]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kernel/mca.c
Merge branch 'upstream'
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72 #include <linux/cpumask.h>
73
74 #include <asm/delay.h>
75 #include <asm/kdebug.h>
76 #include <asm/machvec.h>
77 #include <asm/meminit.h>
78 #include <asm/page.h>
79 #include <asm/ptrace.h>
80 #include <asm/system.h>
81 #include <asm/sal.h>
82 #include <asm/mca.h>
83
84 #include <asm/irq.h>
85 #include <asm/hw_irq.h>
86
87 #include "mca_drv.h"
88 #include "entry.h"
89
90 #if defined(IA64_MCA_DEBUG_INFO)
91 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
92 #else
93 # define IA64_MCA_DEBUG(fmt...)
94 #endif
95
96 /* Used by mca_asm.S */
97 u32 ia64_mca_serialize;
98 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
99 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
101 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
102
103 unsigned long __per_cpu_mca[NR_CPUS];
104
105 /* In mca_asm.S */
106 extern void ia64_os_init_dispatch_monarch (void);
107 extern void ia64_os_init_dispatch_slave (void);
108
109 static int monarch_cpu = -1;
110
111 static ia64_mc_info_t ia64_mc_info;
112
113 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
114 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
115 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
116 #define CPE_HISTORY_LENGTH 5
117 #define CMC_HISTORY_LENGTH 5
118
119 static struct timer_list cpe_poll_timer;
120 static struct timer_list cmc_poll_timer;
121 /*
122 * This variable tells whether we are currently in polling mode.
123 * Start with this in the wrong state so we won't play w/ timers
124 * before the system is ready.
125 */
126 static int cmc_polling_enabled = 1;
127
128 /*
129 * Clearing this variable prevents CPE polling from getting activated
130 * in mca_late_init. Use it if your system doesn't provide a CPEI,
131 * but encounters problems retrieving CPE logs. This should only be
132 * necessary for debugging.
133 */
134 static int cpe_poll_enabled = 1;
135
136 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
137
138 static int mca_init __initdata;
139
140
141 static void inline
142 ia64_mca_spin(const char *func)
143 {
144 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
145 while (1)
146 cpu_relax();
147 }
148 /*
149 * IA64_MCA log support
150 */
151 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
152 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
153
154 typedef struct ia64_state_log_s
155 {
156 spinlock_t isl_lock;
157 int isl_index;
158 unsigned long isl_count;
159 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
160 } ia64_state_log_t;
161
162 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
163
164 #define IA64_LOG_ALLOCATE(it, size) \
165 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
166 (ia64_err_rec_t *)alloc_bootmem(size); \
167 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
168 (ia64_err_rec_t *)alloc_bootmem(size);}
169 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
170 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
171 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
172 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
173 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
174 #define IA64_LOG_INDEX_INC(it) \
175 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
176 ia64_state_log[it].isl_count++;}
177 #define IA64_LOG_INDEX_DEC(it) \
178 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
179 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
180 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
181 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
182
183 /*
184 * ia64_log_init
185 * Reset the OS ia64 log buffer
186 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
187 * Outputs : None
188 */
189 static void __init
190 ia64_log_init(int sal_info_type)
191 {
192 u64 max_size = 0;
193
194 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
195 IA64_LOG_LOCK_INIT(sal_info_type);
196
197 // SAL will tell us the maximum size of any error record of this type
198 max_size = ia64_sal_get_state_info_size(sal_info_type);
199 if (!max_size)
200 /* alloc_bootmem() doesn't like zero-sized allocations! */
201 return;
202
203 // set up OS data structures to hold error info
204 IA64_LOG_ALLOCATE(sal_info_type, max_size);
205 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
206 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
207 }
208
209 /*
210 * ia64_log_get
211 *
212 * Get the current MCA log from SAL and copy it into the OS log buffer.
213 *
214 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
215 * irq_safe whether you can use printk at this point
216 * Outputs : size (total record length)
217 * *buffer (ptr to error record)
218 *
219 */
220 static u64
221 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
222 {
223 sal_log_record_header_t *log_buffer;
224 u64 total_len = 0;
225 int s;
226
227 IA64_LOG_LOCK(sal_info_type);
228
229 /* Get the process state information */
230 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
231
232 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
233
234 if (total_len) {
235 IA64_LOG_INDEX_INC(sal_info_type);
236 IA64_LOG_UNLOCK(sal_info_type);
237 if (irq_safe) {
238 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
239 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
240 }
241 *buffer = (u8 *) log_buffer;
242 return total_len;
243 } else {
244 IA64_LOG_UNLOCK(sal_info_type);
245 return 0;
246 }
247 }
248
249 /*
250 * ia64_mca_log_sal_error_record
251 *
252 * This function retrieves a specified error record type from SAL
253 * and wakes up any processes waiting for error records.
254 *
255 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
256 * FIXME: remove MCA and irq_safe.
257 */
258 static void
259 ia64_mca_log_sal_error_record(int sal_info_type)
260 {
261 u8 *buffer;
262 sal_log_record_header_t *rh;
263 u64 size;
264 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
265 #ifdef IA64_MCA_DEBUG_INFO
266 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
267 #endif
268
269 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
270 if (!size)
271 return;
272
273 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
274
275 if (irq_safe)
276 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
277 smp_processor_id(),
278 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
279
280 /* Clear logs from corrected errors in case there's no user-level logger */
281 rh = (sal_log_record_header_t *)buffer;
282 if (rh->severity == sal_log_severity_corrected)
283 ia64_sal_clear_state_info(sal_info_type);
284 }
285
286 /*
287 * search_mca_table
288 * See if the MCA surfaced in an instruction range
289 * that has been tagged as recoverable.
290 *
291 * Inputs
292 * first First address range to check
293 * last Last address range to check
294 * ip Instruction pointer, address we are looking for
295 *
296 * Return value:
297 * 1 on Success (in the table)/ 0 on Failure (not in the table)
298 */
299 int
300 search_mca_table (const struct mca_table_entry *first,
301 const struct mca_table_entry *last,
302 unsigned long ip)
303 {
304 const struct mca_table_entry *curr;
305 u64 curr_start, curr_end;
306
307 curr = first;
308 while (curr <= last) {
309 curr_start = (u64) &curr->start_addr + curr->start_addr;
310 curr_end = (u64) &curr->end_addr + curr->end_addr;
311
312 if ((ip >= curr_start) && (ip <= curr_end)) {
313 return 1;
314 }
315 curr++;
316 }
317 return 0;
318 }
319
320 /* Given an address, look for it in the mca tables. */
321 int mca_recover_range(unsigned long addr)
322 {
323 extern struct mca_table_entry __start___mca_table[];
324 extern struct mca_table_entry __stop___mca_table[];
325
326 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
327 }
328 EXPORT_SYMBOL_GPL(mca_recover_range);
329
330 #ifdef CONFIG_ACPI
331
332 int cpe_vector = -1;
333 int ia64_cpe_irq = -1;
334
335 static irqreturn_t
336 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
337 {
338 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
339 static int index;
340 static DEFINE_SPINLOCK(cpe_history_lock);
341
342 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
343 __FUNCTION__, cpe_irq, smp_processor_id());
344
345 /* SAL spec states this should run w/ interrupts enabled */
346 local_irq_enable();
347
348 /* Get the CPE error record and log it */
349 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
350
351 spin_lock(&cpe_history_lock);
352 if (!cpe_poll_enabled && cpe_vector >= 0) {
353
354 int i, count = 1; /* we know 1 happened now */
355 unsigned long now = jiffies;
356
357 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
358 if (now - cpe_history[i] <= HZ)
359 count++;
360 }
361
362 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
363 if (count >= CPE_HISTORY_LENGTH) {
364
365 cpe_poll_enabled = 1;
366 spin_unlock(&cpe_history_lock);
367 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
368
369 /*
370 * Corrected errors will still be corrected, but
371 * make sure there's a log somewhere that indicates
372 * something is generating more than we can handle.
373 */
374 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
375
376 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
377
378 /* lock already released, get out now */
379 return IRQ_HANDLED;
380 } else {
381 cpe_history[index++] = now;
382 if (index == CPE_HISTORY_LENGTH)
383 index = 0;
384 }
385 }
386 spin_unlock(&cpe_history_lock);
387 return IRQ_HANDLED;
388 }
389
390 #endif /* CONFIG_ACPI */
391
392 #ifdef CONFIG_ACPI
393 /*
394 * ia64_mca_register_cpev
395 *
396 * Register the corrected platform error vector with SAL.
397 *
398 * Inputs
399 * cpev Corrected Platform Error Vector number
400 *
401 * Outputs
402 * None
403 */
404 static void __init
405 ia64_mca_register_cpev (int cpev)
406 {
407 /* Register the CPE interrupt vector with SAL */
408 struct ia64_sal_retval isrv;
409
410 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
411 if (isrv.status) {
412 printk(KERN_ERR "Failed to register Corrected Platform "
413 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
414 return;
415 }
416
417 IA64_MCA_DEBUG("%s: corrected platform error "
418 "vector %#x registered\n", __FUNCTION__, cpev);
419 }
420 #endif /* CONFIG_ACPI */
421
422 /*
423 * ia64_mca_cmc_vector_setup
424 *
425 * Setup the corrected machine check vector register in the processor.
426 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
427 * This function is invoked on a per-processor basis.
428 *
429 * Inputs
430 * None
431 *
432 * Outputs
433 * None
434 */
435 void __cpuinit
436 ia64_mca_cmc_vector_setup (void)
437 {
438 cmcv_reg_t cmcv;
439
440 cmcv.cmcv_regval = 0;
441 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
442 cmcv.cmcv_vector = IA64_CMC_VECTOR;
443 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
444
445 IA64_MCA_DEBUG("%s: CPU %d corrected "
446 "machine check vector %#x registered.\n",
447 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
448
449 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
450 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
451 }
452
453 /*
454 * ia64_mca_cmc_vector_disable
455 *
456 * Mask the corrected machine check vector register in the processor.
457 * This function is invoked on a per-processor basis.
458 *
459 * Inputs
460 * dummy(unused)
461 *
462 * Outputs
463 * None
464 */
465 static void
466 ia64_mca_cmc_vector_disable (void *dummy)
467 {
468 cmcv_reg_t cmcv;
469
470 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
471
472 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
473 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
474
475 IA64_MCA_DEBUG("%s: CPU %d corrected "
476 "machine check vector %#x disabled.\n",
477 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
478 }
479
480 /*
481 * ia64_mca_cmc_vector_enable
482 *
483 * Unmask the corrected machine check vector register in the processor.
484 * This function is invoked on a per-processor basis.
485 *
486 * Inputs
487 * dummy(unused)
488 *
489 * Outputs
490 * None
491 */
492 static void
493 ia64_mca_cmc_vector_enable (void *dummy)
494 {
495 cmcv_reg_t cmcv;
496
497 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
498
499 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
500 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
501
502 IA64_MCA_DEBUG("%s: CPU %d corrected "
503 "machine check vector %#x enabled.\n",
504 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
505 }
506
507 /*
508 * ia64_mca_cmc_vector_disable_keventd
509 *
510 * Called via keventd (smp_call_function() is not safe in interrupt context) to
511 * disable the cmc interrupt vector.
512 */
513 static void
514 ia64_mca_cmc_vector_disable_keventd(void *unused)
515 {
516 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
517 }
518
519 /*
520 * ia64_mca_cmc_vector_enable_keventd
521 *
522 * Called via keventd (smp_call_function() is not safe in interrupt context) to
523 * enable the cmc interrupt vector.
524 */
525 static void
526 ia64_mca_cmc_vector_enable_keventd(void *unused)
527 {
528 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
529 }
530
531 /*
532 * ia64_mca_wakeup
533 *
534 * Send an inter-cpu interrupt to wake-up a particular cpu
535 * and mark that cpu to be out of rendez.
536 *
537 * Inputs : cpuid
538 * Outputs : None
539 */
540 static void
541 ia64_mca_wakeup(int cpu)
542 {
543 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
544 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
545
546 }
547
548 /*
549 * ia64_mca_wakeup_all
550 *
551 * Wakeup all the cpus which have rendez'ed previously.
552 *
553 * Inputs : None
554 * Outputs : None
555 */
556 static void
557 ia64_mca_wakeup_all(void)
558 {
559 int cpu;
560
561 /* Clear the Rendez checkin flag for all cpus */
562 for_each_online_cpu(cpu) {
563 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
564 ia64_mca_wakeup(cpu);
565 }
566
567 }
568
569 /*
570 * ia64_mca_rendez_interrupt_handler
571 *
572 * This is handler used to put slave processors into spinloop
573 * while the monarch processor does the mca handling and later
574 * wake each slave up once the monarch is done.
575 *
576 * Inputs : None
577 * Outputs : None
578 */
579 static irqreturn_t
580 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
581 {
582 unsigned long flags;
583 int cpu = smp_processor_id();
584
585 /* Mask all interrupts */
586 local_irq_save(flags);
587 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
588 == NOTIFY_STOP)
589 ia64_mca_spin(__FUNCTION__);
590
591 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
592 /* Register with the SAL monarch that the slave has
593 * reached SAL
594 */
595 ia64_sal_mc_rendez();
596
597 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
598 == NOTIFY_STOP)
599 ia64_mca_spin(__FUNCTION__);
600
601 /* Wait for the monarch cpu to exit. */
602 while (monarch_cpu != -1)
603 cpu_relax(); /* spin until monarch leaves */
604
605 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
606 == NOTIFY_STOP)
607 ia64_mca_spin(__FUNCTION__);
608
609 /* Enable all interrupts */
610 local_irq_restore(flags);
611 return IRQ_HANDLED;
612 }
613
614 /*
615 * ia64_mca_wakeup_int_handler
616 *
617 * The interrupt handler for processing the inter-cpu interrupt to the
618 * slave cpu which was spinning in the rendez loop.
619 * Since this spinning is done by turning off the interrupts and
620 * polling on the wakeup-interrupt bit in the IRR, there is
621 * nothing useful to be done in the handler.
622 *
623 * Inputs : wakeup_irq (Wakeup-interrupt bit)
624 * arg (Interrupt handler specific argument)
625 * ptregs (Exception frame at the time of the interrupt)
626 * Outputs : None
627 *
628 */
629 static irqreturn_t
630 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
631 {
632 return IRQ_HANDLED;
633 }
634
635 /* Function pointer for extra MCA recovery */
636 int (*ia64_mca_ucmc_extension)
637 (void*,struct ia64_sal_os_state*)
638 = NULL;
639
640 int
641 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
642 {
643 if (ia64_mca_ucmc_extension)
644 return 1;
645
646 ia64_mca_ucmc_extension = fn;
647 return 0;
648 }
649
650 void
651 ia64_unreg_MCA_extension(void)
652 {
653 if (ia64_mca_ucmc_extension)
654 ia64_mca_ucmc_extension = NULL;
655 }
656
657 EXPORT_SYMBOL(ia64_reg_MCA_extension);
658 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
659
660
661 static inline void
662 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
663 {
664 u64 fslot, tslot, nat;
665 *tr = *fr;
666 fslot = ((unsigned long)fr >> 3) & 63;
667 tslot = ((unsigned long)tr >> 3) & 63;
668 *tnat &= ~(1UL << tslot);
669 nat = (fnat >> fslot) & 1;
670 *tnat |= (nat << tslot);
671 }
672
673 /* Change the comm field on the MCA/INT task to include the pid that
674 * was interrupted, it makes for easier debugging. If that pid was 0
675 * (swapper or nested MCA/INIT) then use the start of the previous comm
676 * field suffixed with its cpu.
677 */
678
679 static void
680 ia64_mca_modify_comm(const task_t *previous_current)
681 {
682 char *p, comm[sizeof(current->comm)];
683 if (previous_current->pid)
684 snprintf(comm, sizeof(comm), "%s %d",
685 current->comm, previous_current->pid);
686 else {
687 int l;
688 if ((p = strchr(previous_current->comm, ' ')))
689 l = p - previous_current->comm;
690 else
691 l = strlen(previous_current->comm);
692 snprintf(comm, sizeof(comm), "%s %*s %d",
693 current->comm, l, previous_current->comm,
694 task_thread_info(previous_current)->cpu);
695 }
696 memcpy(current->comm, comm, sizeof(current->comm));
697 }
698
699 /* On entry to this routine, we are running on the per cpu stack, see
700 * mca_asm.h. The original stack has not been touched by this event. Some of
701 * the original stack's registers will be in the RBS on this stack. This stack
702 * also contains a partial pt_regs and switch_stack, the rest of the data is in
703 * PAL minstate.
704 *
705 * The first thing to do is modify the original stack to look like a blocked
706 * task so we can run backtrace on the original task. Also mark the per cpu
707 * stack as current to ensure that we use the correct task state, it also means
708 * that we can do backtrace on the MCA/INIT handler code itself.
709 */
710
711 static task_t *
712 ia64_mca_modify_original_stack(struct pt_regs *regs,
713 const struct switch_stack *sw,
714 struct ia64_sal_os_state *sos,
715 const char *type)
716 {
717 char *p;
718 ia64_va va;
719 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
720 const pal_min_state_area_t *ms = sos->pal_min_state;
721 task_t *previous_current;
722 struct pt_regs *old_regs;
723 struct switch_stack *old_sw;
724 unsigned size = sizeof(struct pt_regs) +
725 sizeof(struct switch_stack) + 16;
726 u64 *old_bspstore, *old_bsp;
727 u64 *new_bspstore, *new_bsp;
728 u64 old_unat, old_rnat, new_rnat, nat;
729 u64 slots, loadrs = regs->loadrs;
730 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
731 u64 ar_bspstore = regs->ar_bspstore;
732 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
733 const u64 *bank;
734 const char *msg;
735 int cpu = smp_processor_id();
736
737 previous_current = curr_task(cpu);
738 set_curr_task(cpu, current);
739 if ((p = strchr(current->comm, ' ')))
740 *p = '\0';
741
742 /* Best effort attempt to cope with MCA/INIT delivered while in
743 * physical mode.
744 */
745 regs->cr_ipsr = ms->pmsa_ipsr;
746 if (ia64_psr(regs)->dt == 0) {
747 va.l = r12;
748 if (va.f.reg == 0) {
749 va.f.reg = 7;
750 r12 = va.l;
751 }
752 va.l = r13;
753 if (va.f.reg == 0) {
754 va.f.reg = 7;
755 r13 = va.l;
756 }
757 }
758 if (ia64_psr(regs)->rt == 0) {
759 va.l = ar_bspstore;
760 if (va.f.reg == 0) {
761 va.f.reg = 7;
762 ar_bspstore = va.l;
763 }
764 va.l = ar_bsp;
765 if (va.f.reg == 0) {
766 va.f.reg = 7;
767 ar_bsp = va.l;
768 }
769 }
770
771 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
772 * have been copied to the old stack, the old stack may fail the
773 * validation tests below. So ia64_old_stack() must restore the dirty
774 * registers from the new stack. The old and new bspstore probably
775 * have different alignments, so loadrs calculated on the old bsp
776 * cannot be used to restore from the new bsp. Calculate a suitable
777 * loadrs for the new stack and save it in the new pt_regs, where
778 * ia64_old_stack() can get it.
779 */
780 old_bspstore = (u64 *)ar_bspstore;
781 old_bsp = (u64 *)ar_bsp;
782 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
783 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
784 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
785 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
786
787 /* Verify the previous stack state before we change it */
788 if (user_mode(regs)) {
789 msg = "occurred in user space";
790 /* previous_current is guaranteed to be valid when the task was
791 * in user space, so ...
792 */
793 ia64_mca_modify_comm(previous_current);
794 goto no_mod;
795 }
796
797 if (!mca_recover_range(ms->pmsa_iip)) {
798 if (r13 != sos->prev_IA64_KR_CURRENT) {
799 msg = "inconsistent previous current and r13";
800 goto no_mod;
801 }
802 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
803 msg = "inconsistent r12 and r13";
804 goto no_mod;
805 }
806 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
807 msg = "inconsistent ar.bspstore and r13";
808 goto no_mod;
809 }
810 va.p = old_bspstore;
811 if (va.f.reg < 5) {
812 msg = "old_bspstore is in the wrong region";
813 goto no_mod;
814 }
815 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
816 msg = "inconsistent ar.bsp and r13";
817 goto no_mod;
818 }
819 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
820 if (ar_bspstore + size > r12) {
821 msg = "no room for blocked state";
822 goto no_mod;
823 }
824 }
825
826 ia64_mca_modify_comm(previous_current);
827
828 /* Make the original task look blocked. First stack a struct pt_regs,
829 * describing the state at the time of interrupt. mca_asm.S built a
830 * partial pt_regs, copy it and fill in the blanks using minstate.
831 */
832 p = (char *)r12 - sizeof(*regs);
833 old_regs = (struct pt_regs *)p;
834 memcpy(old_regs, regs, sizeof(*regs));
835 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
836 * pmsa_{xip,xpsr,xfs}
837 */
838 if (ia64_psr(regs)->ic) {
839 old_regs->cr_iip = ms->pmsa_iip;
840 old_regs->cr_ipsr = ms->pmsa_ipsr;
841 old_regs->cr_ifs = ms->pmsa_ifs;
842 } else {
843 old_regs->cr_iip = ms->pmsa_xip;
844 old_regs->cr_ipsr = ms->pmsa_xpsr;
845 old_regs->cr_ifs = ms->pmsa_xfs;
846 }
847 old_regs->pr = ms->pmsa_pr;
848 old_regs->b0 = ms->pmsa_br0;
849 old_regs->loadrs = loadrs;
850 old_regs->ar_rsc = ms->pmsa_rsc;
851 old_unat = old_regs->ar_unat;
852 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
853 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
854 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
855 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
856 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
857 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
858 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
859 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
860 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
861 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
862 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
863 if (ia64_psr(old_regs)->bn)
864 bank = ms->pmsa_bank1_gr;
865 else
866 bank = ms->pmsa_bank0_gr;
867 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
868 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
869 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
870 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
871 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
872 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
873 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
874 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
875 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
876 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
877 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
878 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
879 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
880 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
881 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
882 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
883
884 /* Next stack a struct switch_stack. mca_asm.S built a partial
885 * switch_stack, copy it and fill in the blanks using pt_regs and
886 * minstate.
887 *
888 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
889 * ar.pfs is set to 0.
890 *
891 * unwind.c::unw_unwind() does special processing for interrupt frames.
892 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
893 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
894 * that this is documented, of course. Set PRED_NON_SYSCALL in the
895 * switch_stack on the original stack so it will unwind correctly when
896 * unwind.c reads pt_regs.
897 *
898 * thread.ksp is updated to point to the synthesized switch_stack.
899 */
900 p -= sizeof(struct switch_stack);
901 old_sw = (struct switch_stack *)p;
902 memcpy(old_sw, sw, sizeof(*sw));
903 old_sw->caller_unat = old_unat;
904 old_sw->ar_fpsr = old_regs->ar_fpsr;
905 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
906 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
907 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
908 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
909 old_sw->b0 = (u64)ia64_leave_kernel;
910 old_sw->b1 = ms->pmsa_br1;
911 old_sw->ar_pfs = 0;
912 old_sw->ar_unat = old_unat;
913 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
914 previous_current->thread.ksp = (u64)p - 16;
915
916 /* Finally copy the original stack's registers back to its RBS.
917 * Registers from ar.bspstore through ar.bsp at the time of the event
918 * are in the current RBS, copy them back to the original stack. The
919 * copy must be done register by register because the original bspstore
920 * and the current one have different alignments, so the saved RNAT
921 * data occurs at different places.
922 *
923 * mca_asm does cover, so the old_bsp already includes all registers at
924 * the time of MCA/INIT. It also does flushrs, so all registers before
925 * this function have been written to backing store on the MCA/INIT
926 * stack.
927 */
928 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
929 old_rnat = regs->ar_rnat;
930 while (slots--) {
931 if (ia64_rse_is_rnat_slot(new_bspstore)) {
932 new_rnat = ia64_get_rnat(new_bspstore++);
933 }
934 if (ia64_rse_is_rnat_slot(old_bspstore)) {
935 *old_bspstore++ = old_rnat;
936 old_rnat = 0;
937 }
938 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
939 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
940 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
941 *old_bspstore++ = *new_bspstore++;
942 }
943 old_sw->ar_bspstore = (unsigned long)old_bspstore;
944 old_sw->ar_rnat = old_rnat;
945
946 sos->prev_task = previous_current;
947 return previous_current;
948
949 no_mod:
950 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
951 smp_processor_id(), type, msg);
952 return previous_current;
953 }
954
955 /* The monarch/slave interaction is based on monarch_cpu and requires that all
956 * slaves have entered rendezvous before the monarch leaves. If any cpu has
957 * not entered rendezvous yet then wait a bit. The assumption is that any
958 * slave that has not rendezvoused after a reasonable time is never going to do
959 * so. In this context, slave includes cpus that respond to the MCA rendezvous
960 * interrupt, as well as cpus that receive the INIT slave event.
961 */
962
963 static void
964 ia64_wait_for_slaves(int monarch)
965 {
966 int c, wait = 0, missing = 0;
967 for_each_online_cpu(c) {
968 if (c == monarch)
969 continue;
970 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
971 udelay(1000); /* short wait first */
972 wait = 1;
973 break;
974 }
975 }
976 if (!wait)
977 goto all_in;
978 for_each_online_cpu(c) {
979 if (c == monarch)
980 continue;
981 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
982 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
983 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
984 missing = 1;
985 break;
986 }
987 }
988 if (!missing)
989 goto all_in;
990 printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
991 for_each_online_cpu(c) {
992 if (c == monarch)
993 continue;
994 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
995 printk(" %d", c);
996 }
997 printk("\n");
998 return;
999
1000 all_in:
1001 printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
1002 return;
1003 }
1004
1005 /*
1006 * ia64_mca_handler
1007 *
1008 * This is uncorrectable machine check handler called from OS_MCA
1009 * dispatch code which is in turn called from SAL_CHECK().
1010 * This is the place where the core of OS MCA handling is done.
1011 * Right now the logs are extracted and displayed in a well-defined
1012 * format. This handler code is supposed to be run only on the
1013 * monarch processor. Once the monarch is done with MCA handling
1014 * further MCA logging is enabled by clearing logs.
1015 * Monarch also has the duty of sending wakeup-IPIs to pull the
1016 * slave processors out of rendezvous spinloop.
1017 */
1018 void
1019 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1020 struct ia64_sal_os_state *sos)
1021 {
1022 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1023 &sos->proc_state_param;
1024 int recover, cpu = smp_processor_id();
1025 task_t *previous_current;
1026
1027 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1028 console_loglevel = 15; /* make sure printks make it to console */
1029 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1030 sos->proc_state_param, cpu, sos->monarch);
1031
1032 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1033 monarch_cpu = cpu;
1034 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
1035 == NOTIFY_STOP)
1036 ia64_mca_spin(__FUNCTION__);
1037 ia64_wait_for_slaves(cpu);
1038
1039 /* Wakeup all the processors which are spinning in the rendezvous loop.
1040 * They will leave SAL, then spin in the OS with interrupts disabled
1041 * until this monarch cpu leaves the MCA handler. That gets control
1042 * back to the OS so we can backtrace the other cpus, backtrace when
1043 * spinning in SAL does not work.
1044 */
1045 ia64_mca_wakeup_all();
1046 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
1047 == NOTIFY_STOP)
1048 ia64_mca_spin(__FUNCTION__);
1049
1050 /* Get the MCA error record and log it */
1051 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1052
1053 /* TLB error is only exist in this SAL error record */
1054 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1055 /* other error recovery */
1056 || (ia64_mca_ucmc_extension
1057 && ia64_mca_ucmc_extension(
1058 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1059 sos));
1060
1061 if (recover) {
1062 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1063 rh->severity = sal_log_severity_corrected;
1064 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1065 sos->os_status = IA64_MCA_CORRECTED;
1066 }
1067 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1068 == NOTIFY_STOP)
1069 ia64_mca_spin(__FUNCTION__);
1070
1071 set_curr_task(cpu, previous_current);
1072 monarch_cpu = -1;
1073 }
1074
1075 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1076 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1077
1078 /*
1079 * ia64_mca_cmc_int_handler
1080 *
1081 * This is corrected machine check interrupt handler.
1082 * Right now the logs are extracted and displayed in a well-defined
1083 * format.
1084 *
1085 * Inputs
1086 * interrupt number
1087 * client data arg ptr
1088 * saved registers ptr
1089 *
1090 * Outputs
1091 * None
1092 */
1093 static irqreturn_t
1094 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1095 {
1096 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1097 static int index;
1098 static DEFINE_SPINLOCK(cmc_history_lock);
1099
1100 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1101 __FUNCTION__, cmc_irq, smp_processor_id());
1102
1103 /* SAL spec states this should run w/ interrupts enabled */
1104 local_irq_enable();
1105
1106 /* Get the CMC error record and log it */
1107 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1108
1109 spin_lock(&cmc_history_lock);
1110 if (!cmc_polling_enabled) {
1111 int i, count = 1; /* we know 1 happened now */
1112 unsigned long now = jiffies;
1113
1114 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1115 if (now - cmc_history[i] <= HZ)
1116 count++;
1117 }
1118
1119 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1120 if (count >= CMC_HISTORY_LENGTH) {
1121
1122 cmc_polling_enabled = 1;
1123 spin_unlock(&cmc_history_lock);
1124 /* If we're being hit with CMC interrupts, we won't
1125 * ever execute the schedule_work() below. Need to
1126 * disable CMC interrupts on this processor now.
1127 */
1128 ia64_mca_cmc_vector_disable(NULL);
1129 schedule_work(&cmc_disable_work);
1130
1131 /*
1132 * Corrected errors will still be corrected, but
1133 * make sure there's a log somewhere that indicates
1134 * something is generating more than we can handle.
1135 */
1136 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1137
1138 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1139
1140 /* lock already released, get out now */
1141 return IRQ_HANDLED;
1142 } else {
1143 cmc_history[index++] = now;
1144 if (index == CMC_HISTORY_LENGTH)
1145 index = 0;
1146 }
1147 }
1148 spin_unlock(&cmc_history_lock);
1149 return IRQ_HANDLED;
1150 }
1151
1152 /*
1153 * ia64_mca_cmc_int_caller
1154 *
1155 * Triggered by sw interrupt from CMC polling routine. Calls
1156 * real interrupt handler and either triggers a sw interrupt
1157 * on the next cpu or does cleanup at the end.
1158 *
1159 * Inputs
1160 * interrupt number
1161 * client data arg ptr
1162 * saved registers ptr
1163 * Outputs
1164 * handled
1165 */
1166 static irqreturn_t
1167 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1168 {
1169 static int start_count = -1;
1170 unsigned int cpuid;
1171
1172 cpuid = smp_processor_id();
1173
1174 /* If first cpu, update count */
1175 if (start_count == -1)
1176 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1177
1178 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1179
1180 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1181
1182 if (cpuid < NR_CPUS) {
1183 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1184 } else {
1185 /* If no log record, switch out of polling mode */
1186 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1187
1188 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1189 schedule_work(&cmc_enable_work);
1190 cmc_polling_enabled = 0;
1191
1192 } else {
1193
1194 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1195 }
1196
1197 start_count = -1;
1198 }
1199
1200 return IRQ_HANDLED;
1201 }
1202
1203 /*
1204 * ia64_mca_cmc_poll
1205 *
1206 * Poll for Corrected Machine Checks (CMCs)
1207 *
1208 * Inputs : dummy(unused)
1209 * Outputs : None
1210 *
1211 */
1212 static void
1213 ia64_mca_cmc_poll (unsigned long dummy)
1214 {
1215 /* Trigger a CMC interrupt cascade */
1216 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1217 }
1218
1219 /*
1220 * ia64_mca_cpe_int_caller
1221 *
1222 * Triggered by sw interrupt from CPE polling routine. Calls
1223 * real interrupt handler and either triggers a sw interrupt
1224 * on the next cpu or does cleanup at the end.
1225 *
1226 * Inputs
1227 * interrupt number
1228 * client data arg ptr
1229 * saved registers ptr
1230 * Outputs
1231 * handled
1232 */
1233 #ifdef CONFIG_ACPI
1234
1235 static irqreturn_t
1236 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1237 {
1238 static int start_count = -1;
1239 static int poll_time = MIN_CPE_POLL_INTERVAL;
1240 unsigned int cpuid;
1241
1242 cpuid = smp_processor_id();
1243
1244 /* If first cpu, update count */
1245 if (start_count == -1)
1246 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1247
1248 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1249
1250 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1251
1252 if (cpuid < NR_CPUS) {
1253 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1254 } else {
1255 /*
1256 * If a log was recorded, increase our polling frequency,
1257 * otherwise, backoff or return to interrupt mode.
1258 */
1259 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1260 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1261 } else if (cpe_vector < 0) {
1262 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1263 } else {
1264 poll_time = MIN_CPE_POLL_INTERVAL;
1265
1266 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1267 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1268 cpe_poll_enabled = 0;
1269 }
1270
1271 if (cpe_poll_enabled)
1272 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1273 start_count = -1;
1274 }
1275
1276 return IRQ_HANDLED;
1277 }
1278
1279 /*
1280 * ia64_mca_cpe_poll
1281 *
1282 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1283 * on first cpu, from there it will trickle through all the cpus.
1284 *
1285 * Inputs : dummy(unused)
1286 * Outputs : None
1287 *
1288 */
1289 static void
1290 ia64_mca_cpe_poll (unsigned long dummy)
1291 {
1292 /* Trigger a CPE interrupt cascade */
1293 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1294 }
1295
1296 #endif /* CONFIG_ACPI */
1297
1298 static int
1299 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1300 {
1301 int c;
1302 struct task_struct *g, *t;
1303 if (val != DIE_INIT_MONARCH_PROCESS)
1304 return NOTIFY_DONE;
1305 printk(KERN_ERR "Processes interrupted by INIT -");
1306 for_each_online_cpu(c) {
1307 struct ia64_sal_os_state *s;
1308 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1309 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1310 g = s->prev_task;
1311 if (g) {
1312 if (g->pid)
1313 printk(" %d", g->pid);
1314 else
1315 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1316 }
1317 }
1318 printk("\n\n");
1319 if (read_trylock(&tasklist_lock)) {
1320 do_each_thread (g, t) {
1321 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1322 show_stack(t, NULL);
1323 } while_each_thread (g, t);
1324 read_unlock(&tasklist_lock);
1325 }
1326 return NOTIFY_DONE;
1327 }
1328
1329 /*
1330 * C portion of the OS INIT handler
1331 *
1332 * Called from ia64_os_init_dispatch
1333 *
1334 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1335 * this event. This code is used for both monarch and slave INIT events, see
1336 * sos->monarch.
1337 *
1338 * All INIT events switch to the INIT stack and change the previous process to
1339 * blocked status. If one of the INIT events is the monarch then we are
1340 * probably processing the nmi button/command. Use the monarch cpu to dump all
1341 * the processes. The slave INIT events all spin until the monarch cpu
1342 * returns. We can also get INIT slave events for MCA, in which case the MCA
1343 * process is the monarch.
1344 */
1345
1346 void
1347 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1348 struct ia64_sal_os_state *sos)
1349 {
1350 static atomic_t slaves;
1351 static atomic_t monarchs;
1352 task_t *previous_current;
1353 int cpu = smp_processor_id();
1354
1355 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1356 console_loglevel = 15; /* make sure printks make it to console */
1357
1358 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1359 sos->proc_state_param, cpu, sos->monarch);
1360 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1361
1362 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1363 sos->os_status = IA64_INIT_RESUME;
1364
1365 /* FIXME: Workaround for broken proms that drive all INIT events as
1366 * slaves. The last slave that enters is promoted to be a monarch.
1367 * Remove this code in September 2006, that gives platforms a year to
1368 * fix their proms and get their customers updated.
1369 */
1370 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1371 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1372 __FUNCTION__, cpu);
1373 atomic_dec(&slaves);
1374 sos->monarch = 1;
1375 }
1376
1377 /* FIXME: Workaround for broken proms that drive all INIT events as
1378 * monarchs. Second and subsequent monarchs are demoted to slaves.
1379 * Remove this code in September 2006, that gives platforms a year to
1380 * fix their proms and get their customers updated.
1381 */
1382 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1383 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1384 __FUNCTION__, cpu);
1385 atomic_dec(&monarchs);
1386 sos->monarch = 0;
1387 }
1388
1389 if (!sos->monarch) {
1390 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1391 while (monarch_cpu == -1)
1392 cpu_relax(); /* spin until monarch enters */
1393 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1394 == NOTIFY_STOP)
1395 ia64_mca_spin(__FUNCTION__);
1396 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1397 == NOTIFY_STOP)
1398 ia64_mca_spin(__FUNCTION__);
1399 while (monarch_cpu != -1)
1400 cpu_relax(); /* spin until monarch leaves */
1401 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1402 == NOTIFY_STOP)
1403 ia64_mca_spin(__FUNCTION__);
1404 printk("Slave on cpu %d returning to normal service.\n", cpu);
1405 set_curr_task(cpu, previous_current);
1406 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1407 atomic_dec(&slaves);
1408 return;
1409 }
1410
1411 monarch_cpu = cpu;
1412 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1413 == NOTIFY_STOP)
1414 ia64_mca_spin(__FUNCTION__);
1415
1416 /*
1417 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1418 * generated via the BMC's command-line interface, but since the console is on the
1419 * same serial line, the user will need some time to switch out of the BMC before
1420 * the dump begins.
1421 */
1422 printk("Delaying for 5 seconds...\n");
1423 udelay(5*1000000);
1424 ia64_wait_for_slaves(cpu);
1425 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1426 * to default_monarch_init_process() above and just print all the
1427 * tasks.
1428 */
1429 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1430 == NOTIFY_STOP)
1431 ia64_mca_spin(__FUNCTION__);
1432 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1433 == NOTIFY_STOP)
1434 ia64_mca_spin(__FUNCTION__);
1435 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1436 atomic_dec(&monarchs);
1437 set_curr_task(cpu, previous_current);
1438 monarch_cpu = -1;
1439 return;
1440 }
1441
1442 static int __init
1443 ia64_mca_disable_cpe_polling(char *str)
1444 {
1445 cpe_poll_enabled = 0;
1446 return 1;
1447 }
1448
1449 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1450
1451 static struct irqaction cmci_irqaction = {
1452 .handler = ia64_mca_cmc_int_handler,
1453 .flags = SA_INTERRUPT,
1454 .name = "cmc_hndlr"
1455 };
1456
1457 static struct irqaction cmcp_irqaction = {
1458 .handler = ia64_mca_cmc_int_caller,
1459 .flags = SA_INTERRUPT,
1460 .name = "cmc_poll"
1461 };
1462
1463 static struct irqaction mca_rdzv_irqaction = {
1464 .handler = ia64_mca_rendez_int_handler,
1465 .flags = SA_INTERRUPT,
1466 .name = "mca_rdzv"
1467 };
1468
1469 static struct irqaction mca_wkup_irqaction = {
1470 .handler = ia64_mca_wakeup_int_handler,
1471 .flags = SA_INTERRUPT,
1472 .name = "mca_wkup"
1473 };
1474
1475 #ifdef CONFIG_ACPI
1476 static struct irqaction mca_cpe_irqaction = {
1477 .handler = ia64_mca_cpe_int_handler,
1478 .flags = SA_INTERRUPT,
1479 .name = "cpe_hndlr"
1480 };
1481
1482 static struct irqaction mca_cpep_irqaction = {
1483 .handler = ia64_mca_cpe_int_caller,
1484 .flags = SA_INTERRUPT,
1485 .name = "cpe_poll"
1486 };
1487 #endif /* CONFIG_ACPI */
1488
1489 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1490 * these stacks can never sleep, they cannot return from the kernel to user
1491 * space, they do not appear in a normal ps listing. So there is no need to
1492 * format most of the fields.
1493 */
1494
1495 static void __cpuinit
1496 format_mca_init_stack(void *mca_data, unsigned long offset,
1497 const char *type, int cpu)
1498 {
1499 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1500 struct thread_info *ti;
1501 memset(p, 0, KERNEL_STACK_SIZE);
1502 ti = task_thread_info(p);
1503 ti->flags = _TIF_MCA_INIT;
1504 ti->preempt_count = 1;
1505 ti->task = p;
1506 ti->cpu = cpu;
1507 p->thread_info = ti;
1508 p->state = TASK_UNINTERRUPTIBLE;
1509 cpu_set(cpu, p->cpus_allowed);
1510 INIT_LIST_HEAD(&p->tasks);
1511 p->parent = p->real_parent = p->group_leader = p;
1512 INIT_LIST_HEAD(&p->children);
1513 INIT_LIST_HEAD(&p->sibling);
1514 strncpy(p->comm, type, sizeof(p->comm)-1);
1515 }
1516
1517 /* Do per-CPU MCA-related initialization. */
1518
1519 void __cpuinit
1520 ia64_mca_cpu_init(void *cpu_data)
1521 {
1522 void *pal_vaddr;
1523 static int first_time = 1;
1524
1525 if (first_time) {
1526 void *mca_data;
1527 int cpu;
1528
1529 first_time = 0;
1530 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1531 * NR_CPUS + KERNEL_STACK_SIZE);
1532 mca_data = (void *)(((unsigned long)mca_data +
1533 KERNEL_STACK_SIZE - 1) &
1534 (-KERNEL_STACK_SIZE));
1535 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1536 format_mca_init_stack(mca_data,
1537 offsetof(struct ia64_mca_cpu, mca_stack),
1538 "MCA", cpu);
1539 format_mca_init_stack(mca_data,
1540 offsetof(struct ia64_mca_cpu, init_stack),
1541 "INIT", cpu);
1542 __per_cpu_mca[cpu] = __pa(mca_data);
1543 mca_data += sizeof(struct ia64_mca_cpu);
1544 }
1545 }
1546
1547 /*
1548 * The MCA info structure was allocated earlier and its
1549 * physical address saved in __per_cpu_mca[cpu]. Copy that
1550 * address * to ia64_mca_data so we can access it as a per-CPU
1551 * variable.
1552 */
1553 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1554
1555 /*
1556 * Stash away a copy of the PTE needed to map the per-CPU page.
1557 * We may need it during MCA recovery.
1558 */
1559 __get_cpu_var(ia64_mca_per_cpu_pte) =
1560 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1561
1562 /*
1563 * Also, stash away a copy of the PAL address and the PTE
1564 * needed to map it.
1565 */
1566 pal_vaddr = efi_get_pal_addr();
1567 if (!pal_vaddr)
1568 return;
1569 __get_cpu_var(ia64_mca_pal_base) =
1570 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1571 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1572 PAGE_KERNEL));
1573 }
1574
1575 /*
1576 * ia64_mca_init
1577 *
1578 * Do all the system level mca specific initialization.
1579 *
1580 * 1. Register spinloop and wakeup request interrupt vectors
1581 *
1582 * 2. Register OS_MCA handler entry point
1583 *
1584 * 3. Register OS_INIT handler entry point
1585 *
1586 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1587 *
1588 * Note that this initialization is done very early before some kernel
1589 * services are available.
1590 *
1591 * Inputs : None
1592 *
1593 * Outputs : None
1594 */
1595 void __init
1596 ia64_mca_init(void)
1597 {
1598 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1599 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1600 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1601 int i;
1602 s64 rc;
1603 struct ia64_sal_retval isrv;
1604 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1605 static struct notifier_block default_init_monarch_nb = {
1606 .notifier_call = default_monarch_init_process,
1607 .priority = 0/* we need to notified last */
1608 };
1609
1610 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1611
1612 /* Clear the Rendez checkin flag for all cpus */
1613 for(i = 0 ; i < NR_CPUS; i++)
1614 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1615
1616 /*
1617 * Register the rendezvous spinloop and wakeup mechanism with SAL
1618 */
1619
1620 /* Register the rendezvous interrupt vector with SAL */
1621 while (1) {
1622 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1623 SAL_MC_PARAM_MECHANISM_INT,
1624 IA64_MCA_RENDEZ_VECTOR,
1625 timeout,
1626 SAL_MC_PARAM_RZ_ALWAYS);
1627 rc = isrv.status;
1628 if (rc == 0)
1629 break;
1630 if (rc == -2) {
1631 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1632 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1633 timeout = isrv.v0;
1634 continue;
1635 }
1636 printk(KERN_ERR "Failed to register rendezvous interrupt "
1637 "with SAL (status %ld)\n", rc);
1638 return;
1639 }
1640
1641 /* Register the wakeup interrupt vector with SAL */
1642 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1643 SAL_MC_PARAM_MECHANISM_INT,
1644 IA64_MCA_WAKEUP_VECTOR,
1645 0, 0);
1646 rc = isrv.status;
1647 if (rc) {
1648 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1649 "(status %ld)\n", rc);
1650 return;
1651 }
1652
1653 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1654
1655 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1656 /*
1657 * XXX - disable SAL checksum by setting size to 0; should be
1658 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1659 */
1660 ia64_mc_info.imi_mca_handler_size = 0;
1661
1662 /* Register the os mca handler with SAL */
1663 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1664 ia64_mc_info.imi_mca_handler,
1665 ia64_tpa(mca_hldlr_ptr->gp),
1666 ia64_mc_info.imi_mca_handler_size,
1667 0, 0, 0)))
1668 {
1669 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1670 "(status %ld)\n", rc);
1671 return;
1672 }
1673
1674 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1675 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1676
1677 /*
1678 * XXX - disable SAL checksum by setting size to 0, should be
1679 * size of the actual init handler in mca_asm.S.
1680 */
1681 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1682 ia64_mc_info.imi_monarch_init_handler_size = 0;
1683 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1684 ia64_mc_info.imi_slave_init_handler_size = 0;
1685
1686 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1687 ia64_mc_info.imi_monarch_init_handler);
1688
1689 /* Register the os init handler with SAL */
1690 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1691 ia64_mc_info.imi_monarch_init_handler,
1692 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1693 ia64_mc_info.imi_monarch_init_handler_size,
1694 ia64_mc_info.imi_slave_init_handler,
1695 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1696 ia64_mc_info.imi_slave_init_handler_size)))
1697 {
1698 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1699 "(status %ld)\n", rc);
1700 return;
1701 }
1702 if (register_die_notifier(&default_init_monarch_nb)) {
1703 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1704 return;
1705 }
1706
1707 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1708
1709 /*
1710 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1711 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1712 */
1713 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1714 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1715 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1716
1717 /* Setup the MCA rendezvous interrupt vector */
1718 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1719
1720 /* Setup the MCA wakeup interrupt vector */
1721 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1722
1723 #ifdef CONFIG_ACPI
1724 /* Setup the CPEI/P handler */
1725 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1726 #endif
1727
1728 /* Initialize the areas set aside by the OS to buffer the
1729 * platform/processor error states for MCA/INIT/CMC
1730 * handling.
1731 */
1732 ia64_log_init(SAL_INFO_TYPE_MCA);
1733 ia64_log_init(SAL_INFO_TYPE_INIT);
1734 ia64_log_init(SAL_INFO_TYPE_CMC);
1735 ia64_log_init(SAL_INFO_TYPE_CPE);
1736
1737 mca_init = 1;
1738 printk(KERN_INFO "MCA related initialization done\n");
1739 }
1740
1741 /*
1742 * ia64_mca_late_init
1743 *
1744 * Opportunity to setup things that require initialization later
1745 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1746 * platform doesn't support an interrupt driven mechanism.
1747 *
1748 * Inputs : None
1749 * Outputs : Status
1750 */
1751 static int __init
1752 ia64_mca_late_init(void)
1753 {
1754 if (!mca_init)
1755 return 0;
1756
1757 /* Setup the CMCI/P vector and handler */
1758 init_timer(&cmc_poll_timer);
1759 cmc_poll_timer.function = ia64_mca_cmc_poll;
1760
1761 /* Unmask/enable the vector */
1762 cmc_polling_enabled = 0;
1763 schedule_work(&cmc_enable_work);
1764
1765 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1766
1767 #ifdef CONFIG_ACPI
1768 /* Setup the CPEI/P vector and handler */
1769 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1770 init_timer(&cpe_poll_timer);
1771 cpe_poll_timer.function = ia64_mca_cpe_poll;
1772
1773 {
1774 irq_desc_t *desc;
1775 unsigned int irq;
1776
1777 if (cpe_vector >= 0) {
1778 /* If platform supports CPEI, enable the irq. */
1779 cpe_poll_enabled = 0;
1780 for (irq = 0; irq < NR_IRQS; ++irq)
1781 if (irq_to_vector(irq) == cpe_vector) {
1782 desc = irq_descp(irq);
1783 desc->status |= IRQ_PER_CPU;
1784 setup_irq(irq, &mca_cpe_irqaction);
1785 ia64_cpe_irq = irq;
1786 }
1787 ia64_mca_register_cpev(cpe_vector);
1788 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1789 } else {
1790 /* If platform doesn't support CPEI, get the timer going. */
1791 if (cpe_poll_enabled) {
1792 ia64_mca_cpe_poll(0UL);
1793 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1794 }
1795 }
1796 }
1797 #endif
1798
1799 return 0;
1800 }
1801
1802 device_initcall(ia64_mca_late_init);