]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kernel/mca.c
Merge nommu tree
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85
86 #include "mca_drv.h"
87 #include "entry.h"
88
89 #if defined(IA64_MCA_DEBUG_INFO)
90 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
91 #else
92 # define IA64_MCA_DEBUG(fmt...)
93 #endif
94
95 /* Used by mca_asm.S */
96 u32 ia64_mca_serialize;
97 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
98 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
100 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
101
102 unsigned long __per_cpu_mca[NR_CPUS];
103
104 /* In mca_asm.S */
105 extern void ia64_os_init_dispatch_monarch (void);
106 extern void ia64_os_init_dispatch_slave (void);
107
108 static int monarch_cpu = -1;
109
110 static ia64_mc_info_t ia64_mc_info;
111
112 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
113 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
114 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
115 #define CPE_HISTORY_LENGTH 5
116 #define CMC_HISTORY_LENGTH 5
117
118 static struct timer_list cpe_poll_timer;
119 static struct timer_list cmc_poll_timer;
120 /*
121 * This variable tells whether we are currently in polling mode.
122 * Start with this in the wrong state so we won't play w/ timers
123 * before the system is ready.
124 */
125 static int cmc_polling_enabled = 1;
126
127 /*
128 * Clearing this variable prevents CPE polling from getting activated
129 * in mca_late_init. Use it if your system doesn't provide a CPEI,
130 * but encounters problems retrieving CPE logs. This should only be
131 * necessary for debugging.
132 */
133 static int cpe_poll_enabled = 1;
134
135 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
136
137 static int mca_init __initdata;
138
139
140 static void inline
141 ia64_mca_spin(const char *func)
142 {
143 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
144 while (1)
145 cpu_relax();
146 }
147 /*
148 * IA64_MCA log support
149 */
150 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
151 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
152
153 typedef struct ia64_state_log_s
154 {
155 spinlock_t isl_lock;
156 int isl_index;
157 unsigned long isl_count;
158 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
159 } ia64_state_log_t;
160
161 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
162
163 #define IA64_LOG_ALLOCATE(it, size) \
164 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
165 (ia64_err_rec_t *)alloc_bootmem(size); \
166 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
167 (ia64_err_rec_t *)alloc_bootmem(size);}
168 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
169 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
170 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
171 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
172 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
173 #define IA64_LOG_INDEX_INC(it) \
174 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
175 ia64_state_log[it].isl_count++;}
176 #define IA64_LOG_INDEX_DEC(it) \
177 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
178 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
179 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
180 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
181
182 /*
183 * ia64_log_init
184 * Reset the OS ia64 log buffer
185 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
186 * Outputs : None
187 */
188 static void __init
189 ia64_log_init(int sal_info_type)
190 {
191 u64 max_size = 0;
192
193 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
194 IA64_LOG_LOCK_INIT(sal_info_type);
195
196 // SAL will tell us the maximum size of any error record of this type
197 max_size = ia64_sal_get_state_info_size(sal_info_type);
198 if (!max_size)
199 /* alloc_bootmem() doesn't like zero-sized allocations! */
200 return;
201
202 // set up OS data structures to hold error info
203 IA64_LOG_ALLOCATE(sal_info_type, max_size);
204 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
205 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
206 }
207
208 /*
209 * ia64_log_get
210 *
211 * Get the current MCA log from SAL and copy it into the OS log buffer.
212 *
213 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
214 * irq_safe whether you can use printk at this point
215 * Outputs : size (total record length)
216 * *buffer (ptr to error record)
217 *
218 */
219 static u64
220 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
221 {
222 sal_log_record_header_t *log_buffer;
223 u64 total_len = 0;
224 int s;
225
226 IA64_LOG_LOCK(sal_info_type);
227
228 /* Get the process state information */
229 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
230
231 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
232
233 if (total_len) {
234 IA64_LOG_INDEX_INC(sal_info_type);
235 IA64_LOG_UNLOCK(sal_info_type);
236 if (irq_safe) {
237 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
238 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
239 }
240 *buffer = (u8 *) log_buffer;
241 return total_len;
242 } else {
243 IA64_LOG_UNLOCK(sal_info_type);
244 return 0;
245 }
246 }
247
248 /*
249 * ia64_mca_log_sal_error_record
250 *
251 * This function retrieves a specified error record type from SAL
252 * and wakes up any processes waiting for error records.
253 *
254 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
255 * FIXME: remove MCA and irq_safe.
256 */
257 static void
258 ia64_mca_log_sal_error_record(int sal_info_type)
259 {
260 u8 *buffer;
261 sal_log_record_header_t *rh;
262 u64 size;
263 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
264 #ifdef IA64_MCA_DEBUG_INFO
265 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
266 #endif
267
268 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
269 if (!size)
270 return;
271
272 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
273
274 if (irq_safe)
275 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
276 smp_processor_id(),
277 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
278
279 /* Clear logs from corrected errors in case there's no user-level logger */
280 rh = (sal_log_record_header_t *)buffer;
281 if (rh->severity == sal_log_severity_corrected)
282 ia64_sal_clear_state_info(sal_info_type);
283 }
284
285 /*
286 * search_mca_table
287 * See if the MCA surfaced in an instruction range
288 * that has been tagged as recoverable.
289 *
290 * Inputs
291 * first First address range to check
292 * last Last address range to check
293 * ip Instruction pointer, address we are looking for
294 *
295 * Return value:
296 * 1 on Success (in the table)/ 0 on Failure (not in the table)
297 */
298 int
299 search_mca_table (const struct mca_table_entry *first,
300 const struct mca_table_entry *last,
301 unsigned long ip)
302 {
303 const struct mca_table_entry *curr;
304 u64 curr_start, curr_end;
305
306 curr = first;
307 while (curr <= last) {
308 curr_start = (u64) &curr->start_addr + curr->start_addr;
309 curr_end = (u64) &curr->end_addr + curr->end_addr;
310
311 if ((ip >= curr_start) && (ip <= curr_end)) {
312 return 1;
313 }
314 curr++;
315 }
316 return 0;
317 }
318
319 /* Given an address, look for it in the mca tables. */
320 int mca_recover_range(unsigned long addr)
321 {
322 extern struct mca_table_entry __start___mca_table[];
323 extern struct mca_table_entry __stop___mca_table[];
324
325 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
326 }
327 EXPORT_SYMBOL_GPL(mca_recover_range);
328
329 #ifdef CONFIG_ACPI
330
331 int cpe_vector = -1;
332 int ia64_cpe_irq = -1;
333
334 static irqreturn_t
335 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
336 {
337 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
338 static int index;
339 static DEFINE_SPINLOCK(cpe_history_lock);
340
341 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
342 __FUNCTION__, cpe_irq, smp_processor_id());
343
344 /* SAL spec states this should run w/ interrupts enabled */
345 local_irq_enable();
346
347 /* Get the CPE error record and log it */
348 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
349
350 spin_lock(&cpe_history_lock);
351 if (!cpe_poll_enabled && cpe_vector >= 0) {
352
353 int i, count = 1; /* we know 1 happened now */
354 unsigned long now = jiffies;
355
356 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
357 if (now - cpe_history[i] <= HZ)
358 count++;
359 }
360
361 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
362 if (count >= CPE_HISTORY_LENGTH) {
363
364 cpe_poll_enabled = 1;
365 spin_unlock(&cpe_history_lock);
366 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
367
368 /*
369 * Corrected errors will still be corrected, but
370 * make sure there's a log somewhere that indicates
371 * something is generating more than we can handle.
372 */
373 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
374
375 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
376
377 /* lock already released, get out now */
378 return IRQ_HANDLED;
379 } else {
380 cpe_history[index++] = now;
381 if (index == CPE_HISTORY_LENGTH)
382 index = 0;
383 }
384 }
385 spin_unlock(&cpe_history_lock);
386 return IRQ_HANDLED;
387 }
388
389 #endif /* CONFIG_ACPI */
390
391 #ifdef CONFIG_ACPI
392 /*
393 * ia64_mca_register_cpev
394 *
395 * Register the corrected platform error vector with SAL.
396 *
397 * Inputs
398 * cpev Corrected Platform Error Vector number
399 *
400 * Outputs
401 * None
402 */
403 static void __init
404 ia64_mca_register_cpev (int cpev)
405 {
406 /* Register the CPE interrupt vector with SAL */
407 struct ia64_sal_retval isrv;
408
409 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
410 if (isrv.status) {
411 printk(KERN_ERR "Failed to register Corrected Platform "
412 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
413 return;
414 }
415
416 IA64_MCA_DEBUG("%s: corrected platform error "
417 "vector %#x registered\n", __FUNCTION__, cpev);
418 }
419 #endif /* CONFIG_ACPI */
420
421 /*
422 * ia64_mca_cmc_vector_setup
423 *
424 * Setup the corrected machine check vector register in the processor.
425 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
426 * This function is invoked on a per-processor basis.
427 *
428 * Inputs
429 * None
430 *
431 * Outputs
432 * None
433 */
434 void __cpuinit
435 ia64_mca_cmc_vector_setup (void)
436 {
437 cmcv_reg_t cmcv;
438
439 cmcv.cmcv_regval = 0;
440 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
441 cmcv.cmcv_vector = IA64_CMC_VECTOR;
442 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
443
444 IA64_MCA_DEBUG("%s: CPU %d corrected "
445 "machine check vector %#x registered.\n",
446 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
447
448 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
449 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
450 }
451
452 /*
453 * ia64_mca_cmc_vector_disable
454 *
455 * Mask the corrected machine check vector register in the processor.
456 * This function is invoked on a per-processor basis.
457 *
458 * Inputs
459 * dummy(unused)
460 *
461 * Outputs
462 * None
463 */
464 static void
465 ia64_mca_cmc_vector_disable (void *dummy)
466 {
467 cmcv_reg_t cmcv;
468
469 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
470
471 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
472 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
473
474 IA64_MCA_DEBUG("%s: CPU %d corrected "
475 "machine check vector %#x disabled.\n",
476 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
477 }
478
479 /*
480 * ia64_mca_cmc_vector_enable
481 *
482 * Unmask the corrected machine check vector register in the processor.
483 * This function is invoked on a per-processor basis.
484 *
485 * Inputs
486 * dummy(unused)
487 *
488 * Outputs
489 * None
490 */
491 static void
492 ia64_mca_cmc_vector_enable (void *dummy)
493 {
494 cmcv_reg_t cmcv;
495
496 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
497
498 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
499 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
500
501 IA64_MCA_DEBUG("%s: CPU %d corrected "
502 "machine check vector %#x enabled.\n",
503 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
504 }
505
506 /*
507 * ia64_mca_cmc_vector_disable_keventd
508 *
509 * Called via keventd (smp_call_function() is not safe in interrupt context) to
510 * disable the cmc interrupt vector.
511 */
512 static void
513 ia64_mca_cmc_vector_disable_keventd(void *unused)
514 {
515 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
516 }
517
518 /*
519 * ia64_mca_cmc_vector_enable_keventd
520 *
521 * Called via keventd (smp_call_function() is not safe in interrupt context) to
522 * enable the cmc interrupt vector.
523 */
524 static void
525 ia64_mca_cmc_vector_enable_keventd(void *unused)
526 {
527 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
528 }
529
530 /*
531 * ia64_mca_wakeup
532 *
533 * Send an inter-cpu interrupt to wake-up a particular cpu
534 * and mark that cpu to be out of rendez.
535 *
536 * Inputs : cpuid
537 * Outputs : None
538 */
539 static void
540 ia64_mca_wakeup(int cpu)
541 {
542 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
543 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
544
545 }
546
547 /*
548 * ia64_mca_wakeup_all
549 *
550 * Wakeup all the cpus which have rendez'ed previously.
551 *
552 * Inputs : None
553 * Outputs : None
554 */
555 static void
556 ia64_mca_wakeup_all(void)
557 {
558 int cpu;
559
560 /* Clear the Rendez checkin flag for all cpus */
561 for_each_online_cpu(cpu) {
562 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
563 ia64_mca_wakeup(cpu);
564 }
565
566 }
567
568 /*
569 * ia64_mca_rendez_interrupt_handler
570 *
571 * This is handler used to put slave processors into spinloop
572 * while the monarch processor does the mca handling and later
573 * wake each slave up once the monarch is done.
574 *
575 * Inputs : None
576 * Outputs : None
577 */
578 static irqreturn_t
579 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
580 {
581 unsigned long flags;
582 int cpu = smp_processor_id();
583
584 /* Mask all interrupts */
585 local_irq_save(flags);
586 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
587 == NOTIFY_STOP)
588 ia64_mca_spin(__FUNCTION__);
589
590 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
591 /* Register with the SAL monarch that the slave has
592 * reached SAL
593 */
594 ia64_sal_mc_rendez();
595
596 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
597 == NOTIFY_STOP)
598 ia64_mca_spin(__FUNCTION__);
599
600 /* Wait for the monarch cpu to exit. */
601 while (monarch_cpu != -1)
602 cpu_relax(); /* spin until monarch leaves */
603
604 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
605 == NOTIFY_STOP)
606 ia64_mca_spin(__FUNCTION__);
607
608 /* Enable all interrupts */
609 local_irq_restore(flags);
610 return IRQ_HANDLED;
611 }
612
613 /*
614 * ia64_mca_wakeup_int_handler
615 *
616 * The interrupt handler for processing the inter-cpu interrupt to the
617 * slave cpu which was spinning in the rendez loop.
618 * Since this spinning is done by turning off the interrupts and
619 * polling on the wakeup-interrupt bit in the IRR, there is
620 * nothing useful to be done in the handler.
621 *
622 * Inputs : wakeup_irq (Wakeup-interrupt bit)
623 * arg (Interrupt handler specific argument)
624 * ptregs (Exception frame at the time of the interrupt)
625 * Outputs : None
626 *
627 */
628 static irqreturn_t
629 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
630 {
631 return IRQ_HANDLED;
632 }
633
634 /* Function pointer for extra MCA recovery */
635 int (*ia64_mca_ucmc_extension)
636 (void*,struct ia64_sal_os_state*)
637 = NULL;
638
639 int
640 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
641 {
642 if (ia64_mca_ucmc_extension)
643 return 1;
644
645 ia64_mca_ucmc_extension = fn;
646 return 0;
647 }
648
649 void
650 ia64_unreg_MCA_extension(void)
651 {
652 if (ia64_mca_ucmc_extension)
653 ia64_mca_ucmc_extension = NULL;
654 }
655
656 EXPORT_SYMBOL(ia64_reg_MCA_extension);
657 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
658
659
660 static inline void
661 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
662 {
663 u64 fslot, tslot, nat;
664 *tr = *fr;
665 fslot = ((unsigned long)fr >> 3) & 63;
666 tslot = ((unsigned long)tr >> 3) & 63;
667 *tnat &= ~(1UL << tslot);
668 nat = (fnat >> fslot) & 1;
669 *tnat |= (nat << tslot);
670 }
671
672 /* Change the comm field on the MCA/INT task to include the pid that
673 * was interrupted, it makes for easier debugging. If that pid was 0
674 * (swapper or nested MCA/INIT) then use the start of the previous comm
675 * field suffixed with its cpu.
676 */
677
678 static void
679 ia64_mca_modify_comm(const task_t *previous_current)
680 {
681 char *p, comm[sizeof(current->comm)];
682 if (previous_current->pid)
683 snprintf(comm, sizeof(comm), "%s %d",
684 current->comm, previous_current->pid);
685 else {
686 int l;
687 if ((p = strchr(previous_current->comm, ' ')))
688 l = p - previous_current->comm;
689 else
690 l = strlen(previous_current->comm);
691 snprintf(comm, sizeof(comm), "%s %*s %d",
692 current->comm, l, previous_current->comm,
693 task_thread_info(previous_current)->cpu);
694 }
695 memcpy(current->comm, comm, sizeof(current->comm));
696 }
697
698 /* On entry to this routine, we are running on the per cpu stack, see
699 * mca_asm.h. The original stack has not been touched by this event. Some of
700 * the original stack's registers will be in the RBS on this stack. This stack
701 * also contains a partial pt_regs and switch_stack, the rest of the data is in
702 * PAL minstate.
703 *
704 * The first thing to do is modify the original stack to look like a blocked
705 * task so we can run backtrace on the original task. Also mark the per cpu
706 * stack as current to ensure that we use the correct task state, it also means
707 * that we can do backtrace on the MCA/INIT handler code itself.
708 */
709
710 static task_t *
711 ia64_mca_modify_original_stack(struct pt_regs *regs,
712 const struct switch_stack *sw,
713 struct ia64_sal_os_state *sos,
714 const char *type)
715 {
716 char *p;
717 ia64_va va;
718 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
719 const pal_min_state_area_t *ms = sos->pal_min_state;
720 task_t *previous_current;
721 struct pt_regs *old_regs;
722 struct switch_stack *old_sw;
723 unsigned size = sizeof(struct pt_regs) +
724 sizeof(struct switch_stack) + 16;
725 u64 *old_bspstore, *old_bsp;
726 u64 *new_bspstore, *new_bsp;
727 u64 old_unat, old_rnat, new_rnat, nat;
728 u64 slots, loadrs = regs->loadrs;
729 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
730 u64 ar_bspstore = regs->ar_bspstore;
731 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
732 const u64 *bank;
733 const char *msg;
734 int cpu = smp_processor_id();
735
736 previous_current = curr_task(cpu);
737 set_curr_task(cpu, current);
738 if ((p = strchr(current->comm, ' ')))
739 *p = '\0';
740
741 /* Best effort attempt to cope with MCA/INIT delivered while in
742 * physical mode.
743 */
744 regs->cr_ipsr = ms->pmsa_ipsr;
745 if (ia64_psr(regs)->dt == 0) {
746 va.l = r12;
747 if (va.f.reg == 0) {
748 va.f.reg = 7;
749 r12 = va.l;
750 }
751 va.l = r13;
752 if (va.f.reg == 0) {
753 va.f.reg = 7;
754 r13 = va.l;
755 }
756 }
757 if (ia64_psr(regs)->rt == 0) {
758 va.l = ar_bspstore;
759 if (va.f.reg == 0) {
760 va.f.reg = 7;
761 ar_bspstore = va.l;
762 }
763 va.l = ar_bsp;
764 if (va.f.reg == 0) {
765 va.f.reg = 7;
766 ar_bsp = va.l;
767 }
768 }
769
770 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
771 * have been copied to the old stack, the old stack may fail the
772 * validation tests below. So ia64_old_stack() must restore the dirty
773 * registers from the new stack. The old and new bspstore probably
774 * have different alignments, so loadrs calculated on the old bsp
775 * cannot be used to restore from the new bsp. Calculate a suitable
776 * loadrs for the new stack and save it in the new pt_regs, where
777 * ia64_old_stack() can get it.
778 */
779 old_bspstore = (u64 *)ar_bspstore;
780 old_bsp = (u64 *)ar_bsp;
781 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
782 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
783 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
784 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
785
786 /* Verify the previous stack state before we change it */
787 if (user_mode(regs)) {
788 msg = "occurred in user space";
789 /* previous_current is guaranteed to be valid when the task was
790 * in user space, so ...
791 */
792 ia64_mca_modify_comm(previous_current);
793 goto no_mod;
794 }
795
796 if (!mca_recover_range(ms->pmsa_iip)) {
797 if (r13 != sos->prev_IA64_KR_CURRENT) {
798 msg = "inconsistent previous current and r13";
799 goto no_mod;
800 }
801 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
802 msg = "inconsistent r12 and r13";
803 goto no_mod;
804 }
805 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
806 msg = "inconsistent ar.bspstore and r13";
807 goto no_mod;
808 }
809 va.p = old_bspstore;
810 if (va.f.reg < 5) {
811 msg = "old_bspstore is in the wrong region";
812 goto no_mod;
813 }
814 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
815 msg = "inconsistent ar.bsp and r13";
816 goto no_mod;
817 }
818 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
819 if (ar_bspstore + size > r12) {
820 msg = "no room for blocked state";
821 goto no_mod;
822 }
823 }
824
825 ia64_mca_modify_comm(previous_current);
826
827 /* Make the original task look blocked. First stack a struct pt_regs,
828 * describing the state at the time of interrupt. mca_asm.S built a
829 * partial pt_regs, copy it and fill in the blanks using minstate.
830 */
831 p = (char *)r12 - sizeof(*regs);
832 old_regs = (struct pt_regs *)p;
833 memcpy(old_regs, regs, sizeof(*regs));
834 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
835 * pmsa_{xip,xpsr,xfs}
836 */
837 if (ia64_psr(regs)->ic) {
838 old_regs->cr_iip = ms->pmsa_iip;
839 old_regs->cr_ipsr = ms->pmsa_ipsr;
840 old_regs->cr_ifs = ms->pmsa_ifs;
841 } else {
842 old_regs->cr_iip = ms->pmsa_xip;
843 old_regs->cr_ipsr = ms->pmsa_xpsr;
844 old_regs->cr_ifs = ms->pmsa_xfs;
845 }
846 old_regs->pr = ms->pmsa_pr;
847 old_regs->b0 = ms->pmsa_br0;
848 old_regs->loadrs = loadrs;
849 old_regs->ar_rsc = ms->pmsa_rsc;
850 old_unat = old_regs->ar_unat;
851 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
852 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
853 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
854 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
855 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
856 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
857 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
858 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
859 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
860 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
861 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
862 if (ia64_psr(old_regs)->bn)
863 bank = ms->pmsa_bank1_gr;
864 else
865 bank = ms->pmsa_bank0_gr;
866 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
867 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
868 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
869 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
870 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
871 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
872 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
873 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
874 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
875 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
876 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
877 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
878 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
879 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
880 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
881 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
882
883 /* Next stack a struct switch_stack. mca_asm.S built a partial
884 * switch_stack, copy it and fill in the blanks using pt_regs and
885 * minstate.
886 *
887 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
888 * ar.pfs is set to 0.
889 *
890 * unwind.c::unw_unwind() does special processing for interrupt frames.
891 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
892 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
893 * that this is documented, of course. Set PRED_NON_SYSCALL in the
894 * switch_stack on the original stack so it will unwind correctly when
895 * unwind.c reads pt_regs.
896 *
897 * thread.ksp is updated to point to the synthesized switch_stack.
898 */
899 p -= sizeof(struct switch_stack);
900 old_sw = (struct switch_stack *)p;
901 memcpy(old_sw, sw, sizeof(*sw));
902 old_sw->caller_unat = old_unat;
903 old_sw->ar_fpsr = old_regs->ar_fpsr;
904 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
905 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
906 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
907 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
908 old_sw->b0 = (u64)ia64_leave_kernel;
909 old_sw->b1 = ms->pmsa_br1;
910 old_sw->ar_pfs = 0;
911 old_sw->ar_unat = old_unat;
912 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
913 previous_current->thread.ksp = (u64)p - 16;
914
915 /* Finally copy the original stack's registers back to its RBS.
916 * Registers from ar.bspstore through ar.bsp at the time of the event
917 * are in the current RBS, copy them back to the original stack. The
918 * copy must be done register by register because the original bspstore
919 * and the current one have different alignments, so the saved RNAT
920 * data occurs at different places.
921 *
922 * mca_asm does cover, so the old_bsp already includes all registers at
923 * the time of MCA/INIT. It also does flushrs, so all registers before
924 * this function have been written to backing store on the MCA/INIT
925 * stack.
926 */
927 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
928 old_rnat = regs->ar_rnat;
929 while (slots--) {
930 if (ia64_rse_is_rnat_slot(new_bspstore)) {
931 new_rnat = ia64_get_rnat(new_bspstore++);
932 }
933 if (ia64_rse_is_rnat_slot(old_bspstore)) {
934 *old_bspstore++ = old_rnat;
935 old_rnat = 0;
936 }
937 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
938 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
939 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
940 *old_bspstore++ = *new_bspstore++;
941 }
942 old_sw->ar_bspstore = (unsigned long)old_bspstore;
943 old_sw->ar_rnat = old_rnat;
944
945 sos->prev_task = previous_current;
946 return previous_current;
947
948 no_mod:
949 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
950 smp_processor_id(), type, msg);
951 return previous_current;
952 }
953
954 /* The monarch/slave interaction is based on monarch_cpu and requires that all
955 * slaves have entered rendezvous before the monarch leaves. If any cpu has
956 * not entered rendezvous yet then wait a bit. The assumption is that any
957 * slave that has not rendezvoused after a reasonable time is never going to do
958 * so. In this context, slave includes cpus that respond to the MCA rendezvous
959 * interrupt, as well as cpus that receive the INIT slave event.
960 */
961
962 static void
963 ia64_wait_for_slaves(int monarch)
964 {
965 int c, wait = 0, missing = 0;
966 for_each_online_cpu(c) {
967 if (c == monarch)
968 continue;
969 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
970 udelay(1000); /* short wait first */
971 wait = 1;
972 break;
973 }
974 }
975 if (!wait)
976 goto all_in;
977 for_each_online_cpu(c) {
978 if (c == monarch)
979 continue;
980 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
981 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
982 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
983 missing = 1;
984 break;
985 }
986 }
987 if (!missing)
988 goto all_in;
989 printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
990 for_each_online_cpu(c) {
991 if (c == monarch)
992 continue;
993 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
994 printk(" %d", c);
995 }
996 printk("\n");
997 return;
998
999 all_in:
1000 printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
1001 return;
1002 }
1003
1004 /*
1005 * ia64_mca_handler
1006 *
1007 * This is uncorrectable machine check handler called from OS_MCA
1008 * dispatch code which is in turn called from SAL_CHECK().
1009 * This is the place where the core of OS MCA handling is done.
1010 * Right now the logs are extracted and displayed in a well-defined
1011 * format. This handler code is supposed to be run only on the
1012 * monarch processor. Once the monarch is done with MCA handling
1013 * further MCA logging is enabled by clearing logs.
1014 * Monarch also has the duty of sending wakeup-IPIs to pull the
1015 * slave processors out of rendezvous spinloop.
1016 */
1017 void
1018 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1019 struct ia64_sal_os_state *sos)
1020 {
1021 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1022 &sos->proc_state_param;
1023 int recover, cpu = smp_processor_id();
1024 task_t *previous_current;
1025
1026 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1027 console_loglevel = 15; /* make sure printks make it to console */
1028 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
1029 sos->proc_state_param, cpu, sos->monarch);
1030
1031 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1032 monarch_cpu = cpu;
1033 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
1034 == NOTIFY_STOP)
1035 ia64_mca_spin(__FUNCTION__);
1036 ia64_wait_for_slaves(cpu);
1037
1038 /* Wakeup all the processors which are spinning in the rendezvous loop.
1039 * They will leave SAL, then spin in the OS with interrupts disabled
1040 * until this monarch cpu leaves the MCA handler. That gets control
1041 * back to the OS so we can backtrace the other cpus, backtrace when
1042 * spinning in SAL does not work.
1043 */
1044 ia64_mca_wakeup_all();
1045 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
1046 == NOTIFY_STOP)
1047 ia64_mca_spin(__FUNCTION__);
1048
1049 /* Get the MCA error record and log it */
1050 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1051
1052 /* TLB error is only exist in this SAL error record */
1053 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1054 /* other error recovery */
1055 || (ia64_mca_ucmc_extension
1056 && ia64_mca_ucmc_extension(
1057 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1058 sos));
1059
1060 if (recover) {
1061 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1062 rh->severity = sal_log_severity_corrected;
1063 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1064 sos->os_status = IA64_MCA_CORRECTED;
1065 }
1066 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1067 == NOTIFY_STOP)
1068 ia64_mca_spin(__FUNCTION__);
1069
1070 set_curr_task(cpu, previous_current);
1071 monarch_cpu = -1;
1072 }
1073
1074 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1075 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1076
1077 /*
1078 * ia64_mca_cmc_int_handler
1079 *
1080 * This is corrected machine check interrupt handler.
1081 * Right now the logs are extracted and displayed in a well-defined
1082 * format.
1083 *
1084 * Inputs
1085 * interrupt number
1086 * client data arg ptr
1087 * saved registers ptr
1088 *
1089 * Outputs
1090 * None
1091 */
1092 static irqreturn_t
1093 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1094 {
1095 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1096 static int index;
1097 static DEFINE_SPINLOCK(cmc_history_lock);
1098
1099 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1100 __FUNCTION__, cmc_irq, smp_processor_id());
1101
1102 /* SAL spec states this should run w/ interrupts enabled */
1103 local_irq_enable();
1104
1105 /* Get the CMC error record and log it */
1106 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1107
1108 spin_lock(&cmc_history_lock);
1109 if (!cmc_polling_enabled) {
1110 int i, count = 1; /* we know 1 happened now */
1111 unsigned long now = jiffies;
1112
1113 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1114 if (now - cmc_history[i] <= HZ)
1115 count++;
1116 }
1117
1118 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1119 if (count >= CMC_HISTORY_LENGTH) {
1120
1121 cmc_polling_enabled = 1;
1122 spin_unlock(&cmc_history_lock);
1123 /* If we're being hit with CMC interrupts, we won't
1124 * ever execute the schedule_work() below. Need to
1125 * disable CMC interrupts on this processor now.
1126 */
1127 ia64_mca_cmc_vector_disable(NULL);
1128 schedule_work(&cmc_disable_work);
1129
1130 /*
1131 * Corrected errors will still be corrected, but
1132 * make sure there's a log somewhere that indicates
1133 * something is generating more than we can handle.
1134 */
1135 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1136
1137 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1138
1139 /* lock already released, get out now */
1140 return IRQ_HANDLED;
1141 } else {
1142 cmc_history[index++] = now;
1143 if (index == CMC_HISTORY_LENGTH)
1144 index = 0;
1145 }
1146 }
1147 spin_unlock(&cmc_history_lock);
1148 return IRQ_HANDLED;
1149 }
1150
1151 /*
1152 * ia64_mca_cmc_int_caller
1153 *
1154 * Triggered by sw interrupt from CMC polling routine. Calls
1155 * real interrupt handler and either triggers a sw interrupt
1156 * on the next cpu or does cleanup at the end.
1157 *
1158 * Inputs
1159 * interrupt number
1160 * client data arg ptr
1161 * saved registers ptr
1162 * Outputs
1163 * handled
1164 */
1165 static irqreturn_t
1166 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1167 {
1168 static int start_count = -1;
1169 unsigned int cpuid;
1170
1171 cpuid = smp_processor_id();
1172
1173 /* If first cpu, update count */
1174 if (start_count == -1)
1175 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1176
1177 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1178
1179 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1180
1181 if (cpuid < NR_CPUS) {
1182 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1183 } else {
1184 /* If no log record, switch out of polling mode */
1185 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1186
1187 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1188 schedule_work(&cmc_enable_work);
1189 cmc_polling_enabled = 0;
1190
1191 } else {
1192
1193 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1194 }
1195
1196 start_count = -1;
1197 }
1198
1199 return IRQ_HANDLED;
1200 }
1201
1202 /*
1203 * ia64_mca_cmc_poll
1204 *
1205 * Poll for Corrected Machine Checks (CMCs)
1206 *
1207 * Inputs : dummy(unused)
1208 * Outputs : None
1209 *
1210 */
1211 static void
1212 ia64_mca_cmc_poll (unsigned long dummy)
1213 {
1214 /* Trigger a CMC interrupt cascade */
1215 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1216 }
1217
1218 /*
1219 * ia64_mca_cpe_int_caller
1220 *
1221 * Triggered by sw interrupt from CPE polling routine. Calls
1222 * real interrupt handler and either triggers a sw interrupt
1223 * on the next cpu or does cleanup at the end.
1224 *
1225 * Inputs
1226 * interrupt number
1227 * client data arg ptr
1228 * saved registers ptr
1229 * Outputs
1230 * handled
1231 */
1232 #ifdef CONFIG_ACPI
1233
1234 static irqreturn_t
1235 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1236 {
1237 static int start_count = -1;
1238 static int poll_time = MIN_CPE_POLL_INTERVAL;
1239 unsigned int cpuid;
1240
1241 cpuid = smp_processor_id();
1242
1243 /* If first cpu, update count */
1244 if (start_count == -1)
1245 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1246
1247 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1248
1249 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1250
1251 if (cpuid < NR_CPUS) {
1252 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1253 } else {
1254 /*
1255 * If a log was recorded, increase our polling frequency,
1256 * otherwise, backoff or return to interrupt mode.
1257 */
1258 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1259 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1260 } else if (cpe_vector < 0) {
1261 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1262 } else {
1263 poll_time = MIN_CPE_POLL_INTERVAL;
1264
1265 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1266 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1267 cpe_poll_enabled = 0;
1268 }
1269
1270 if (cpe_poll_enabled)
1271 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1272 start_count = -1;
1273 }
1274
1275 return IRQ_HANDLED;
1276 }
1277
1278 /*
1279 * ia64_mca_cpe_poll
1280 *
1281 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1282 * on first cpu, from there it will trickle through all the cpus.
1283 *
1284 * Inputs : dummy(unused)
1285 * Outputs : None
1286 *
1287 */
1288 static void
1289 ia64_mca_cpe_poll (unsigned long dummy)
1290 {
1291 /* Trigger a CPE interrupt cascade */
1292 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1293 }
1294
1295 #endif /* CONFIG_ACPI */
1296
1297 static int
1298 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1299 {
1300 int c;
1301 struct task_struct *g, *t;
1302 if (val != DIE_INIT_MONARCH_PROCESS)
1303 return NOTIFY_DONE;
1304 printk(KERN_ERR "Processes interrupted by INIT -");
1305 for_each_online_cpu(c) {
1306 struct ia64_sal_os_state *s;
1307 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1308 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1309 g = s->prev_task;
1310 if (g) {
1311 if (g->pid)
1312 printk(" %d", g->pid);
1313 else
1314 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1315 }
1316 }
1317 printk("\n\n");
1318 if (read_trylock(&tasklist_lock)) {
1319 do_each_thread (g, t) {
1320 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1321 show_stack(t, NULL);
1322 } while_each_thread (g, t);
1323 read_unlock(&tasklist_lock);
1324 }
1325 return NOTIFY_DONE;
1326 }
1327
1328 /*
1329 * C portion of the OS INIT handler
1330 *
1331 * Called from ia64_os_init_dispatch
1332 *
1333 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1334 * this event. This code is used for both monarch and slave INIT events, see
1335 * sos->monarch.
1336 *
1337 * All INIT events switch to the INIT stack and change the previous process to
1338 * blocked status. If one of the INIT events is the monarch then we are
1339 * probably processing the nmi button/command. Use the monarch cpu to dump all
1340 * the processes. The slave INIT events all spin until the monarch cpu
1341 * returns. We can also get INIT slave events for MCA, in which case the MCA
1342 * process is the monarch.
1343 */
1344
1345 void
1346 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1347 struct ia64_sal_os_state *sos)
1348 {
1349 static atomic_t slaves;
1350 static atomic_t monarchs;
1351 task_t *previous_current;
1352 int cpu = smp_processor_id();
1353
1354 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1355 console_loglevel = 15; /* make sure printks make it to console */
1356
1357 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1358 sos->proc_state_param, cpu, sos->monarch);
1359 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1360
1361 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1362 sos->os_status = IA64_INIT_RESUME;
1363
1364 /* FIXME: Workaround for broken proms that drive all INIT events as
1365 * slaves. The last slave that enters is promoted to be a monarch.
1366 * Remove this code in September 2006, that gives platforms a year to
1367 * fix their proms and get their customers updated.
1368 */
1369 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1370 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1371 __FUNCTION__, cpu);
1372 atomic_dec(&slaves);
1373 sos->monarch = 1;
1374 }
1375
1376 /* FIXME: Workaround for broken proms that drive all INIT events as
1377 * monarchs. Second and subsequent monarchs are demoted to slaves.
1378 * Remove this code in September 2006, that gives platforms a year to
1379 * fix their proms and get their customers updated.
1380 */
1381 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1382 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1383 __FUNCTION__, cpu);
1384 atomic_dec(&monarchs);
1385 sos->monarch = 0;
1386 }
1387
1388 if (!sos->monarch) {
1389 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1390 while (monarch_cpu == -1)
1391 cpu_relax(); /* spin until monarch enters */
1392 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1393 == NOTIFY_STOP)
1394 ia64_mca_spin(__FUNCTION__);
1395 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1396 == NOTIFY_STOP)
1397 ia64_mca_spin(__FUNCTION__);
1398 while (monarch_cpu != -1)
1399 cpu_relax(); /* spin until monarch leaves */
1400 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1401 == NOTIFY_STOP)
1402 ia64_mca_spin(__FUNCTION__);
1403 printk("Slave on cpu %d returning to normal service.\n", cpu);
1404 set_curr_task(cpu, previous_current);
1405 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1406 atomic_dec(&slaves);
1407 return;
1408 }
1409
1410 monarch_cpu = cpu;
1411 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1412 == NOTIFY_STOP)
1413 ia64_mca_spin(__FUNCTION__);
1414
1415 /*
1416 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1417 * generated via the BMC's command-line interface, but since the console is on the
1418 * same serial line, the user will need some time to switch out of the BMC before
1419 * the dump begins.
1420 */
1421 printk("Delaying for 5 seconds...\n");
1422 udelay(5*1000000);
1423 ia64_wait_for_slaves(cpu);
1424 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1425 * to default_monarch_init_process() above and just print all the
1426 * tasks.
1427 */
1428 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1429 == NOTIFY_STOP)
1430 ia64_mca_spin(__FUNCTION__);
1431 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1432 == NOTIFY_STOP)
1433 ia64_mca_spin(__FUNCTION__);
1434 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1435 atomic_dec(&monarchs);
1436 set_curr_task(cpu, previous_current);
1437 monarch_cpu = -1;
1438 return;
1439 }
1440
1441 static int __init
1442 ia64_mca_disable_cpe_polling(char *str)
1443 {
1444 cpe_poll_enabled = 0;
1445 return 1;
1446 }
1447
1448 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1449
1450 static struct irqaction cmci_irqaction = {
1451 .handler = ia64_mca_cmc_int_handler,
1452 .flags = SA_INTERRUPT,
1453 .name = "cmc_hndlr"
1454 };
1455
1456 static struct irqaction cmcp_irqaction = {
1457 .handler = ia64_mca_cmc_int_caller,
1458 .flags = SA_INTERRUPT,
1459 .name = "cmc_poll"
1460 };
1461
1462 static struct irqaction mca_rdzv_irqaction = {
1463 .handler = ia64_mca_rendez_int_handler,
1464 .flags = SA_INTERRUPT,
1465 .name = "mca_rdzv"
1466 };
1467
1468 static struct irqaction mca_wkup_irqaction = {
1469 .handler = ia64_mca_wakeup_int_handler,
1470 .flags = SA_INTERRUPT,
1471 .name = "mca_wkup"
1472 };
1473
1474 #ifdef CONFIG_ACPI
1475 static struct irqaction mca_cpe_irqaction = {
1476 .handler = ia64_mca_cpe_int_handler,
1477 .flags = SA_INTERRUPT,
1478 .name = "cpe_hndlr"
1479 };
1480
1481 static struct irqaction mca_cpep_irqaction = {
1482 .handler = ia64_mca_cpe_int_caller,
1483 .flags = SA_INTERRUPT,
1484 .name = "cpe_poll"
1485 };
1486 #endif /* CONFIG_ACPI */
1487
1488 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1489 * these stacks can never sleep, they cannot return from the kernel to user
1490 * space, they do not appear in a normal ps listing. So there is no need to
1491 * format most of the fields.
1492 */
1493
1494 static void __cpuinit
1495 format_mca_init_stack(void *mca_data, unsigned long offset,
1496 const char *type, int cpu)
1497 {
1498 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1499 struct thread_info *ti;
1500 memset(p, 0, KERNEL_STACK_SIZE);
1501 ti = task_thread_info(p);
1502 ti->flags = _TIF_MCA_INIT;
1503 ti->preempt_count = 1;
1504 ti->task = p;
1505 ti->cpu = cpu;
1506 p->thread_info = ti;
1507 p->state = TASK_UNINTERRUPTIBLE;
1508 __set_bit(cpu, &p->cpus_allowed);
1509 INIT_LIST_HEAD(&p->tasks);
1510 p->parent = p->real_parent = p->group_leader = p;
1511 INIT_LIST_HEAD(&p->children);
1512 INIT_LIST_HEAD(&p->sibling);
1513 strncpy(p->comm, type, sizeof(p->comm)-1);
1514 }
1515
1516 /* Do per-CPU MCA-related initialization. */
1517
1518 void __cpuinit
1519 ia64_mca_cpu_init(void *cpu_data)
1520 {
1521 void *pal_vaddr;
1522 static int first_time = 1;
1523
1524 if (first_time) {
1525 void *mca_data;
1526 int cpu;
1527
1528 first_time = 0;
1529 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1530 * NR_CPUS + KERNEL_STACK_SIZE);
1531 mca_data = (void *)(((unsigned long)mca_data +
1532 KERNEL_STACK_SIZE - 1) &
1533 (-KERNEL_STACK_SIZE));
1534 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1535 format_mca_init_stack(mca_data,
1536 offsetof(struct ia64_mca_cpu, mca_stack),
1537 "MCA", cpu);
1538 format_mca_init_stack(mca_data,
1539 offsetof(struct ia64_mca_cpu, init_stack),
1540 "INIT", cpu);
1541 __per_cpu_mca[cpu] = __pa(mca_data);
1542 mca_data += sizeof(struct ia64_mca_cpu);
1543 }
1544 }
1545
1546 /*
1547 * The MCA info structure was allocated earlier and its
1548 * physical address saved in __per_cpu_mca[cpu]. Copy that
1549 * address * to ia64_mca_data so we can access it as a per-CPU
1550 * variable.
1551 */
1552 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1553
1554 /*
1555 * Stash away a copy of the PTE needed to map the per-CPU page.
1556 * We may need it during MCA recovery.
1557 */
1558 __get_cpu_var(ia64_mca_per_cpu_pte) =
1559 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1560
1561 /*
1562 * Also, stash away a copy of the PAL address and the PTE
1563 * needed to map it.
1564 */
1565 pal_vaddr = efi_get_pal_addr();
1566 if (!pal_vaddr)
1567 return;
1568 __get_cpu_var(ia64_mca_pal_base) =
1569 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1570 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1571 PAGE_KERNEL));
1572 }
1573
1574 /*
1575 * ia64_mca_init
1576 *
1577 * Do all the system level mca specific initialization.
1578 *
1579 * 1. Register spinloop and wakeup request interrupt vectors
1580 *
1581 * 2. Register OS_MCA handler entry point
1582 *
1583 * 3. Register OS_INIT handler entry point
1584 *
1585 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1586 *
1587 * Note that this initialization is done very early before some kernel
1588 * services are available.
1589 *
1590 * Inputs : None
1591 *
1592 * Outputs : None
1593 */
1594 void __init
1595 ia64_mca_init(void)
1596 {
1597 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1598 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1599 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1600 int i;
1601 s64 rc;
1602 struct ia64_sal_retval isrv;
1603 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1604 static struct notifier_block default_init_monarch_nb = {
1605 .notifier_call = default_monarch_init_process,
1606 .priority = 0/* we need to notified last */
1607 };
1608
1609 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1610
1611 /* Clear the Rendez checkin flag for all cpus */
1612 for(i = 0 ; i < NR_CPUS; i++)
1613 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1614
1615 /*
1616 * Register the rendezvous spinloop and wakeup mechanism with SAL
1617 */
1618
1619 /* Register the rendezvous interrupt vector with SAL */
1620 while (1) {
1621 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1622 SAL_MC_PARAM_MECHANISM_INT,
1623 IA64_MCA_RENDEZ_VECTOR,
1624 timeout,
1625 SAL_MC_PARAM_RZ_ALWAYS);
1626 rc = isrv.status;
1627 if (rc == 0)
1628 break;
1629 if (rc == -2) {
1630 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1631 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1632 timeout = isrv.v0;
1633 continue;
1634 }
1635 printk(KERN_ERR "Failed to register rendezvous interrupt "
1636 "with SAL (status %ld)\n", rc);
1637 return;
1638 }
1639
1640 /* Register the wakeup interrupt vector with SAL */
1641 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1642 SAL_MC_PARAM_MECHANISM_INT,
1643 IA64_MCA_WAKEUP_VECTOR,
1644 0, 0);
1645 rc = isrv.status;
1646 if (rc) {
1647 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1648 "(status %ld)\n", rc);
1649 return;
1650 }
1651
1652 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1653
1654 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1655 /*
1656 * XXX - disable SAL checksum by setting size to 0; should be
1657 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1658 */
1659 ia64_mc_info.imi_mca_handler_size = 0;
1660
1661 /* Register the os mca handler with SAL */
1662 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1663 ia64_mc_info.imi_mca_handler,
1664 ia64_tpa(mca_hldlr_ptr->gp),
1665 ia64_mc_info.imi_mca_handler_size,
1666 0, 0, 0)))
1667 {
1668 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1669 "(status %ld)\n", rc);
1670 return;
1671 }
1672
1673 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1674 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1675
1676 /*
1677 * XXX - disable SAL checksum by setting size to 0, should be
1678 * size of the actual init handler in mca_asm.S.
1679 */
1680 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1681 ia64_mc_info.imi_monarch_init_handler_size = 0;
1682 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1683 ia64_mc_info.imi_slave_init_handler_size = 0;
1684
1685 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1686 ia64_mc_info.imi_monarch_init_handler);
1687
1688 /* Register the os init handler with SAL */
1689 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1690 ia64_mc_info.imi_monarch_init_handler,
1691 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1692 ia64_mc_info.imi_monarch_init_handler_size,
1693 ia64_mc_info.imi_slave_init_handler,
1694 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1695 ia64_mc_info.imi_slave_init_handler_size)))
1696 {
1697 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1698 "(status %ld)\n", rc);
1699 return;
1700 }
1701 if (register_die_notifier(&default_init_monarch_nb)) {
1702 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1703 return;
1704 }
1705
1706 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1707
1708 /*
1709 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1710 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1711 */
1712 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1713 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1714 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1715
1716 /* Setup the MCA rendezvous interrupt vector */
1717 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1718
1719 /* Setup the MCA wakeup interrupt vector */
1720 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1721
1722 #ifdef CONFIG_ACPI
1723 /* Setup the CPEI/P handler */
1724 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1725 #endif
1726
1727 /* Initialize the areas set aside by the OS to buffer the
1728 * platform/processor error states for MCA/INIT/CMC
1729 * handling.
1730 */
1731 ia64_log_init(SAL_INFO_TYPE_MCA);
1732 ia64_log_init(SAL_INFO_TYPE_INIT);
1733 ia64_log_init(SAL_INFO_TYPE_CMC);
1734 ia64_log_init(SAL_INFO_TYPE_CPE);
1735
1736 mca_init = 1;
1737 printk(KERN_INFO "MCA related initialization done\n");
1738 }
1739
1740 /*
1741 * ia64_mca_late_init
1742 *
1743 * Opportunity to setup things that require initialization later
1744 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1745 * platform doesn't support an interrupt driven mechanism.
1746 *
1747 * Inputs : None
1748 * Outputs : Status
1749 */
1750 static int __init
1751 ia64_mca_late_init(void)
1752 {
1753 if (!mca_init)
1754 return 0;
1755
1756 /* Setup the CMCI/P vector and handler */
1757 init_timer(&cmc_poll_timer);
1758 cmc_poll_timer.function = ia64_mca_cmc_poll;
1759
1760 /* Unmask/enable the vector */
1761 cmc_polling_enabled = 0;
1762 schedule_work(&cmc_enable_work);
1763
1764 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1765
1766 #ifdef CONFIG_ACPI
1767 /* Setup the CPEI/P vector and handler */
1768 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1769 init_timer(&cpe_poll_timer);
1770 cpe_poll_timer.function = ia64_mca_cpe_poll;
1771
1772 {
1773 irq_desc_t *desc;
1774 unsigned int irq;
1775
1776 if (cpe_vector >= 0) {
1777 /* If platform supports CPEI, enable the irq. */
1778 cpe_poll_enabled = 0;
1779 for (irq = 0; irq < NR_IRQS; ++irq)
1780 if (irq_to_vector(irq) == cpe_vector) {
1781 desc = irq_descp(irq);
1782 desc->status |= IRQ_PER_CPU;
1783 setup_irq(irq, &mca_cpe_irqaction);
1784 ia64_cpe_irq = irq;
1785 }
1786 ia64_mca_register_cpev(cpe_vector);
1787 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1788 } else {
1789 /* If platform doesn't support CPEI, get the timer going. */
1790 if (cpe_poll_enabled) {
1791 ia64_mca_cpe_poll(0UL);
1792 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1793 }
1794 }
1795 }
1796 #endif
1797
1798 return 0;
1799 }
1800
1801 device_initcall(ia64_mca_late_init);