
797 case DIE_PAGE_FAULT:
798 /* kprobe_running() needs smp_processor_id() */
799 preempt_disable();
800 if (kprobe_running() &&
801 kprobes_fault_handler(args->regs, args->trapnr))
802 ret = NOTIFY_STOP;
803 preempt_enable();
804 default:
805 break;
806 }
807 return ret;
808 }
809
810 struct param_bsp_cfm {
811 unsigned long ip;
812 unsigned long *bsp;
813 unsigned long cfm;
814 };
815
816 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
817 {
818 unsigned long ip;
819 struct param_bsp_cfm *lp = arg;
820
821 do {
822 unw_get_ip(info, &ip);
823 if (ip == 0)
824 break;
825 if (ip == lp->ip) {
826 unw_get_bsp(info, (unsigned long*)&lp->bsp);
827 unw_get_cfm(info, (unsigned long*)&lp->cfm);
828 return;
829 }
830 } while (unw_unwind(info) >= 0);
831 lp->bsp = 0;
832 lp->cfm = 0;
833 return;
834 }
835
836 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
837 {
838 struct jprobe *jp = container_of(p, struct jprobe, kp);
839 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
840 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
841 struct param_bsp_cfm pa;
842 int bytes;
843
844 /*
845 * Callee owns the argument space and could overwrite it, eg
846 * tail call optimization. So to be absolutely safe
847 * we save the argument space before transfering the control
848 * to instrumented jprobe function which runs in
849 * the process context
850 */
851 pa.ip = regs->cr_iip;
852 unw_init_running(ia64_get_bsp_cfm, &pa);
853 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
854 - (char *)pa.bsp;
855 memcpy( kcb->jprobes_saved_stacked_regs,
856 pa.bsp,
857 bytes );
858 kcb->bsp = pa.bsp;
859 kcb->cfm = pa.cfm;
860
861 /* save architectural state */
862 kcb->jprobe_saved_regs = *regs;
863
864 /* after rfi, execute the jprobe instrumented function */
865 regs->cr_iip = addr & ~0xFULL;
866 ia64_psr(regs)->ri = addr & 0xf;
867 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
868
869 /*
870 * fix the return address to our jprobe_inst_return() function
871 * in the jprobes.S file
872 */
873 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
874
875 return 1;
876 }
877
878 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
879 {
880 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
881 int bytes;
882
883 /* restoring architectural state */
884 *regs = kcb->jprobe_saved_regs;
885
886 /* restoring the original argument space */
887 flush_register_stack();
888 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
889 - (char *)kcb->bsp;
890 memcpy( kcb->bsp,
891 kcb->jprobes_saved_stacked_regs,
892 bytes );
893 invalidate_stacked_regs();
894
895 preempt_enable_no_resched();
896 return 1;
897 }
898
899 static struct kprobe trampoline_p = {
900 .pre_handler = trampoline_probe_handler
901 };
902
903 int __init arch_init_kprobes(void)
904 {
905 trampoline_p.addr =
906 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
907 return register_kprobe(&trampoline_p);
908 }