]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/mca.c
f9fe3ac64242a1b82a8963b215c17db9a1bb4a47
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched/signal.h>
76 #include <linux/sched/debug.h>
77 #include <linux/interrupt.h>
78 #include <linux/irq.h>
79 #include <linux/bootmem.h>
80 #include <linux/acpi.h>
81 #include <linux/timer.h>
82 #include <linux/module.h>
83 #include <linux/kernel.h>
84 #include <linux/smp.h>
85 #include <linux/workqueue.h>
86 #include <linux/cpumask.h>
87 #include <linux/kdebug.h>
88 #include <linux/cpu.h>
89 #include <linux/gfp.h>
90
91 #include <asm/delay.h>
92 #include <asm/machvec.h>
93 #include <asm/meminit.h>
94 #include <asm/page.h>
95 #include <asm/ptrace.h>
96 #include <asm/sal.h>
97 #include <asm/mca.h>
98 #include <asm/kexec.h>
99
100 #include <asm/irq.h>
101 #include <asm/hw_irq.h>
102 #include <asm/tlb.h>
103
104 #include "mca_drv.h"
105 #include "entry.h"
106
107 #if defined(IA64_MCA_DEBUG_INFO)
108 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
109 #else
110 # define IA64_MCA_DEBUG(fmt...)
111 #endif
112
113 #define NOTIFY_INIT(event, regs, arg, spin) \
114 do { \
115 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
116 == NOTIFY_STOP) && ((spin) == 1)) \
117 ia64_mca_spin(__func__); \
118 } while (0)
119
120 #define NOTIFY_MCA(event, regs, arg, spin) \
121 do { \
122 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
123 == NOTIFY_STOP) && ((spin) == 1)) \
124 ia64_mca_spin(__func__); \
125 } while (0)
126
127 /* Used by mca_asm.S */
128 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
129 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
131 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
132 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
133
134 unsigned long __per_cpu_mca[NR_CPUS];
135
136 /* In mca_asm.S */
137 extern void ia64_os_init_dispatch_monarch (void);
138 extern void ia64_os_init_dispatch_slave (void);
139
140 static int monarch_cpu = -1;
141
142 static ia64_mc_info_t ia64_mc_info;
143
144 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
145 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
146 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
147 #define CPE_HISTORY_LENGTH 5
148 #define CMC_HISTORY_LENGTH 5
149
150 #ifdef CONFIG_ACPI
151 static struct timer_list cpe_poll_timer;
152 #endif
153 static struct timer_list cmc_poll_timer;
154 /*
155 * This variable tells whether we are currently in polling mode.
156 * Start with this in the wrong state so we won't play w/ timers
157 * before the system is ready.
158 */
159 static int cmc_polling_enabled = 1;
160
161 /*
162 * Clearing this variable prevents CPE polling from getting activated
163 * in mca_late_init. Use it if your system doesn't provide a CPEI,
164 * but encounters problems retrieving CPE logs. This should only be
165 * necessary for debugging.
166 */
167 static int cpe_poll_enabled = 1;
168
169 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171 static int mca_init __initdata;
172
173 /*
174 * limited & delayed printing support for MCA/INIT handler
175 */
176
177 #define mprintk(fmt...) ia64_mca_printk(fmt)
178
179 #define MLOGBUF_SIZE (512+256*NR_CPUS)
180 #define MLOGBUF_MSGMAX 256
181 static char mlogbuf[MLOGBUF_SIZE];
182 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
183 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
184 static unsigned long mlogbuf_start;
185 static unsigned long mlogbuf_end;
186 static unsigned int mlogbuf_finished = 0;
187 static unsigned long mlogbuf_timestamp = 0;
188
189 static int loglevel_save = -1;
190 #define BREAK_LOGLEVEL(__console_loglevel) \
191 oops_in_progress = 1; \
192 if (loglevel_save < 0) \
193 loglevel_save = __console_loglevel; \
194 __console_loglevel = 15;
195
196 #define RESTORE_LOGLEVEL(__console_loglevel) \
197 if (loglevel_save >= 0) { \
198 __console_loglevel = loglevel_save; \
199 loglevel_save = -1; \
200 } \
201 mlogbuf_finished = 0; \
202 oops_in_progress = 0;
203
204 /*
205 * Push messages into buffer, print them later if not urgent.
206 */
207 void ia64_mca_printk(const char *fmt, ...)
208 {
209 va_list args;
210 int printed_len;
211 char temp_buf[MLOGBUF_MSGMAX];
212 char *p;
213
214 va_start(args, fmt);
215 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216 va_end(args);
217
218 /* Copy the output into mlogbuf */
219 if (oops_in_progress) {
220 /* mlogbuf was abandoned, use printk directly instead. */
221 printk("%s", temp_buf);
222 } else {
223 spin_lock(&mlogbuf_wlock);
224 for (p = temp_buf; *p; p++) {
225 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226 if (next != mlogbuf_start) {
227 mlogbuf[mlogbuf_end] = *p;
228 mlogbuf_end = next;
229 } else {
230 /* buffer full */
231 break;
232 }
233 }
234 mlogbuf[mlogbuf_end] = '\0';
235 spin_unlock(&mlogbuf_wlock);
236 }
237 }
238 EXPORT_SYMBOL(ia64_mca_printk);
239
240 /*
241 * Print buffered messages.
242 * NOTE: call this after returning normal context. (ex. from salinfod)
243 */
244 void ia64_mlogbuf_dump(void)
245 {
246 char temp_buf[MLOGBUF_MSGMAX];
247 char *p;
248 unsigned long index;
249 unsigned long flags;
250 unsigned int printed_len;
251
252 /* Get output from mlogbuf */
253 while (mlogbuf_start != mlogbuf_end) {
254 temp_buf[0] = '\0';
255 p = temp_buf;
256 printed_len = 0;
257
258 spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260 index = mlogbuf_start;
261 while (index != mlogbuf_end) {
262 *p = mlogbuf[index];
263 index = (index + 1) % MLOGBUF_SIZE;
264 if (!*p)
265 break;
266 p++;
267 if (++printed_len >= MLOGBUF_MSGMAX - 1)
268 break;
269 }
270 *p = '\0';
271 if (temp_buf[0])
272 printk("%s", temp_buf);
273 mlogbuf_start = index;
274
275 mlogbuf_timestamp = 0;
276 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277 }
278 }
279 EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281 /*
282 * Call this if system is going to down or if immediate flushing messages to
283 * console is required. (ex. recovery was failed, crash dump is going to be
284 * invoked, long-wait rendezvous etc.)
285 * NOTE: this should be called from monarch.
286 */
287 static void ia64_mlogbuf_finish(int wait)
288 {
289 BREAK_LOGLEVEL(console_loglevel);
290
291 spin_lock_init(&mlogbuf_rlock);
292 ia64_mlogbuf_dump();
293 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294 "MCA/INIT might be dodgy or fail.\n");
295
296 if (!wait)
297 return;
298
299 /* wait for console */
300 printk("Delaying for 5 seconds...\n");
301 udelay(5*1000000);
302
303 mlogbuf_finished = 1;
304 }
305
306 /*
307 * Print buffered messages from INIT context.
308 */
309 static void ia64_mlogbuf_dump_from_init(void)
310 {
311 if (mlogbuf_finished)
312 return;
313
314 if (mlogbuf_timestamp &&
315 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317 " and the system seems to be messed up.\n");
318 ia64_mlogbuf_finish(0);
319 return;
320 }
321
322 if (!spin_trylock(&mlogbuf_rlock)) {
323 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324 "Generated messages other than stack dump will be "
325 "buffered to mlogbuf and will be printed later.\n");
326 printk(KERN_ERR "INIT: If messages would not printed after "
327 "this INIT, wait 30sec and assert INIT again.\n");
328 if (!mlogbuf_timestamp)
329 mlogbuf_timestamp = jiffies;
330 return;
331 }
332 spin_unlock(&mlogbuf_rlock);
333 ia64_mlogbuf_dump();
334 }
335
336 static void inline
337 ia64_mca_spin(const char *func)
338 {
339 if (monarch_cpu == smp_processor_id())
340 ia64_mlogbuf_finish(0);
341 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342 while (1)
343 cpu_relax();
344 }
345 /*
346 * IA64_MCA log support
347 */
348 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
349 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350
351 typedef struct ia64_state_log_s
352 {
353 spinlock_t isl_lock;
354 int isl_index;
355 unsigned long isl_count;
356 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 } ia64_state_log_t;
358
359 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361 #define IA64_LOG_ALLOCATE(it, size) \
362 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
363 (ia64_err_rec_t *)alloc_bootmem(size); \
364 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
365 (ia64_err_rec_t *)alloc_bootmem(size);}
366 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
367 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
368 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
369 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
370 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
371 #define IA64_LOG_INDEX_INC(it) \
372 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
373 ia64_state_log[it].isl_count++;}
374 #define IA64_LOG_INDEX_DEC(it) \
375 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
376 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
377 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
378 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
379
380 /*
381 * ia64_log_init
382 * Reset the OS ia64 log buffer
383 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384 * Outputs : None
385 */
386 static void __init
387 ia64_log_init(int sal_info_type)
388 {
389 u64 max_size = 0;
390
391 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
392 IA64_LOG_LOCK_INIT(sal_info_type);
393
394 // SAL will tell us the maximum size of any error record of this type
395 max_size = ia64_sal_get_state_info_size(sal_info_type);
396 if (!max_size)
397 /* alloc_bootmem() doesn't like zero-sized allocations! */
398 return;
399
400 // set up OS data structures to hold error info
401 IA64_LOG_ALLOCATE(sal_info_type, max_size);
402 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
403 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
404 }
405
406 /*
407 * ia64_log_get
408 *
409 * Get the current MCA log from SAL and copy it into the OS log buffer.
410 *
411 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
412 * irq_safe whether you can use printk at this point
413 * Outputs : size (total record length)
414 * *buffer (ptr to error record)
415 *
416 */
417 static u64
418 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419 {
420 sal_log_record_header_t *log_buffer;
421 u64 total_len = 0;
422 unsigned long s;
423
424 IA64_LOG_LOCK(sal_info_type);
425
426 /* Get the process state information */
427 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428
429 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
430
431 if (total_len) {
432 IA64_LOG_INDEX_INC(sal_info_type);
433 IA64_LOG_UNLOCK(sal_info_type);
434 if (irq_safe) {
435 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
436 __func__, sal_info_type, total_len);
437 }
438 *buffer = (u8 *) log_buffer;
439 return total_len;
440 } else {
441 IA64_LOG_UNLOCK(sal_info_type);
442 return 0;
443 }
444 }
445
446 /*
447 * ia64_mca_log_sal_error_record
448 *
449 * This function retrieves a specified error record type from SAL
450 * and wakes up any processes waiting for error records.
451 *
452 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
453 * FIXME: remove MCA and irq_safe.
454 */
455 static void
456 ia64_mca_log_sal_error_record(int sal_info_type)
457 {
458 u8 *buffer;
459 sal_log_record_header_t *rh;
460 u64 size;
461 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
462 #ifdef IA64_MCA_DEBUG_INFO
463 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
464 #endif
465
466 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
467 if (!size)
468 return;
469
470 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
471
472 if (irq_safe)
473 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
474 smp_processor_id(),
475 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
476
477 /* Clear logs from corrected errors in case there's no user-level logger */
478 rh = (sal_log_record_header_t *)buffer;
479 if (rh->severity == sal_log_severity_corrected)
480 ia64_sal_clear_state_info(sal_info_type);
481 }
482
483 /*
484 * search_mca_table
485 * See if the MCA surfaced in an instruction range
486 * that has been tagged as recoverable.
487 *
488 * Inputs
489 * first First address range to check
490 * last Last address range to check
491 * ip Instruction pointer, address we are looking for
492 *
493 * Return value:
494 * 1 on Success (in the table)/ 0 on Failure (not in the table)
495 */
496 int
497 search_mca_table (const struct mca_table_entry *first,
498 const struct mca_table_entry *last,
499 unsigned long ip)
500 {
501 const struct mca_table_entry *curr;
502 u64 curr_start, curr_end;
503
504 curr = first;
505 while (curr <= last) {
506 curr_start = (u64) &curr->start_addr + curr->start_addr;
507 curr_end = (u64) &curr->end_addr + curr->end_addr;
508
509 if ((ip >= curr_start) && (ip <= curr_end)) {
510 return 1;
511 }
512 curr++;
513 }
514 return 0;
515 }
516
517 /* Given an address, look for it in the mca tables. */
518 int mca_recover_range(unsigned long addr)
519 {
520 extern struct mca_table_entry __start___mca_table[];
521 extern struct mca_table_entry __stop___mca_table[];
522
523 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
524 }
525 EXPORT_SYMBOL_GPL(mca_recover_range);
526
527 #ifdef CONFIG_ACPI
528
529 int cpe_vector = -1;
530 int ia64_cpe_irq = -1;
531
532 static irqreturn_t
533 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
534 {
535 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
536 static int index;
537 static DEFINE_SPINLOCK(cpe_history_lock);
538
539 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
540 __func__, cpe_irq, smp_processor_id());
541
542 /* SAL spec states this should run w/ interrupts enabled */
543 local_irq_enable();
544
545 spin_lock(&cpe_history_lock);
546 if (!cpe_poll_enabled && cpe_vector >= 0) {
547
548 int i, count = 1; /* we know 1 happened now */
549 unsigned long now = jiffies;
550
551 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
552 if (now - cpe_history[i] <= HZ)
553 count++;
554 }
555
556 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
557 if (count >= CPE_HISTORY_LENGTH) {
558
559 cpe_poll_enabled = 1;
560 spin_unlock(&cpe_history_lock);
561 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
562
563 /*
564 * Corrected errors will still be corrected, but
565 * make sure there's a log somewhere that indicates
566 * something is generating more than we can handle.
567 */
568 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
569
570 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
571
572 /* lock already released, get out now */
573 goto out;
574 } else {
575 cpe_history[index++] = now;
576 if (index == CPE_HISTORY_LENGTH)
577 index = 0;
578 }
579 }
580 spin_unlock(&cpe_history_lock);
581 out:
582 /* Get the CPE error record and log it */
583 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
584
585 local_irq_disable();
586
587 return IRQ_HANDLED;
588 }
589
590 #endif /* CONFIG_ACPI */
591
592 #ifdef CONFIG_ACPI
593 /*
594 * ia64_mca_register_cpev
595 *
596 * Register the corrected platform error vector with SAL.
597 *
598 * Inputs
599 * cpev Corrected Platform Error Vector number
600 *
601 * Outputs
602 * None
603 */
604 void
605 ia64_mca_register_cpev (int cpev)
606 {
607 /* Register the CPE interrupt vector with SAL */
608 struct ia64_sal_retval isrv;
609
610 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
611 if (isrv.status) {
612 printk(KERN_ERR "Failed to register Corrected Platform "
613 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
614 return;
615 }
616
617 IA64_MCA_DEBUG("%s: corrected platform error "
618 "vector %#x registered\n", __func__, cpev);
619 }
620 #endif /* CONFIG_ACPI */
621
622 /*
623 * ia64_mca_cmc_vector_setup
624 *
625 * Setup the corrected machine check vector register in the processor.
626 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
627 * This function is invoked on a per-processor basis.
628 *
629 * Inputs
630 * None
631 *
632 * Outputs
633 * None
634 */
635 void
636 ia64_mca_cmc_vector_setup (void)
637 {
638 cmcv_reg_t cmcv;
639
640 cmcv.cmcv_regval = 0;
641 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
642 cmcv.cmcv_vector = IA64_CMC_VECTOR;
643 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
646 __func__, smp_processor_id(), IA64_CMC_VECTOR);
647
648 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650 }
651
652 /*
653 * ia64_mca_cmc_vector_disable
654 *
655 * Mask the corrected machine check vector register in the processor.
656 * This function is invoked on a per-processor basis.
657 *
658 * Inputs
659 * dummy(unused)
660 *
661 * Outputs
662 * None
663 */
664 static void
665 ia64_mca_cmc_vector_disable (void *dummy)
666 {
667 cmcv_reg_t cmcv;
668
669 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670
671 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673
674 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
675 __func__, smp_processor_id(), cmcv.cmcv_vector);
676 }
677
678 /*
679 * ia64_mca_cmc_vector_enable
680 *
681 * Unmask the corrected machine check vector register in the processor.
682 * This function is invoked on a per-processor basis.
683 *
684 * Inputs
685 * dummy(unused)
686 *
687 * Outputs
688 * None
689 */
690 static void
691 ia64_mca_cmc_vector_enable (void *dummy)
692 {
693 cmcv_reg_t cmcv;
694
695 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696
697 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699
700 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
701 __func__, smp_processor_id(), cmcv.cmcv_vector);
702 }
703
704 /*
705 * ia64_mca_cmc_vector_disable_keventd
706 *
707 * Called via keventd (smp_call_function() is not safe in interrupt context) to
708 * disable the cmc interrupt vector.
709 */
710 static void
711 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712 {
713 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714 }
715
716 /*
717 * ia64_mca_cmc_vector_enable_keventd
718 *
719 * Called via keventd (smp_call_function() is not safe in interrupt context) to
720 * enable the cmc interrupt vector.
721 */
722 static void
723 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724 {
725 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726 }
727
728 /*
729 * ia64_mca_wakeup
730 *
731 * Send an inter-cpu interrupt to wake-up a particular cpu.
732 *
733 * Inputs : cpuid
734 * Outputs : None
735 */
736 static void
737 ia64_mca_wakeup(int cpu)
738 {
739 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740 }
741
742 /*
743 * ia64_mca_wakeup_all
744 *
745 * Wakeup all the slave cpus which have rendez'ed previously.
746 *
747 * Inputs : None
748 * Outputs : None
749 */
750 static void
751 ia64_mca_wakeup_all(void)
752 {
753 int cpu;
754
755 /* Clear the Rendez checkin flag for all cpus */
756 for_each_online_cpu(cpu) {
757 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
758 ia64_mca_wakeup(cpu);
759 }
760
761 }
762
763 /*
764 * ia64_mca_rendez_interrupt_handler
765 *
766 * This is handler used to put slave processors into spinloop
767 * while the monarch processor does the mca handling and later
768 * wake each slave up once the monarch is done. The state
769 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
770 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
771 * the cpu has come out of OS rendezvous.
772 *
773 * Inputs : None
774 * Outputs : None
775 */
776 static irqreturn_t
777 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778 {
779 unsigned long flags;
780 int cpu = smp_processor_id();
781 struct ia64_mca_notify_die nd =
782 { .sos = NULL, .monarch_cpu = &monarch_cpu };
783
784 /* Mask all interrupts */
785 local_irq_save(flags);
786
787 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788
789 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
790 /* Register with the SAL monarch that the slave has
791 * reached SAL
792 */
793 ia64_sal_mc_rendez();
794
795 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796
797 /* Wait for the monarch cpu to exit. */
798 while (monarch_cpu != -1)
799 cpu_relax(); /* spin until monarch leaves */
800
801 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802
803 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
804 /* Enable all interrupts */
805 local_irq_restore(flags);
806 return IRQ_HANDLED;
807 }
808
809 /*
810 * ia64_mca_wakeup_int_handler
811 *
812 * The interrupt handler for processing the inter-cpu interrupt to the
813 * slave cpu which was spinning in the rendez loop.
814 * Since this spinning is done by turning off the interrupts and
815 * polling on the wakeup-interrupt bit in the IRR, there is
816 * nothing useful to be done in the handler.
817 *
818 * Inputs : wakeup_irq (Wakeup-interrupt bit)
819 * arg (Interrupt handler specific argument)
820 * Outputs : None
821 *
822 */
823 static irqreturn_t
824 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825 {
826 return IRQ_HANDLED;
827 }
828
829 /* Function pointer for extra MCA recovery */
830 int (*ia64_mca_ucmc_extension)
831 (void*,struct ia64_sal_os_state*)
832 = NULL;
833
834 int
835 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836 {
837 if (ia64_mca_ucmc_extension)
838 return 1;
839
840 ia64_mca_ucmc_extension = fn;
841 return 0;
842 }
843
844 void
845 ia64_unreg_MCA_extension(void)
846 {
847 if (ia64_mca_ucmc_extension)
848 ia64_mca_ucmc_extension = NULL;
849 }
850
851 EXPORT_SYMBOL(ia64_reg_MCA_extension);
852 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854
855 static inline void
856 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857 {
858 u64 fslot, tslot, nat;
859 *tr = *fr;
860 fslot = ((unsigned long)fr >> 3) & 63;
861 tslot = ((unsigned long)tr >> 3) & 63;
862 *tnat &= ~(1UL << tslot);
863 nat = (fnat >> fslot) & 1;
864 *tnat |= (nat << tslot);
865 }
866
867 /* Change the comm field on the MCA/INT task to include the pid that
868 * was interrupted, it makes for easier debugging. If that pid was 0
869 * (swapper or nested MCA/INIT) then use the start of the previous comm
870 * field suffixed with its cpu.
871 */
872
873 static void
874 ia64_mca_modify_comm(const struct task_struct *previous_current)
875 {
876 char *p, comm[sizeof(current->comm)];
877 if (previous_current->pid)
878 snprintf(comm, sizeof(comm), "%s %d",
879 current->comm, previous_current->pid);
880 else {
881 int l;
882 if ((p = strchr(previous_current->comm, ' ')))
883 l = p - previous_current->comm;
884 else
885 l = strlen(previous_current->comm);
886 snprintf(comm, sizeof(comm), "%s %*s %d",
887 current->comm, l, previous_current->comm,
888 task_thread_info(previous_current)->cpu);
889 }
890 memcpy(current->comm, comm, sizeof(current->comm));
891 }
892
893 static void
894 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
895 unsigned long *nat)
896 {
897 const pal_min_state_area_t *ms = sos->pal_min_state;
898 const u64 *bank;
899
900 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
901 * pmsa_{xip,xpsr,xfs}
902 */
903 if (ia64_psr(regs)->ic) {
904 regs->cr_iip = ms->pmsa_iip;
905 regs->cr_ipsr = ms->pmsa_ipsr;
906 regs->cr_ifs = ms->pmsa_ifs;
907 } else {
908 regs->cr_iip = ms->pmsa_xip;
909 regs->cr_ipsr = ms->pmsa_xpsr;
910 regs->cr_ifs = ms->pmsa_xfs;
911
912 sos->iip = ms->pmsa_iip;
913 sos->ipsr = ms->pmsa_ipsr;
914 sos->ifs = ms->pmsa_ifs;
915 }
916 regs->pr = ms->pmsa_pr;
917 regs->b0 = ms->pmsa_br0;
918 regs->ar_rsc = ms->pmsa_rsc;
919 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
920 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
921 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
922 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
923 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
924 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
925 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
926 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
927 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
928 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
929 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
930 if (ia64_psr(regs)->bn)
931 bank = ms->pmsa_bank1_gr;
932 else
933 bank = ms->pmsa_bank0_gr;
934 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
935 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
936 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
937 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
938 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
939 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
940 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
941 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
942 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
943 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
944 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
945 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
946 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
947 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
948 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
949 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
950 }
951
952 /* On entry to this routine, we are running on the per cpu stack, see
953 * mca_asm.h. The original stack has not been touched by this event. Some of
954 * the original stack's registers will be in the RBS on this stack. This stack
955 * also contains a partial pt_regs and switch_stack, the rest of the data is in
956 * PAL minstate.
957 *
958 * The first thing to do is modify the original stack to look like a blocked
959 * task so we can run backtrace on the original task. Also mark the per cpu
960 * stack as current to ensure that we use the correct task state, it also means
961 * that we can do backtrace on the MCA/INIT handler code itself.
962 */
963
964 static struct task_struct *
965 ia64_mca_modify_original_stack(struct pt_regs *regs,
966 const struct switch_stack *sw,
967 struct ia64_sal_os_state *sos,
968 const char *type)
969 {
970 char *p;
971 ia64_va va;
972 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
973 const pal_min_state_area_t *ms = sos->pal_min_state;
974 struct task_struct *previous_current;
975 struct pt_regs *old_regs;
976 struct switch_stack *old_sw;
977 unsigned size = sizeof(struct pt_regs) +
978 sizeof(struct switch_stack) + 16;
979 unsigned long *old_bspstore, *old_bsp;
980 unsigned long *new_bspstore, *new_bsp;
981 unsigned long old_unat, old_rnat, new_rnat, nat;
982 u64 slots, loadrs = regs->loadrs;
983 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
984 u64 ar_bspstore = regs->ar_bspstore;
985 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
986 const char *msg;
987 int cpu = smp_processor_id();
988
989 previous_current = curr_task(cpu);
990 ia64_set_curr_task(cpu, current);
991 if ((p = strchr(current->comm, ' ')))
992 *p = '\0';
993
994 /* Best effort attempt to cope with MCA/INIT delivered while in
995 * physical mode.
996 */
997 regs->cr_ipsr = ms->pmsa_ipsr;
998 if (ia64_psr(regs)->dt == 0) {
999 va.l = r12;
1000 if (va.f.reg == 0) {
1001 va.f.reg = 7;
1002 r12 = va.l;
1003 }
1004 va.l = r13;
1005 if (va.f.reg == 0) {
1006 va.f.reg = 7;
1007 r13 = va.l;
1008 }
1009 }
1010 if (ia64_psr(regs)->rt == 0) {
1011 va.l = ar_bspstore;
1012 if (va.f.reg == 0) {
1013 va.f.reg = 7;
1014 ar_bspstore = va.l;
1015 }
1016 va.l = ar_bsp;
1017 if (va.f.reg == 0) {
1018 va.f.reg = 7;
1019 ar_bsp = va.l;
1020 }
1021 }
1022
1023 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024 * have been copied to the old stack, the old stack may fail the
1025 * validation tests below. So ia64_old_stack() must restore the dirty
1026 * registers from the new stack. The old and new bspstore probably
1027 * have different alignments, so loadrs calculated on the old bsp
1028 * cannot be used to restore from the new bsp. Calculate a suitable
1029 * loadrs for the new stack and save it in the new pt_regs, where
1030 * ia64_old_stack() can get it.
1031 */
1032 old_bspstore = (unsigned long *)ar_bspstore;
1033 old_bsp = (unsigned long *)ar_bsp;
1034 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039 /* Verify the previous stack state before we change it */
1040 if (user_mode(regs)) {
1041 msg = "occurred in user space";
1042 /* previous_current is guaranteed to be valid when the task was
1043 * in user space, so ...
1044 */
1045 ia64_mca_modify_comm(previous_current);
1046 goto no_mod;
1047 }
1048
1049 if (r13 != sos->prev_IA64_KR_CURRENT) {
1050 msg = "inconsistent previous current and r13";
1051 goto no_mod;
1052 }
1053
1054 if (!mca_recover_range(ms->pmsa_iip)) {
1055 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056 msg = "inconsistent r12 and r13";
1057 goto no_mod;
1058 }
1059 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060 msg = "inconsistent ar.bspstore and r13";
1061 goto no_mod;
1062 }
1063 va.p = old_bspstore;
1064 if (va.f.reg < 5) {
1065 msg = "old_bspstore is in the wrong region";
1066 goto no_mod;
1067 }
1068 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069 msg = "inconsistent ar.bsp and r13";
1070 goto no_mod;
1071 }
1072 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073 if (ar_bspstore + size > r12) {
1074 msg = "no room for blocked state";
1075 goto no_mod;
1076 }
1077 }
1078
1079 ia64_mca_modify_comm(previous_current);
1080
1081 /* Make the original task look blocked. First stack a struct pt_regs,
1082 * describing the state at the time of interrupt. mca_asm.S built a
1083 * partial pt_regs, copy it and fill in the blanks using minstate.
1084 */
1085 p = (char *)r12 - sizeof(*regs);
1086 old_regs = (struct pt_regs *)p;
1087 memcpy(old_regs, regs, sizeof(*regs));
1088 old_regs->loadrs = loadrs;
1089 old_unat = old_regs->ar_unat;
1090 finish_pt_regs(old_regs, sos, &old_unat);
1091
1092 /* Next stack a struct switch_stack. mca_asm.S built a partial
1093 * switch_stack, copy it and fill in the blanks using pt_regs and
1094 * minstate.
1095 *
1096 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097 * ar.pfs is set to 0.
1098 *
1099 * unwind.c::unw_unwind() does special processing for interrupt frames.
1100 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1102 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1103 * switch_stack on the original stack so it will unwind correctly when
1104 * unwind.c reads pt_regs.
1105 *
1106 * thread.ksp is updated to point to the synthesized switch_stack.
1107 */
1108 p -= sizeof(struct switch_stack);
1109 old_sw = (struct switch_stack *)p;
1110 memcpy(old_sw, sw, sizeof(*sw));
1111 old_sw->caller_unat = old_unat;
1112 old_sw->ar_fpsr = old_regs->ar_fpsr;
1113 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117 old_sw->b0 = (u64)ia64_leave_kernel;
1118 old_sw->b1 = ms->pmsa_br1;
1119 old_sw->ar_pfs = 0;
1120 old_sw->ar_unat = old_unat;
1121 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122 previous_current->thread.ksp = (u64)p - 16;
1123
1124 /* Finally copy the original stack's registers back to its RBS.
1125 * Registers from ar.bspstore through ar.bsp at the time of the event
1126 * are in the current RBS, copy them back to the original stack. The
1127 * copy must be done register by register because the original bspstore
1128 * and the current one have different alignments, so the saved RNAT
1129 * data occurs at different places.
1130 *
1131 * mca_asm does cover, so the old_bsp already includes all registers at
1132 * the time of MCA/INIT. It also does flushrs, so all registers before
1133 * this function have been written to backing store on the MCA/INIT
1134 * stack.
1135 */
1136 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137 old_rnat = regs->ar_rnat;
1138 while (slots--) {
1139 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140 new_rnat = ia64_get_rnat(new_bspstore++);
1141 }
1142 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143 *old_bspstore++ = old_rnat;
1144 old_rnat = 0;
1145 }
1146 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149 *old_bspstore++ = *new_bspstore++;
1150 }
1151 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152 old_sw->ar_rnat = old_rnat;
1153
1154 sos->prev_task = previous_current;
1155 return previous_current;
1156
1157 no_mod:
1158 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159 smp_processor_id(), type, msg);
1160 old_unat = regs->ar_unat;
1161 finish_pt_regs(regs, sos, &old_unat);
1162 return previous_current;
1163 }
1164
1165 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1166 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1167 * not entered rendezvous yet then wait a bit. The assumption is that any
1168 * slave that has not rendezvoused after a reasonable time is never going to do
1169 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1170 * interrupt, as well as cpus that receive the INIT slave event.
1171 */
1172
1173 static void
1174 ia64_wait_for_slaves(int monarch, const char *type)
1175 {
1176 int c, i , wait;
1177
1178 /*
1179 * wait 5 seconds total for slaves (arbitrary)
1180 */
1181 for (i = 0; i < 5000; i++) {
1182 wait = 0;
1183 for_each_online_cpu(c) {
1184 if (c == monarch)
1185 continue;
1186 if (ia64_mc_info.imi_rendez_checkin[c]
1187 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188 udelay(1000); /* short wait */
1189 wait = 1;
1190 break;
1191 }
1192 }
1193 if (!wait)
1194 goto all_in;
1195 }
1196
1197 /*
1198 * Maybe slave(s) dead. Print buffered messages immediately.
1199 */
1200 ia64_mlogbuf_finish(0);
1201 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202 for_each_online_cpu(c) {
1203 if (c == monarch)
1204 continue;
1205 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206 mprintk(" %d", c);
1207 }
1208 mprintk("\n");
1209 return;
1210
1211 all_in:
1212 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213 return;
1214 }
1215
1216 /* mca_insert_tr
1217 *
1218 * Switch rid when TR reload and needed!
1219 * iord: 1: itr, 2: itr;
1220 *
1221 */
1222 static void mca_insert_tr(u64 iord)
1223 {
1224
1225 int i;
1226 u64 old_rr;
1227 struct ia64_tr_entry *p;
1228 unsigned long psr;
1229 int cpu = smp_processor_id();
1230
1231 if (!ia64_idtrs[cpu])
1232 return;
1233
1234 psr = ia64_clear_ic();
1235 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237 if (p->pte & 0x1) {
1238 old_rr = ia64_get_rr(p->ifa);
1239 if (old_rr != p->rr) {
1240 ia64_set_rr(p->ifa, p->rr);
1241 ia64_srlz_d();
1242 }
1243 ia64_ptr(iord, p->ifa, p->itir >> 2);
1244 ia64_srlz_i();
1245 if (iord & 0x1) {
1246 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247 ia64_srlz_i();
1248 }
1249 if (iord & 0x2) {
1250 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251 ia64_srlz_i();
1252 }
1253 if (old_rr != p->rr) {
1254 ia64_set_rr(p->ifa, old_rr);
1255 ia64_srlz_d();
1256 }
1257 }
1258 }
1259 ia64_set_psr(psr);
1260 }
1261
1262 /*
1263 * ia64_mca_handler
1264 *
1265 * This is uncorrectable machine check handler called from OS_MCA
1266 * dispatch code which is in turn called from SAL_CHECK().
1267 * This is the place where the core of OS MCA handling is done.
1268 * Right now the logs are extracted and displayed in a well-defined
1269 * format. This handler code is supposed to be run only on the
1270 * monarch processor. Once the monarch is done with MCA handling
1271 * further MCA logging is enabled by clearing logs.
1272 * Monarch also has the duty of sending wakeup-IPIs to pull the
1273 * slave processors out of rendezvous spinloop.
1274 *
1275 * If multiple processors call into OS_MCA, the first will become
1276 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1277 * bitmask. After the first monarch has processed its MCA, it
1278 * will wake up the next cpu in the mca_cpu bitmask and then go
1279 * into the rendezvous loop. When all processors have serviced
1280 * their MCA, the last monarch frees up the rest of the processors.
1281 */
1282 void
1283 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284 struct ia64_sal_os_state *sos)
1285 {
1286 int recover, cpu = smp_processor_id();
1287 struct task_struct *previous_current;
1288 struct ia64_mca_notify_die nd =
1289 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290 static atomic_t mca_count;
1291 static cpumask_t mca_cpu;
1292
1293 if (atomic_add_return(1, &mca_count) == 1) {
1294 monarch_cpu = cpu;
1295 sos->monarch = 1;
1296 } else {
1297 cpumask_set_cpu(cpu, &mca_cpu);
1298 sos->monarch = 0;
1299 }
1300 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308 if (sos->monarch) {
1309 ia64_wait_for_slaves(cpu, "MCA");
1310
1311 /* Wakeup all the processors which are spinning in the
1312 * rendezvous loop. They will leave SAL, then spin in the OS
1313 * with interrupts disabled until this monarch cpu leaves the
1314 * MCA handler. That gets control back to the OS so we can
1315 * backtrace the other cpus, backtrace when spinning in SAL
1316 * does not work.
1317 */
1318 ia64_mca_wakeup_all();
1319 } else {
1320 while (cpumask_test_cpu(cpu, &mca_cpu))
1321 cpu_relax(); /* spin until monarch wakes us */
1322 }
1323
1324 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326 /* Get the MCA error record and log it */
1327 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329 /* MCA error recovery */
1330 recover = (ia64_mca_ucmc_extension
1331 && ia64_mca_ucmc_extension(
1332 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333 sos));
1334
1335 if (recover) {
1336 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337 rh->severity = sal_log_severity_corrected;
1338 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339 sos->os_status = IA64_MCA_CORRECTED;
1340 } else {
1341 /* Dump buffered message to console */
1342 ia64_mlogbuf_finish(1);
1343 }
1344
1345 if (__this_cpu_read(ia64_mca_tr_reload)) {
1346 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348 }
1349
1350 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352 if (atomic_dec_return(&mca_count) > 0) {
1353 int i;
1354
1355 /* wake up the next monarch cpu,
1356 * and put this cpu in the rendez loop.
1357 */
1358 for_each_online_cpu(i) {
1359 if (cpumask_test_cpu(i, &mca_cpu)) {
1360 monarch_cpu = i;
1361 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1362 while (monarch_cpu != -1)
1363 cpu_relax(); /* spin until last cpu leaves */
1364 ia64_set_curr_task(cpu, previous_current);
1365 ia64_mc_info.imi_rendez_checkin[cpu]
1366 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367 return;
1368 }
1369 }
1370 }
1371 ia64_set_curr_task(cpu, previous_current);
1372 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1374 }
1375
1376 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379 /*
1380 * ia64_mca_cmc_int_handler
1381 *
1382 * This is corrected machine check interrupt handler.
1383 * Right now the logs are extracted and displayed in a well-defined
1384 * format.
1385 *
1386 * Inputs
1387 * interrupt number
1388 * client data arg ptr
1389 *
1390 * Outputs
1391 * None
1392 */
1393 static irqreturn_t
1394 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395 {
1396 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1397 static int index;
1398 static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401 __func__, cmc_irq, smp_processor_id());
1402
1403 /* SAL spec states this should run w/ interrupts enabled */
1404 local_irq_enable();
1405
1406 spin_lock(&cmc_history_lock);
1407 if (!cmc_polling_enabled) {
1408 int i, count = 1; /* we know 1 happened now */
1409 unsigned long now = jiffies;
1410
1411 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412 if (now - cmc_history[i] <= HZ)
1413 count++;
1414 }
1415
1416 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417 if (count >= CMC_HISTORY_LENGTH) {
1418
1419 cmc_polling_enabled = 1;
1420 spin_unlock(&cmc_history_lock);
1421 /* If we're being hit with CMC interrupts, we won't
1422 * ever execute the schedule_work() below. Need to
1423 * disable CMC interrupts on this processor now.
1424 */
1425 ia64_mca_cmc_vector_disable(NULL);
1426 schedule_work(&cmc_disable_work);
1427
1428 /*
1429 * Corrected errors will still be corrected, but
1430 * make sure there's a log somewhere that indicates
1431 * something is generating more than we can handle.
1432 */
1433 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437 /* lock already released, get out now */
1438 goto out;
1439 } else {
1440 cmc_history[index++] = now;
1441 if (index == CMC_HISTORY_LENGTH)
1442 index = 0;
1443 }
1444 }
1445 spin_unlock(&cmc_history_lock);
1446 out:
1447 /* Get the CMC error record and log it */
1448 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450 local_irq_disable();
1451
1452 return IRQ_HANDLED;
1453 }
1454
1455 /*
1456 * ia64_mca_cmc_int_caller
1457 *
1458 * Triggered by sw interrupt from CMC polling routine. Calls
1459 * real interrupt handler and either triggers a sw interrupt
1460 * on the next cpu or does cleanup at the end.
1461 *
1462 * Inputs
1463 * interrupt number
1464 * client data arg ptr
1465 * Outputs
1466 * handled
1467 */
1468 static irqreturn_t
1469 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470 {
1471 static int start_count = -1;
1472 unsigned int cpuid;
1473
1474 cpuid = smp_processor_id();
1475
1476 /* If first cpu, update count */
1477 if (start_count == -1)
1478 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479
1480 ia64_mca_cmc_int_handler(cmc_irq, arg);
1481
1482 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483
1484 if (cpuid < nr_cpu_ids) {
1485 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1486 } else {
1487 /* If no log record, switch out of polling mode */
1488 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489
1490 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1491 schedule_work(&cmc_enable_work);
1492 cmc_polling_enabled = 0;
1493
1494 } else {
1495
1496 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1497 }
1498
1499 start_count = -1;
1500 }
1501
1502 return IRQ_HANDLED;
1503 }
1504
1505 /*
1506 * ia64_mca_cmc_poll
1507 *
1508 * Poll for Corrected Machine Checks (CMCs)
1509 *
1510 * Inputs : dummy(unused)
1511 * Outputs : None
1512 *
1513 */
1514 static void
1515 ia64_mca_cmc_poll (unsigned long dummy)
1516 {
1517 /* Trigger a CMC interrupt cascade */
1518 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1519 IA64_IPI_DM_INT, 0);
1520 }
1521
1522 /*
1523 * ia64_mca_cpe_int_caller
1524 *
1525 * Triggered by sw interrupt from CPE polling routine. Calls
1526 * real interrupt handler and either triggers a sw interrupt
1527 * on the next cpu or does cleanup at the end.
1528 *
1529 * Inputs
1530 * interrupt number
1531 * client data arg ptr
1532 * Outputs
1533 * handled
1534 */
1535 #ifdef CONFIG_ACPI
1536
1537 static irqreturn_t
1538 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1539 {
1540 static int start_count = -1;
1541 static int poll_time = MIN_CPE_POLL_INTERVAL;
1542 unsigned int cpuid;
1543
1544 cpuid = smp_processor_id();
1545
1546 /* If first cpu, update count */
1547 if (start_count == -1)
1548 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1549
1550 ia64_mca_cpe_int_handler(cpe_irq, arg);
1551
1552 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1553
1554 if (cpuid < NR_CPUS) {
1555 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1556 } else {
1557 /*
1558 * If a log was recorded, increase our polling frequency,
1559 * otherwise, backoff or return to interrupt mode.
1560 */
1561 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1562 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1563 } else if (cpe_vector < 0) {
1564 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1565 } else {
1566 poll_time = MIN_CPE_POLL_INTERVAL;
1567
1568 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1569 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1570 cpe_poll_enabled = 0;
1571 }
1572
1573 if (cpe_poll_enabled)
1574 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1575 start_count = -1;
1576 }
1577
1578 return IRQ_HANDLED;
1579 }
1580
1581 /*
1582 * ia64_mca_cpe_poll
1583 *
1584 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1585 * on first cpu, from there it will trickle through all the cpus.
1586 *
1587 * Inputs : dummy(unused)
1588 * Outputs : None
1589 *
1590 */
1591 static void
1592 ia64_mca_cpe_poll (unsigned long dummy)
1593 {
1594 /* Trigger a CPE interrupt cascade */
1595 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1596 IA64_IPI_DM_INT, 0);
1597 }
1598
1599 #endif /* CONFIG_ACPI */
1600
1601 static int
1602 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1603 {
1604 int c;
1605 struct task_struct *g, *t;
1606 if (val != DIE_INIT_MONARCH_PROCESS)
1607 return NOTIFY_DONE;
1608 #ifdef CONFIG_KEXEC
1609 if (atomic_read(&kdump_in_progress))
1610 return NOTIFY_DONE;
1611 #endif
1612
1613 /*
1614 * FIXME: mlogbuf will brim over with INIT stack dumps.
1615 * To enable show_stack from INIT, we use oops_in_progress which should
1616 * be used in real oops. This would cause something wrong after INIT.
1617 */
1618 BREAK_LOGLEVEL(console_loglevel);
1619 ia64_mlogbuf_dump_from_init();
1620
1621 printk(KERN_ERR "Processes interrupted by INIT -");
1622 for_each_online_cpu(c) {
1623 struct ia64_sal_os_state *s;
1624 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1625 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1626 g = s->prev_task;
1627 if (g) {
1628 if (g->pid)
1629 printk(" %d", g->pid);
1630 else
1631 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1632 }
1633 }
1634 printk("\n\n");
1635 if (read_trylock(&tasklist_lock)) {
1636 do_each_thread (g, t) {
1637 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1638 show_stack(t, NULL);
1639 } while_each_thread (g, t);
1640 read_unlock(&tasklist_lock);
1641 }
1642 /* FIXME: This will not restore zapped printk locks. */
1643 RESTORE_LOGLEVEL(console_loglevel);
1644 return NOTIFY_DONE;
1645 }
1646
1647 /*
1648 * C portion of the OS INIT handler
1649 *
1650 * Called from ia64_os_init_dispatch
1651 *
1652 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1653 * this event. This code is used for both monarch and slave INIT events, see
1654 * sos->monarch.
1655 *
1656 * All INIT events switch to the INIT stack and change the previous process to
1657 * blocked status. If one of the INIT events is the monarch then we are
1658 * probably processing the nmi button/command. Use the monarch cpu to dump all
1659 * the processes. The slave INIT events all spin until the monarch cpu
1660 * returns. We can also get INIT slave events for MCA, in which case the MCA
1661 * process is the monarch.
1662 */
1663
1664 void
1665 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1666 struct ia64_sal_os_state *sos)
1667 {
1668 static atomic_t slaves;
1669 static atomic_t monarchs;
1670 struct task_struct *previous_current;
1671 int cpu = smp_processor_id();
1672 struct ia64_mca_notify_die nd =
1673 { .sos = sos, .monarch_cpu = &monarch_cpu };
1674
1675 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1676
1677 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1678 sos->proc_state_param, cpu, sos->monarch);
1679 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1680
1681 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1682 sos->os_status = IA64_INIT_RESUME;
1683
1684 /* FIXME: Workaround for broken proms that drive all INIT events as
1685 * slaves. The last slave that enters is promoted to be a monarch.
1686 * Remove this code in September 2006, that gives platforms a year to
1687 * fix their proms and get their customers updated.
1688 */
1689 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1690 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1691 __func__, cpu);
1692 atomic_dec(&slaves);
1693 sos->monarch = 1;
1694 }
1695
1696 /* FIXME: Workaround for broken proms that drive all INIT events as
1697 * monarchs. Second and subsequent monarchs are demoted to slaves.
1698 * Remove this code in September 2006, that gives platforms a year to
1699 * fix their proms and get their customers updated.
1700 */
1701 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1702 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1703 __func__, cpu);
1704 atomic_dec(&monarchs);
1705 sos->monarch = 0;
1706 }
1707
1708 if (!sos->monarch) {
1709 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1710
1711 #ifdef CONFIG_KEXEC
1712 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1713 udelay(1000);
1714 #else
1715 while (monarch_cpu == -1)
1716 cpu_relax(); /* spin until monarch enters */
1717 #endif
1718
1719 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1720 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1721
1722 #ifdef CONFIG_KEXEC
1723 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1724 udelay(1000);
1725 #else
1726 while (monarch_cpu != -1)
1727 cpu_relax(); /* spin until monarch leaves */
1728 #endif
1729
1730 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1731
1732 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1733 ia64_set_curr_task(cpu, previous_current);
1734 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1735 atomic_dec(&slaves);
1736 return;
1737 }
1738
1739 monarch_cpu = cpu;
1740 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1741
1742 /*
1743 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1744 * generated via the BMC's command-line interface, but since the console is on the
1745 * same serial line, the user will need some time to switch out of the BMC before
1746 * the dump begins.
1747 */
1748 mprintk("Delaying for 5 seconds...\n");
1749 udelay(5*1000000);
1750 ia64_wait_for_slaves(cpu, "INIT");
1751 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1752 * to default_monarch_init_process() above and just print all the
1753 * tasks.
1754 */
1755 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1756 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1757
1758 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1759 atomic_dec(&monarchs);
1760 ia64_set_curr_task(cpu, previous_current);
1761 monarch_cpu = -1;
1762 return;
1763 }
1764
1765 static int __init
1766 ia64_mca_disable_cpe_polling(char *str)
1767 {
1768 cpe_poll_enabled = 0;
1769 return 1;
1770 }
1771
1772 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1773
1774 static struct irqaction cmci_irqaction = {
1775 .handler = ia64_mca_cmc_int_handler,
1776 .name = "cmc_hndlr"
1777 };
1778
1779 static struct irqaction cmcp_irqaction = {
1780 .handler = ia64_mca_cmc_int_caller,
1781 .name = "cmc_poll"
1782 };
1783
1784 static struct irqaction mca_rdzv_irqaction = {
1785 .handler = ia64_mca_rendez_int_handler,
1786 .name = "mca_rdzv"
1787 };
1788
1789 static struct irqaction mca_wkup_irqaction = {
1790 .handler = ia64_mca_wakeup_int_handler,
1791 .name = "mca_wkup"
1792 };
1793
1794 #ifdef CONFIG_ACPI
1795 static struct irqaction mca_cpe_irqaction = {
1796 .handler = ia64_mca_cpe_int_handler,
1797 .name = "cpe_hndlr"
1798 };
1799
1800 static struct irqaction mca_cpep_irqaction = {
1801 .handler = ia64_mca_cpe_int_caller,
1802 .name = "cpe_poll"
1803 };
1804 #endif /* CONFIG_ACPI */
1805
1806 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1807 * these stacks can never sleep, they cannot return from the kernel to user
1808 * space, they do not appear in a normal ps listing. So there is no need to
1809 * format most of the fields.
1810 */
1811
1812 static void
1813 format_mca_init_stack(void *mca_data, unsigned long offset,
1814 const char *type, int cpu)
1815 {
1816 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1817 struct thread_info *ti;
1818 memset(p, 0, KERNEL_STACK_SIZE);
1819 ti = task_thread_info(p);
1820 ti->flags = _TIF_MCA_INIT;
1821 ti->preempt_count = 1;
1822 ti->task = p;
1823 ti->cpu = cpu;
1824 p->stack = ti;
1825 p->state = TASK_UNINTERRUPTIBLE;
1826 cpumask_set_cpu(cpu, &p->cpus_allowed);
1827 INIT_LIST_HEAD(&p->tasks);
1828 p->parent = p->real_parent = p->group_leader = p;
1829 INIT_LIST_HEAD(&p->children);
1830 INIT_LIST_HEAD(&p->sibling);
1831 strncpy(p->comm, type, sizeof(p->comm)-1);
1832 }
1833
1834 /* Caller prevents this from being called after init */
1835 static void * __ref mca_bootmem(void)
1836 {
1837 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1838 KERNEL_STACK_SIZE, 0);
1839 }
1840
1841 /* Do per-CPU MCA-related initialization. */
1842 void
1843 ia64_mca_cpu_init(void *cpu_data)
1844 {
1845 void *pal_vaddr;
1846 void *data;
1847 long sz = sizeof(struct ia64_mca_cpu);
1848 int cpu = smp_processor_id();
1849 static int first_time = 1;
1850
1851 /*
1852 * Structure will already be allocated if cpu has been online,
1853 * then offlined.
1854 */
1855 if (__per_cpu_mca[cpu]) {
1856 data = __va(__per_cpu_mca[cpu]);
1857 } else {
1858 if (first_time) {
1859 data = mca_bootmem();
1860 first_time = 0;
1861 } else
1862 data = (void *)__get_free_pages(GFP_KERNEL,
1863 get_order(sz));
1864 if (!data)
1865 panic("Could not allocate MCA memory for cpu %d\n",
1866 cpu);
1867 }
1868 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1869 "MCA", cpu);
1870 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1871 "INIT", cpu);
1872 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1873
1874 /*
1875 * Stash away a copy of the PTE needed to map the per-CPU page.
1876 * We may need it during MCA recovery.
1877 */
1878 __this_cpu_write(ia64_mca_per_cpu_pte,
1879 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1880
1881 /*
1882 * Also, stash away a copy of the PAL address and the PTE
1883 * needed to map it.
1884 */
1885 pal_vaddr = efi_get_pal_addr();
1886 if (!pal_vaddr)
1887 return;
1888 __this_cpu_write(ia64_mca_pal_base,
1889 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1890 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1891 PAGE_KERNEL)));
1892 }
1893
1894 static int ia64_mca_cpu_online(unsigned int cpu)
1895 {
1896 unsigned long flags;
1897
1898 local_irq_save(flags);
1899 if (!cmc_polling_enabled)
1900 ia64_mca_cmc_vector_enable(NULL);
1901 local_irq_restore(flags);
1902 return 0;
1903 }
1904
1905 /*
1906 * ia64_mca_init
1907 *
1908 * Do all the system level mca specific initialization.
1909 *
1910 * 1. Register spinloop and wakeup request interrupt vectors
1911 *
1912 * 2. Register OS_MCA handler entry point
1913 *
1914 * 3. Register OS_INIT handler entry point
1915 *
1916 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1917 *
1918 * Note that this initialization is done very early before some kernel
1919 * services are available.
1920 *
1921 * Inputs : None
1922 *
1923 * Outputs : None
1924 */
1925 void __init
1926 ia64_mca_init(void)
1927 {
1928 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1929 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1930 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1931 int i;
1932 long rc;
1933 struct ia64_sal_retval isrv;
1934 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1935 static struct notifier_block default_init_monarch_nb = {
1936 .notifier_call = default_monarch_init_process,
1937 .priority = 0/* we need to notified last */
1938 };
1939
1940 IA64_MCA_DEBUG("%s: begin\n", __func__);
1941
1942 /* Clear the Rendez checkin flag for all cpus */
1943 for(i = 0 ; i < NR_CPUS; i++)
1944 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1945
1946 /*
1947 * Register the rendezvous spinloop and wakeup mechanism with SAL
1948 */
1949
1950 /* Register the rendezvous interrupt vector with SAL */
1951 while (1) {
1952 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1953 SAL_MC_PARAM_MECHANISM_INT,
1954 IA64_MCA_RENDEZ_VECTOR,
1955 timeout,
1956 SAL_MC_PARAM_RZ_ALWAYS);
1957 rc = isrv.status;
1958 if (rc == 0)
1959 break;
1960 if (rc == -2) {
1961 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1962 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1963 timeout = isrv.v0;
1964 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1965 continue;
1966 }
1967 printk(KERN_ERR "Failed to register rendezvous interrupt "
1968 "with SAL (status %ld)\n", rc);
1969 return;
1970 }
1971
1972 /* Register the wakeup interrupt vector with SAL */
1973 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1974 SAL_MC_PARAM_MECHANISM_INT,
1975 IA64_MCA_WAKEUP_VECTOR,
1976 0, 0);
1977 rc = isrv.status;
1978 if (rc) {
1979 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1980 "(status %ld)\n", rc);
1981 return;
1982 }
1983
1984 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1985
1986 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1987 /*
1988 * XXX - disable SAL checksum by setting size to 0; should be
1989 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1990 */
1991 ia64_mc_info.imi_mca_handler_size = 0;
1992
1993 /* Register the os mca handler with SAL */
1994 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1995 ia64_mc_info.imi_mca_handler,
1996 ia64_tpa(mca_hldlr_ptr->gp),
1997 ia64_mc_info.imi_mca_handler_size,
1998 0, 0, 0)))
1999 {
2000 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2001 "(status %ld)\n", rc);
2002 return;
2003 }
2004
2005 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2006 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2007
2008 /*
2009 * XXX - disable SAL checksum by setting size to 0, should be
2010 * size of the actual init handler in mca_asm.S.
2011 */
2012 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2013 ia64_mc_info.imi_monarch_init_handler_size = 0;
2014 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2015 ia64_mc_info.imi_slave_init_handler_size = 0;
2016
2017 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2018 ia64_mc_info.imi_monarch_init_handler);
2019
2020 /* Register the os init handler with SAL */
2021 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2022 ia64_mc_info.imi_monarch_init_handler,
2023 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2024 ia64_mc_info.imi_monarch_init_handler_size,
2025 ia64_mc_info.imi_slave_init_handler,
2026 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2027 ia64_mc_info.imi_slave_init_handler_size)))
2028 {
2029 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2030 "(status %ld)\n", rc);
2031 return;
2032 }
2033 if (register_die_notifier(&default_init_monarch_nb)) {
2034 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2035 return;
2036 }
2037
2038 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2039
2040 /* Initialize the areas set aside by the OS to buffer the
2041 * platform/processor error states for MCA/INIT/CMC
2042 * handling.
2043 */
2044 ia64_log_init(SAL_INFO_TYPE_MCA);
2045 ia64_log_init(SAL_INFO_TYPE_INIT);
2046 ia64_log_init(SAL_INFO_TYPE_CMC);
2047 ia64_log_init(SAL_INFO_TYPE_CPE);
2048
2049 mca_init = 1;
2050 printk(KERN_INFO "MCA related initialization done\n");
2051 }
2052
2053
2054 /*
2055 * These pieces cannot be done in ia64_mca_init() because it is called before
2056 * early_irq_init() which would wipe out our percpu irq registrations. But we
2057 * cannot leave them until ia64_mca_late_init() because by then all the other
2058 * processors have been brought online and have set their own CMC vectors to
2059 * point at a non-existant action. Called from arch_early_irq_init().
2060 */
2061 void __init ia64_mca_irq_init(void)
2062 {
2063 /*
2064 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2065 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2066 */
2067 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2068 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2069 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2070
2071 /* Setup the MCA rendezvous interrupt vector */
2072 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2073
2074 /* Setup the MCA wakeup interrupt vector */
2075 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2076
2077 #ifdef CONFIG_ACPI
2078 /* Setup the CPEI/P handler */
2079 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2080 #endif
2081 }
2082
2083 /*
2084 * ia64_mca_late_init
2085 *
2086 * Opportunity to setup things that require initialization later
2087 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2088 * platform doesn't support an interrupt driven mechanism.
2089 *
2090 * Inputs : None
2091 * Outputs : Status
2092 */
2093 static int __init
2094 ia64_mca_late_init(void)
2095 {
2096 if (!mca_init)
2097 return 0;
2098
2099 /* Setup the CMCI/P vector and handler */
2100 setup_timer(&cmc_poll_timer, ia64_mca_cmc_poll, 0UL);
2101
2102 /* Unmask/enable the vector */
2103 cmc_polling_enabled = 0;
2104 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2105 ia64_mca_cpu_online, NULL);
2106 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2107
2108 #ifdef CONFIG_ACPI
2109 /* Setup the CPEI/P vector and handler */
2110 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2111 setup_timer(&cpe_poll_timer, ia64_mca_cpe_poll, 0UL);
2112
2113 {
2114 unsigned int irq;
2115
2116 if (cpe_vector >= 0) {
2117 /* If platform supports CPEI, enable the irq. */
2118 irq = local_vector_to_irq(cpe_vector);
2119 if (irq > 0) {
2120 cpe_poll_enabled = 0;
2121 irq_set_status_flags(irq, IRQ_PER_CPU);
2122 setup_irq(irq, &mca_cpe_irqaction);
2123 ia64_cpe_irq = irq;
2124 ia64_mca_register_cpev(cpe_vector);
2125 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2126 __func__);
2127 return 0;
2128 }
2129 printk(KERN_ERR "%s: Failed to find irq for CPE "
2130 "interrupt handler, vector %d\n",
2131 __func__, cpe_vector);
2132 }
2133 /* If platform doesn't support CPEI, get the timer going. */
2134 if (cpe_poll_enabled) {
2135 ia64_mca_cpe_poll(0UL);
2136 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2137 }
2138 }
2139 #endif
2140
2141 return 0;
2142 }
2143
2144 device_initcall(ia64_mca_late_init);