2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
79 * bit0 : register implemented
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 #define UNPROTECT_CTX(c, f) \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 #define PROTECT_CTX_NOPRINT(c, f) \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
186 #define PROTECT_CTX_NOIRQ(c) \
188 spin_lock(&(c)->ctx_lock); \
191 #define UNPROTECT_CTX_NOIRQ(c) \
193 spin_unlock(&(c)->ctx_lock); \
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
228 #define PFM_DEBUGGING 1
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 #define DPRINT_ovfl(a) \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 unsigned long val
; /* virtual 64bit counter value */
248 unsigned long lval
; /* last reset value */
249 unsigned long long_reset
; /* reset value on sampling overflow */
250 unsigned long short_reset
; /* reset value on overflow */
251 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed
; /* seed for random-number generator */
254 unsigned long mask
; /* mask for random-number generator */
255 unsigned int flags
; /* notify/do not notify */
256 unsigned long eventid
; /* overflow event identifier */
263 unsigned int block
:1; /* when 1, task will blocked on user notifications */
264 unsigned int system
:1; /* do system wide monitoring */
265 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling
:1; /* true if using a custom format */
267 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg
:1; /* no message sent on overflow */
271 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved
:22;
273 } pfm_context_flags_t
;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context
{
285 spinlock_t ctx_lock
; /* context protection */
287 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
290 struct task_struct
*ctx_task
; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done
; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
313 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
314 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
318 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd
; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
326 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size
; /* size of sampling buffer */
328 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait
;
331 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
334 struct fasync_struct
*ctx_async_queue
;
336 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
340 * magic number used to verify that structure is really
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
374 spinlock_t pfs_lock
; /* lock the structure */
376 unsigned int pfs_task_sessions
; /* number of per task sessions */
377 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
380 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
392 unsigned long default_value
; /* power-on default value */
393 unsigned long reserved_mask
; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check
;
395 pfm_reg_check_t write_check
;
396 unsigned long dep_pmd
[4];
397 unsigned long dep_pmc
[4];
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
416 unsigned long ovfl_val
; /* overflow value for counters */
418 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
422 unsigned int num_pmds
; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
426 char *pmu_name
; /* PMU family name */
427 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
428 unsigned int flags
; /* pmu specific flags */
429 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
431 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe
)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
444 unsigned long ibr_mask
:56;
445 unsigned long ibr_plm
:4;
446 unsigned long ibr_ig
:3;
447 unsigned long ibr_x
:1;
451 unsigned long dbr_mask
:56;
452 unsigned long dbr_plm
:4;
453 unsigned long dbr_ig
:2;
454 unsigned long dbr_w
:1;
455 unsigned long dbr_r
:1;
466 * perfmon command descriptions
469 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
472 unsigned int cmd_narg
;
474 int (*cmd_getsize
)(void *arg
, size_t *sz
);
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls
;
499 unsigned long pfm_smpl_handler_cycles
;
500 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats
[NR_CPUS
];
507 static pfm_session_t pfm_sessions
; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check
);
510 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
512 static struct proc_dir_entry
*perfmon_dir
;
513 static pfm_uuid_t pfm_null_uuid
= {0,};
515 static spinlock_t pfm_buffer_fmt_lock
;
516 static LIST_HEAD(pfm_buffer_fmt_list
);
518 static pmu_config_t
*pmu_conf
;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl
;
522 EXPORT_SYMBOL(pfm_sysctl
);
524 static ctl_table pfm_ctl_table
[]={
527 .data
= &pfm_sysctl
.debug
,
528 .maxlen
= sizeof(int),
530 .proc_handler
= proc_dointvec
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= proc_dointvec
,
540 .procname
= "fastctxsw",
541 .data
= &pfm_sysctl
.fastctxsw
,
542 .maxlen
= sizeof(int),
544 .proc_handler
= proc_dointvec
,
547 .procname
= "expert_mode",
548 .data
= &pfm_sysctl
.expert_mode
,
549 .maxlen
= sizeof(int),
551 .proc_handler
= proc_dointvec
,
555 static ctl_table pfm_sysctl_dir
[] = {
557 .procname
= "perfmon",
559 .child
= pfm_ctl_table
,
563 static ctl_table pfm_sysctl_root
[] = {
565 .procname
= "kernel",
567 .child
= pfm_sysctl_dir
,
571 static struct ctl_table_header
*pfm_sysctl_header
;
573 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
579 pfm_put_task(struct task_struct
*task
)
581 if (task
!= current
) put_task_struct(task
);
585 pfm_reserve_page(unsigned long a
)
587 SetPageReserved(vmalloc_to_page((void *)a
));
590 pfm_unreserve_page(unsigned long a
)
592 ClearPageReserved(vmalloc_to_page((void*)a
));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
598 spin_lock(&(x
)->ctx_lock
);
603 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
605 spin_unlock(&(x
)->ctx_lock
);
608 static inline unsigned int
609 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
611 return do_munmap(mm
, addr
, len
);
614 static inline unsigned long
615 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
617 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
622 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
,
623 struct vfsmount
*mnt
)
625 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
, mnt
);
628 static struct file_system_type pfm_fs_type
= {
630 .get_sb
= pfmfs_get_sb
,
631 .kill_sb
= kill_anon_super
,
634 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
635 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
636 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
637 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
638 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
641 /* forward declaration */
642 static const struct file_operations pfm_file_ops
;
645 * forward declarations
648 static void pfm_lazy_save_regs (struct task_struct
*ta
);
651 void dump_pmu_state(const char *);
652 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
654 #include "perfmon_itanium.h"
655 #include "perfmon_mckinley.h"
656 #include "perfmon_montecito.h"
657 #include "perfmon_generic.h"
659 static pmu_config_t
*pmu_confs
[]={
663 &pmu_conf_gen
, /* must be last */
668 static int pfm_end_notify_user(pfm_context_t
*ctx
);
671 pfm_clear_psr_pp(void)
673 ia64_rsm(IA64_PSR_PP
);
680 ia64_ssm(IA64_PSR_PP
);
685 pfm_clear_psr_up(void)
687 ia64_rsm(IA64_PSR_UP
);
694 ia64_ssm(IA64_PSR_UP
);
698 static inline unsigned long
702 tmp
= ia64_getreg(_IA64_REG_PSR
);
708 pfm_set_psr_l(unsigned long val
)
710 ia64_setreg(_IA64_REG_PSR_L
, val
);
722 pfm_unfreeze_pmu(void)
729 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
733 for (i
=0; i
< nibrs
; i
++) {
734 ia64_set_ibr(i
, ibrs
[i
]);
735 ia64_dv_serialize_instruction();
741 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
745 for (i
=0; i
< ndbrs
; i
++) {
746 ia64_set_dbr(i
, dbrs
[i
]);
747 ia64_dv_serialize_data();
753 * PMD[i] must be a counter. no check is made
755 static inline unsigned long
756 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
758 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
762 * PMD[i] must be a counter. no check is made
765 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
767 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
769 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
771 * writing to unimplemented part is ignore, so we do not need to
774 ia64_set_pmd(i
, val
& ovfl_val
);
778 pfm_get_new_msg(pfm_context_t
*ctx
)
782 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
784 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
785 if (next
== ctx
->ctx_msgq_head
) return NULL
;
787 idx
= ctx
->ctx_msgq_tail
;
788 ctx
->ctx_msgq_tail
= next
;
790 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
792 return ctx
->ctx_msgq
+idx
;
796 pfm_get_next_msg(pfm_context_t
*ctx
)
800 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
802 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
807 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
812 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
814 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
820 pfm_reset_msgq(pfm_context_t
*ctx
)
822 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
823 DPRINT(("ctx=%p msgq reset\n", ctx
));
827 pfm_rvmalloc(unsigned long size
)
832 size
= PAGE_ALIGN(size
);
835 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
836 memset(mem
, 0, size
);
837 addr
= (unsigned long)mem
;
839 pfm_reserve_page(addr
);
848 pfm_rvfree(void *mem
, unsigned long size
)
853 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
854 addr
= (unsigned long) mem
;
855 while ((long) size
> 0) {
856 pfm_unreserve_page(addr
);
865 static pfm_context_t
*
866 pfm_context_alloc(int ctx_flags
)
871 * allocate context descriptor
872 * must be able to free with interrupts disabled
874 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
876 DPRINT(("alloc ctx @%p\n", ctx
));
879 * init context protection lock
881 spin_lock_init(&ctx
->ctx_lock
);
884 * context is unloaded
886 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
889 * initialization of context's flags
891 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
892 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
893 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
895 * will move to set properties
896 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
900 * init restart semaphore to locked
902 init_completion(&ctx
->ctx_restart_done
);
905 * activation is used in SMP only
907 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
908 SET_LAST_CPU(ctx
, -1);
911 * initialize notification message queue
913 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
914 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
915 init_waitqueue_head(&ctx
->ctx_zombieq
);
922 pfm_context_free(pfm_context_t
*ctx
)
925 DPRINT(("free ctx @%p\n", ctx
));
931 pfm_mask_monitoring(struct task_struct
*task
)
933 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
934 unsigned long mask
, val
, ovfl_mask
;
937 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
939 ovfl_mask
= pmu_conf
->ovfl_val
;
941 * monitoring can only be masked as a result of a valid
942 * counter overflow. In UP, it means that the PMU still
943 * has an owner. Note that the owner can be different
944 * from the current task. However the PMU state belongs
946 * In SMP, a valid overflow only happens when task is
947 * current. Therefore if we come here, we know that
948 * the PMU state belongs to the current task, therefore
949 * we can access the live registers.
951 * So in both cases, the live register contains the owner's
952 * state. We can ONLY touch the PMU registers and NOT the PSR.
954 * As a consequence to this call, the ctx->th_pmds[] array
955 * contains stale information which must be ignored
956 * when context is reloaded AND monitoring is active (see
959 mask
= ctx
->ctx_used_pmds
[0];
960 for (i
= 0; mask
; i
++, mask
>>=1) {
961 /* skip non used pmds */
962 if ((mask
& 0x1) == 0) continue;
963 val
= ia64_get_pmd(i
);
965 if (PMD_IS_COUNTING(i
)) {
967 * we rebuild the full 64 bit value of the counter
969 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
971 ctx
->ctx_pmds
[i
].val
= val
;
973 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
975 ctx
->ctx_pmds
[i
].val
,
979 * mask monitoring by setting the privilege level to 0
980 * we cannot use psr.pp/psr.up for this, it is controlled by
983 * if task is current, modify actual registers, otherwise modify
984 * thread save state, i.e., what will be restored in pfm_load_regs()
986 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
987 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
988 if ((mask
& 0x1) == 0UL) continue;
989 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
990 ctx
->th_pmcs
[i
] &= ~0xfUL
;
991 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
994 * make all of this visible
1000 * must always be done with task == current
1002 * context must be in MASKED state when calling
1005 pfm_restore_monitoring(struct task_struct
*task
)
1007 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
1008 unsigned long mask
, ovfl_mask
;
1009 unsigned long psr
, val
;
1012 is_system
= ctx
->ctx_fl_system
;
1013 ovfl_mask
= pmu_conf
->ovfl_val
;
1015 if (task
!= current
) {
1016 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1019 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1020 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1021 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1024 psr
= pfm_get_psr();
1026 * monitoring is masked via the PMC.
1027 * As we restore their value, we do not want each counter to
1028 * restart right away. We stop monitoring using the PSR,
1029 * restore the PMC (and PMD) and then re-establish the psr
1030 * as it was. Note that there can be no pending overflow at
1031 * this point, because monitoring was MASKED.
1033 * system-wide session are pinned and self-monitoring
1035 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1036 /* disable dcr pp */
1037 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1043 * first, we restore the PMD
1045 mask
= ctx
->ctx_used_pmds
[0];
1046 for (i
= 0; mask
; i
++, mask
>>=1) {
1047 /* skip non used pmds */
1048 if ((mask
& 0x1) == 0) continue;
1050 if (PMD_IS_COUNTING(i
)) {
1052 * we split the 64bit value according to
1055 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1056 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1058 val
= ctx
->ctx_pmds
[i
].val
;
1060 ia64_set_pmd(i
, val
);
1062 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1064 ctx
->ctx_pmds
[i
].val
,
1070 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1071 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1072 if ((mask
& 0x1) == 0UL) continue;
1073 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1074 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1075 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1076 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1081 * must restore DBR/IBR because could be modified while masked
1082 * XXX: need to optimize
1084 if (ctx
->ctx_fl_using_dbreg
) {
1085 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1086 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1092 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1094 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1101 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1107 for (i
=0; mask
; i
++, mask
>>=1) {
1108 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1113 * reload from thread state (used for ctxw only)
1116 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1119 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1121 for (i
=0; mask
; i
++, mask
>>=1) {
1122 if ((mask
& 0x1) == 0) continue;
1123 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1124 ia64_set_pmd(i
, val
);
1130 * propagate PMD from context to thread-state
1133 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1135 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1136 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1140 DPRINT(("mask=0x%lx\n", mask
));
1142 for (i
=0; mask
; i
++, mask
>>=1) {
1144 val
= ctx
->ctx_pmds
[i
].val
;
1147 * We break up the 64 bit value into 2 pieces
1148 * the lower bits go to the machine state in the
1149 * thread (will be reloaded on ctxsw in).
1150 * The upper part stays in the soft-counter.
1152 if (PMD_IS_COUNTING(i
)) {
1153 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1156 ctx
->th_pmds
[i
] = val
;
1158 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1161 ctx
->ctx_pmds
[i
].val
));
1166 * propagate PMC from context to thread-state
1169 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1171 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1174 DPRINT(("mask=0x%lx\n", mask
));
1176 for (i
=0; mask
; i
++, mask
>>=1) {
1177 /* masking 0 with ovfl_val yields 0 */
1178 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1179 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1186 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1190 for (i
=0; mask
; i
++, mask
>>=1) {
1191 if ((mask
& 0x1) == 0) continue;
1192 ia64_set_pmc(i
, pmcs
[i
]);
1198 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1200 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1204 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1207 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1212 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1215 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1221 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1225 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1230 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1234 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1239 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1242 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1247 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1250 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1254 static pfm_buffer_fmt_t
*
1255 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1257 struct list_head
* pos
;
1258 pfm_buffer_fmt_t
* entry
;
1260 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1261 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1262 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1269 * find a buffer format based on its uuid
1271 static pfm_buffer_fmt_t
*
1272 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1274 pfm_buffer_fmt_t
* fmt
;
1275 spin_lock(&pfm_buffer_fmt_lock
);
1276 fmt
= __pfm_find_buffer_fmt(uuid
);
1277 spin_unlock(&pfm_buffer_fmt_lock
);
1282 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1286 /* some sanity checks */
1287 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1289 /* we need at least a handler */
1290 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1293 * XXX: need check validity of fmt_arg_size
1296 spin_lock(&pfm_buffer_fmt_lock
);
1298 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1299 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1303 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1304 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1307 spin_unlock(&pfm_buffer_fmt_lock
);
1310 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1313 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1315 pfm_buffer_fmt_t
*fmt
;
1318 spin_lock(&pfm_buffer_fmt_lock
);
1320 fmt
= __pfm_find_buffer_fmt(uuid
);
1322 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1326 list_del_init(&fmt
->fmt_list
);
1327 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1330 spin_unlock(&pfm_buffer_fmt_lock
);
1334 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1336 extern void update_pal_halt_status(int);
1339 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1341 unsigned long flags
;
1343 * validity checks on cpu_mask have been done upstream
1347 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1348 pfm_sessions
.pfs_sys_sessions
,
1349 pfm_sessions
.pfs_task_sessions
,
1350 pfm_sessions
.pfs_sys_use_dbregs
,
1356 * cannot mix system wide and per-task sessions
1358 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1359 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1360 pfm_sessions
.pfs_task_sessions
));
1364 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1366 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1368 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1370 pfm_sessions
.pfs_sys_sessions
++ ;
1373 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1374 pfm_sessions
.pfs_task_sessions
++;
1377 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1378 pfm_sessions
.pfs_sys_sessions
,
1379 pfm_sessions
.pfs_task_sessions
,
1380 pfm_sessions
.pfs_sys_use_dbregs
,
1385 * disable default_idle() to go to PAL_HALT
1387 update_pal_halt_status(0);
1394 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1395 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1405 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1407 unsigned long flags
;
1409 * validity checks on cpu_mask have been done upstream
1413 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1414 pfm_sessions
.pfs_sys_sessions
,
1415 pfm_sessions
.pfs_task_sessions
,
1416 pfm_sessions
.pfs_sys_use_dbregs
,
1422 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1424 * would not work with perfmon+more than one bit in cpu_mask
1426 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1427 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1428 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1430 pfm_sessions
.pfs_sys_use_dbregs
--;
1433 pfm_sessions
.pfs_sys_sessions
--;
1435 pfm_sessions
.pfs_task_sessions
--;
1437 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1438 pfm_sessions
.pfs_sys_sessions
,
1439 pfm_sessions
.pfs_task_sessions
,
1440 pfm_sessions
.pfs_sys_use_dbregs
,
1445 * if possible, enable default_idle() to go into PAL_HALT
1447 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1448 update_pal_halt_status(1);
1456 * removes virtual mapping of the sampling buffer.
1457 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1458 * a PROTECT_CTX() section.
1461 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1466 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1467 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1471 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1474 * does the actual unmapping
1476 down_write(&task
->mm
->mmap_sem
);
1478 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1480 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1482 up_write(&task
->mm
->mmap_sem
);
1484 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1487 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1493 * free actual physical storage used by sampling buffer
1497 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1499 pfm_buffer_fmt_t
*fmt
;
1501 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1504 * we won't use the buffer format anymore
1506 fmt
= ctx
->ctx_buf_fmt
;
1508 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1511 ctx
->ctx_smpl_vaddr
));
1513 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1518 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1520 ctx
->ctx_smpl_hdr
= NULL
;
1521 ctx
->ctx_smpl_size
= 0UL;
1526 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1532 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1534 if (fmt
== NULL
) return;
1536 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1541 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1542 * no real gain from having the whole whorehouse mounted. So we don't need
1543 * any operations on the root directory. However, we need a non-trivial
1544 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1546 static struct vfsmount
*pfmfs_mnt
;
1551 int err
= register_filesystem(&pfm_fs_type
);
1553 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1554 err
= PTR_ERR(pfmfs_mnt
);
1555 if (IS_ERR(pfmfs_mnt
))
1556 unregister_filesystem(&pfm_fs_type
);
1564 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1569 unsigned long flags
;
1570 DECLARE_WAITQUEUE(wait
, current
);
1571 if (PFM_IS_FILE(filp
) == 0) {
1572 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1576 ctx
= (pfm_context_t
*)filp
->private_data
;
1578 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1583 * check even when there is no message
1585 if (size
< sizeof(pfm_msg_t
)) {
1586 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1590 PROTECT_CTX(ctx
, flags
);
1593 * put ourselves on the wait queue
1595 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1603 set_current_state(TASK_INTERRUPTIBLE
);
1605 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1608 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1610 UNPROTECT_CTX(ctx
, flags
);
1613 * check non-blocking read
1616 if(filp
->f_flags
& O_NONBLOCK
) break;
1619 * check pending signals
1621 if(signal_pending(current
)) {
1626 * no message, so wait
1630 PROTECT_CTX(ctx
, flags
);
1632 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1633 set_current_state(TASK_RUNNING
);
1634 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1636 if (ret
< 0) goto abort
;
1639 msg
= pfm_get_next_msg(ctx
);
1641 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1645 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1648 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1651 UNPROTECT_CTX(ctx
, flags
);
1657 pfm_write(struct file
*file
, const char __user
*ubuf
,
1658 size_t size
, loff_t
*ppos
)
1660 DPRINT(("pfm_write called\n"));
1665 pfm_poll(struct file
*filp
, poll_table
* wait
)
1668 unsigned long flags
;
1669 unsigned int mask
= 0;
1671 if (PFM_IS_FILE(filp
) == 0) {
1672 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1676 ctx
= (pfm_context_t
*)filp
->private_data
;
1678 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1683 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1685 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1687 PROTECT_CTX(ctx
, flags
);
1689 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1690 mask
= POLLIN
| POLLRDNORM
;
1692 UNPROTECT_CTX(ctx
, flags
);
1694 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1700 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1702 DPRINT(("pfm_ioctl called\n"));
1707 * interrupt cannot be masked when coming here
1710 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1714 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1716 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1717 task_pid_nr(current
),
1720 ctx
->ctx_async_queue
, ret
));
1726 pfm_fasync(int fd
, struct file
*filp
, int on
)
1731 if (PFM_IS_FILE(filp
) == 0) {
1732 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1736 ctx
= (pfm_context_t
*)filp
->private_data
;
1738 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1742 * we cannot mask interrupts during this call because this may
1743 * may go to sleep if memory is not readily avalaible.
1745 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1746 * done in caller. Serialization of this function is ensured by caller.
1748 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1751 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1754 ctx
->ctx_async_queue
, ret
));
1761 * this function is exclusively called from pfm_close().
1762 * The context is not protected at that time, nor are interrupts
1763 * on the remote CPU. That's necessary to avoid deadlocks.
1766 pfm_syswide_force_stop(void *info
)
1768 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1769 struct pt_regs
*regs
= task_pt_regs(current
);
1770 struct task_struct
*owner
;
1771 unsigned long flags
;
1774 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1775 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1777 smp_processor_id());
1780 owner
= GET_PMU_OWNER();
1781 if (owner
!= ctx
->ctx_task
) {
1782 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1784 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1787 if (GET_PMU_CTX() != ctx
) {
1788 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1790 GET_PMU_CTX(), ctx
);
1794 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1796 * the context is already protected in pfm_close(), we simply
1797 * need to mask interrupts to avoid a PMU interrupt race on
1800 local_irq_save(flags
);
1802 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1804 DPRINT(("context_unload returned %d\n", ret
));
1808 * unmask interrupts, PMU interrupts are now spurious here
1810 local_irq_restore(flags
);
1814 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1818 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1819 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1820 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1822 #endif /* CONFIG_SMP */
1825 * called for each close(). Partially free resources.
1826 * When caller is self-monitoring, the context is unloaded.
1829 pfm_flush(struct file
*filp
, fl_owner_t id
)
1832 struct task_struct
*task
;
1833 struct pt_regs
*regs
;
1834 unsigned long flags
;
1835 unsigned long smpl_buf_size
= 0UL;
1836 void *smpl_buf_vaddr
= NULL
;
1837 int state
, is_system
;
1839 if (PFM_IS_FILE(filp
) == 0) {
1840 DPRINT(("bad magic for\n"));
1844 ctx
= (pfm_context_t
*)filp
->private_data
;
1846 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1851 * remove our file from the async queue, if we use this mode.
1852 * This can be done without the context being protected. We come
1853 * here when the context has become unreachable by other tasks.
1855 * We may still have active monitoring at this point and we may
1856 * end up in pfm_overflow_handler(). However, fasync_helper()
1857 * operates with interrupts disabled and it cleans up the
1858 * queue. If the PMU handler is called prior to entering
1859 * fasync_helper() then it will send a signal. If it is
1860 * invoked after, it will find an empty queue and no
1861 * signal will be sent. In both case, we are safe
1863 PROTECT_CTX(ctx
, flags
);
1865 state
= ctx
->ctx_state
;
1866 is_system
= ctx
->ctx_fl_system
;
1868 task
= PFM_CTX_TASK(ctx
);
1869 regs
= task_pt_regs(task
);
1871 DPRINT(("ctx_state=%d is_current=%d\n",
1873 task
== current
? 1 : 0));
1876 * if state == UNLOADED, then task is NULL
1880 * we must stop and unload because we are losing access to the context.
1882 if (task
== current
) {
1885 * the task IS the owner but it migrated to another CPU: that's bad
1886 * but we must handle this cleanly. Unfortunately, the kernel does
1887 * not provide a mechanism to block migration (while the context is loaded).
1889 * We need to release the resource on the ORIGINAL cpu.
1891 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1893 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1895 * keep context protected but unmask interrupt for IPI
1897 local_irq_restore(flags
);
1899 pfm_syswide_cleanup_other_cpu(ctx
);
1902 * restore interrupt masking
1904 local_irq_save(flags
);
1907 * context is unloaded at this point
1910 #endif /* CONFIG_SMP */
1913 DPRINT(("forcing unload\n"));
1915 * stop and unload, returning with state UNLOADED
1916 * and session unreserved.
1918 pfm_context_unload(ctx
, NULL
, 0, regs
);
1920 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1925 * remove virtual mapping, if any, for the calling task.
1926 * cannot reset ctx field until last user is calling close().
1928 * ctx_smpl_vaddr must never be cleared because it is needed
1929 * by every task with access to the context
1931 * When called from do_exit(), the mm context is gone already, therefore
1932 * mm is NULL, i.e., the VMA is already gone and we do not have to
1935 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1936 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1937 smpl_buf_size
= ctx
->ctx_smpl_size
;
1940 UNPROTECT_CTX(ctx
, flags
);
1943 * if there was a mapping, then we systematically remove it
1944 * at this point. Cannot be done inside critical section
1945 * because some VM function reenables interrupts.
1948 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1953 * called either on explicit close() or from exit_files().
1954 * Only the LAST user of the file gets to this point, i.e., it is
1957 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1958 * (fput()),i.e, last task to access the file. Nobody else can access the
1959 * file at this point.
1961 * When called from exit_files(), the VMA has been freed because exit_mm()
1962 * is executed before exit_files().
1964 * When called from exit_files(), the current task is not yet ZOMBIE but we
1965 * flush the PMU state to the context.
1968 pfm_close(struct inode
*inode
, struct file
*filp
)
1971 struct task_struct
*task
;
1972 struct pt_regs
*regs
;
1973 DECLARE_WAITQUEUE(wait
, current
);
1974 unsigned long flags
;
1975 unsigned long smpl_buf_size
= 0UL;
1976 void *smpl_buf_addr
= NULL
;
1977 int free_possible
= 1;
1978 int state
, is_system
;
1980 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1982 if (PFM_IS_FILE(filp
) == 0) {
1983 DPRINT(("bad magic\n"));
1987 ctx
= (pfm_context_t
*)filp
->private_data
;
1989 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1993 PROTECT_CTX(ctx
, flags
);
1995 state
= ctx
->ctx_state
;
1996 is_system
= ctx
->ctx_fl_system
;
1998 task
= PFM_CTX_TASK(ctx
);
1999 regs
= task_pt_regs(task
);
2001 DPRINT(("ctx_state=%d is_current=%d\n",
2003 task
== current
? 1 : 0));
2006 * if task == current, then pfm_flush() unloaded the context
2008 if (state
== PFM_CTX_UNLOADED
) goto doit
;
2011 * context is loaded/masked and task != current, we need to
2012 * either force an unload or go zombie
2016 * The task is currently blocked or will block after an overflow.
2017 * we must force it to wakeup to get out of the
2018 * MASKED state and transition to the unloaded state by itself.
2020 * This situation is only possible for per-task mode
2022 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2025 * set a "partial" zombie state to be checked
2026 * upon return from down() in pfm_handle_work().
2028 * We cannot use the ZOMBIE state, because it is checked
2029 * by pfm_load_regs() which is called upon wakeup from down().
2030 * In such case, it would free the context and then we would
2031 * return to pfm_handle_work() which would access the
2032 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2033 * but visible to pfm_handle_work().
2035 * For some window of time, we have a zombie context with
2036 * ctx_state = MASKED and not ZOMBIE
2038 ctx
->ctx_fl_going_zombie
= 1;
2041 * force task to wake up from MASKED state
2043 complete(&ctx
->ctx_restart_done
);
2045 DPRINT(("waking up ctx_state=%d\n", state
));
2048 * put ourself to sleep waiting for the other
2049 * task to report completion
2051 * the context is protected by mutex, therefore there
2052 * is no risk of being notified of completion before
2053 * begin actually on the waitq.
2055 set_current_state(TASK_INTERRUPTIBLE
);
2056 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2058 UNPROTECT_CTX(ctx
, flags
);
2061 * XXX: check for signals :
2062 * - ok for explicit close
2063 * - not ok when coming from exit_files()
2068 PROTECT_CTX(ctx
, flags
);
2071 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2072 set_current_state(TASK_RUNNING
);
2075 * context is unloaded at this point
2077 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2079 else if (task
!= current
) {
2082 * switch context to zombie state
2084 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2086 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2088 * cannot free the context on the spot. deferred until
2089 * the task notices the ZOMBIE state
2093 pfm_context_unload(ctx
, NULL
, 0, regs
);
2098 /* reload state, may have changed during opening of critical section */
2099 state
= ctx
->ctx_state
;
2102 * the context is still attached to a task (possibly current)
2103 * we cannot destroy it right now
2107 * we must free the sampling buffer right here because
2108 * we cannot rely on it being cleaned up later by the
2109 * monitored task. It is not possible to free vmalloc'ed
2110 * memory in pfm_load_regs(). Instead, we remove the buffer
2111 * now. should there be subsequent PMU overflow originally
2112 * meant for sampling, the will be converted to spurious
2113 * and that's fine because the monitoring tools is gone anyway.
2115 if (ctx
->ctx_smpl_hdr
) {
2116 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2117 smpl_buf_size
= ctx
->ctx_smpl_size
;
2118 /* no more sampling */
2119 ctx
->ctx_smpl_hdr
= NULL
;
2120 ctx
->ctx_fl_is_sampling
= 0;
2123 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2129 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2132 * UNLOADED that the session has already been unreserved.
2134 if (state
== PFM_CTX_ZOMBIE
) {
2135 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2139 * disconnect file descriptor from context must be done
2142 filp
->private_data
= NULL
;
2145 * if we free on the spot, the context is now completely unreachable
2146 * from the callers side. The monitored task side is also cut, so we
2149 * If we have a deferred free, only the caller side is disconnected.
2151 UNPROTECT_CTX(ctx
, flags
);
2154 * All memory free operations (especially for vmalloc'ed memory)
2155 * MUST be done with interrupts ENABLED.
2157 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2160 * return the memory used by the context
2162 if (free_possible
) pfm_context_free(ctx
);
2168 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2170 DPRINT(("pfm_no_open called\n"));
2176 static const struct file_operations pfm_file_ops
= {
2177 .llseek
= no_llseek
,
2182 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2183 .fasync
= pfm_fasync
,
2184 .release
= pfm_close
,
2189 pfmfs_delete_dentry(struct dentry
*dentry
)
2194 static const struct dentry_operations pfmfs_dentry_operations
= {
2195 .d_delete
= pfmfs_delete_dentry
,
2199 static struct file
*
2200 pfm_alloc_file(pfm_context_t
*ctx
)
2203 struct inode
*inode
;
2209 * allocate a new inode
2211 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2213 return ERR_PTR(-ENOMEM
);
2215 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2217 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2218 inode
->i_uid
= current_fsuid();
2219 inode
->i_gid
= current_fsgid();
2221 sprintf(name
, "[%lu]", inode
->i_ino
);
2223 this.len
= strlen(name
);
2224 this.hash
= inode
->i_ino
;
2227 * allocate a new dcache entry
2229 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2232 return ERR_PTR(-ENOMEM
);
2234 path
.mnt
= mntget(pfmfs_mnt
);
2236 path
.dentry
->d_op
= &pfmfs_dentry_operations
;
2237 d_add(path
.dentry
, inode
);
2239 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2242 return ERR_PTR(-ENFILE
);
2245 file
->f_flags
= O_RDONLY
;
2246 file
->private_data
= ctx
;
2252 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2254 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2257 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2260 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2271 * allocate a sampling buffer and remaps it into the user address space of the task
2274 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2276 struct mm_struct
*mm
= task
->mm
;
2277 struct vm_area_struct
*vma
= NULL
;
2283 * the fixed header + requested size and align to page boundary
2285 size
= PAGE_ALIGN(rsize
);
2287 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2290 * check requested size to avoid Denial-of-service attacks
2291 * XXX: may have to refine this test
2292 * Check against address space limit.
2294 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2297 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2301 * We do the easy to undo allocations first.
2303 * pfm_rvmalloc(), clears the buffer, so there is no leak
2305 smpl_buf
= pfm_rvmalloc(size
);
2306 if (smpl_buf
== NULL
) {
2307 DPRINT(("Can't allocate sampling buffer\n"));
2311 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2314 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2316 DPRINT(("Cannot allocate vma\n"));
2319 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2322 * partially initialize the vma for the sampling buffer
2325 vma
->vm_file
= filp
;
2326 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2327 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2330 * Now we have everything we need and we can initialize
2331 * and connect all the data structures
2334 ctx
->ctx_smpl_hdr
= smpl_buf
;
2335 ctx
->ctx_smpl_size
= size
; /* aligned size */
2338 * Let's do the difficult operations next.
2340 * now we atomically find some area in the address space and
2341 * remap the buffer in it.
2343 down_write(&task
->mm
->mmap_sem
);
2345 /* find some free area in address space, must have mmap sem held */
2346 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2347 if (vma
->vm_start
== 0UL) {
2348 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2349 up_write(&task
->mm
->mmap_sem
);
2352 vma
->vm_end
= vma
->vm_start
+ size
;
2353 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2355 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2357 /* can only be applied to current task, need to have the mm semaphore held when called */
2358 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2359 DPRINT(("Can't remap buffer\n"));
2360 up_write(&task
->mm
->mmap_sem
);
2367 * now insert the vma in the vm list for the process, must be
2368 * done with mmap lock held
2370 insert_vm_struct(mm
, vma
);
2372 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2373 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2375 up_write(&task
->mm
->mmap_sem
);
2378 * keep track of user level virtual address
2380 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2381 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2386 kmem_cache_free(vm_area_cachep
, vma
);
2388 pfm_rvfree(smpl_buf
, size
);
2394 * XXX: do something better here
2397 pfm_bad_permissions(struct task_struct
*task
)
2399 const struct cred
*tcred
;
2400 uid_t uid
= current_uid();
2401 gid_t gid
= current_gid();
2405 tcred
= __task_cred(task
);
2407 /* inspired by ptrace_attach() */
2408 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2417 ret
= ((uid
!= tcred
->euid
)
2418 || (uid
!= tcred
->suid
)
2419 || (uid
!= tcred
->uid
)
2420 || (gid
!= tcred
->egid
)
2421 || (gid
!= tcred
->sgid
)
2422 || (gid
!= tcred
->gid
)) && !capable(CAP_SYS_PTRACE
);
2429 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2435 ctx_flags
= pfx
->ctx_flags
;
2437 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2440 * cannot block in this mode
2442 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2443 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2448 /* probably more to add here */
2454 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2455 unsigned int cpu
, pfarg_context_t
*arg
)
2457 pfm_buffer_fmt_t
*fmt
= NULL
;
2458 unsigned long size
= 0UL;
2460 void *fmt_arg
= NULL
;
2462 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2464 /* invoke and lock buffer format, if found */
2465 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2467 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2472 * buffer argument MUST be contiguous to pfarg_context_t
2474 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2476 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2478 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2480 if (ret
) goto error
;
2482 /* link buffer format and context */
2483 ctx
->ctx_buf_fmt
= fmt
;
2484 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2487 * check if buffer format wants to use perfmon buffer allocation/mapping service
2489 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2490 if (ret
) goto error
;
2494 * buffer is always remapped into the caller's address space
2496 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2497 if (ret
) goto error
;
2499 /* keep track of user address of buffer */
2500 arg
->ctx_smpl_vaddr
= uaddr
;
2502 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2509 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2514 * install reset values for PMC.
2516 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2517 if (PMC_IS_IMPL(i
) == 0) continue;
2518 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2519 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2522 * PMD registers are set to 0UL when the context in memset()
2526 * On context switched restore, we must restore ALL pmc and ALL pmd even
2527 * when they are not actively used by the task. In UP, the incoming process
2528 * may otherwise pick up left over PMC, PMD state from the previous process.
2529 * As opposed to PMD, stale PMC can cause harm to the incoming
2530 * process because they may change what is being measured.
2531 * Therefore, we must systematically reinstall the entire
2532 * PMC state. In SMP, the same thing is possible on the
2533 * same CPU but also on between 2 CPUs.
2535 * The problem with PMD is information leaking especially
2536 * to user level when psr.sp=0
2538 * There is unfortunately no easy way to avoid this problem
2539 * on either UP or SMP. This definitively slows down the
2540 * pfm_load_regs() function.
2544 * bitmask of all PMCs accessible to this context
2546 * PMC0 is treated differently.
2548 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2551 * bitmask of all PMDs that are accessible to this context
2553 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2555 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2558 * useful in case of re-enable after disable
2560 ctx
->ctx_used_ibrs
[0] = 0UL;
2561 ctx
->ctx_used_dbrs
[0] = 0UL;
2565 pfm_ctx_getsize(void *arg
, size_t *sz
)
2567 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2568 pfm_buffer_fmt_t
*fmt
;
2572 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2574 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2576 DPRINT(("cannot find buffer format\n"));
2579 /* get just enough to copy in user parameters */
2580 *sz
= fmt
->fmt_arg_size
;
2581 DPRINT(("arg_size=%lu\n", *sz
));
2589 * cannot attach if :
2591 * - task not owned by caller
2592 * - task incompatible with context mode
2595 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2598 * no kernel task or task not owner by caller
2600 if (task
->mm
== NULL
) {
2601 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2604 if (pfm_bad_permissions(task
)) {
2605 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2609 * cannot block in self-monitoring mode
2611 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2612 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2616 if (task
->exit_state
== EXIT_ZOMBIE
) {
2617 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2622 * always ok for self
2624 if (task
== current
) return 0;
2626 if (!task_is_stopped_or_traced(task
)) {
2627 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2631 * make sure the task is off any CPU
2633 wait_task_inactive(task
, 0);
2635 /* more to come... */
2641 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2643 struct task_struct
*p
= current
;
2646 /* XXX: need to add more checks here */
2647 if (pid
< 2) return -EPERM
;
2649 if (pid
!= task_pid_vnr(current
)) {
2651 read_lock(&tasklist_lock
);
2653 p
= find_task_by_vpid(pid
);
2655 /* make sure task cannot go away while we operate on it */
2656 if (p
) get_task_struct(p
);
2658 read_unlock(&tasklist_lock
);
2660 if (p
== NULL
) return -ESRCH
;
2663 ret
= pfm_task_incompatible(ctx
, p
);
2666 } else if (p
!= current
) {
2675 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2677 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2684 /* let's check the arguments first */
2685 ret
= pfarg_is_sane(current
, req
);
2689 ctx_flags
= req
->ctx_flags
;
2693 fd
= get_unused_fd();
2697 ctx
= pfm_context_alloc(ctx_flags
);
2701 filp
= pfm_alloc_file(ctx
);
2703 ret
= PTR_ERR(filp
);
2707 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2710 * does the user want to sample?
2712 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2713 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2718 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2723 ctx
->ctx_fl_excl_idle
,
2728 * initialize soft PMU state
2730 pfm_reset_pmu_state(ctx
);
2732 fd_install(fd
, filp
);
2737 path
= filp
->f_path
;
2741 if (ctx
->ctx_buf_fmt
) {
2742 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2745 pfm_context_free(ctx
);
2752 static inline unsigned long
2753 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2755 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2756 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2757 extern unsigned long carta_random32 (unsigned long seed
);
2759 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2760 new_seed
= carta_random32(old_seed
);
2761 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2762 if ((mask
>> 32) != 0)
2763 /* construct a full 64-bit random value: */
2764 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2765 reg
->seed
= new_seed
;
2772 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2774 unsigned long mask
= ovfl_regs
[0];
2775 unsigned long reset_others
= 0UL;
2780 * now restore reset value on sampling overflowed counters
2782 mask
>>= PMU_FIRST_COUNTER
;
2783 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2785 if ((mask
& 0x1UL
) == 0UL) continue;
2787 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2788 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2790 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2794 * Now take care of resetting the other registers
2796 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2798 if ((reset_others
& 0x1) == 0) continue;
2800 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2802 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2803 is_long_reset
? "long" : "short", i
, val
));
2808 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2810 unsigned long mask
= ovfl_regs
[0];
2811 unsigned long reset_others
= 0UL;
2815 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2817 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2818 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2823 * now restore reset value on sampling overflowed counters
2825 mask
>>= PMU_FIRST_COUNTER
;
2826 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2828 if ((mask
& 0x1UL
) == 0UL) continue;
2830 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2831 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2833 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2835 pfm_write_soft_counter(ctx
, i
, val
);
2839 * Now take care of resetting the other registers
2841 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2843 if ((reset_others
& 0x1) == 0) continue;
2845 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2847 if (PMD_IS_COUNTING(i
)) {
2848 pfm_write_soft_counter(ctx
, i
, val
);
2850 ia64_set_pmd(i
, val
);
2852 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2853 is_long_reset
? "long" : "short", i
, val
));
2859 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2861 struct task_struct
*task
;
2862 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2863 unsigned long value
, pmc_pm
;
2864 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2865 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2866 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2867 int is_monitor
, is_counting
, state
;
2869 pfm_reg_check_t wr_func
;
2870 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2872 state
= ctx
->ctx_state
;
2873 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2874 is_system
= ctx
->ctx_fl_system
;
2875 task
= ctx
->ctx_task
;
2876 impl_pmds
= pmu_conf
->impl_pmds
[0];
2878 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2882 * In system wide and when the context is loaded, access can only happen
2883 * when the caller is running on the CPU being monitored by the session.
2884 * It does not have to be the owner (ctx_task) of the context per se.
2886 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2887 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2890 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2892 expert_mode
= pfm_sysctl
.expert_mode
;
2894 for (i
= 0; i
< count
; i
++, req
++) {
2896 cnum
= req
->reg_num
;
2897 reg_flags
= req
->reg_flags
;
2898 value
= req
->reg_value
;
2899 smpl_pmds
= req
->reg_smpl_pmds
[0];
2900 reset_pmds
= req
->reg_reset_pmds
[0];
2904 if (cnum
>= PMU_MAX_PMCS
) {
2905 DPRINT(("pmc%u is invalid\n", cnum
));
2909 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2910 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2911 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2912 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2915 * we reject all non implemented PMC as well
2916 * as attempts to modify PMC[0-3] which are used
2917 * as status registers by the PMU
2919 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2920 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2923 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2925 * If the PMC is a monitor, then if the value is not the default:
2926 * - system-wide session: PMCx.pm=1 (privileged monitor)
2927 * - per-task : PMCx.pm=0 (user monitor)
2929 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2930 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2939 * enforce generation of overflow interrupt. Necessary on all
2942 value
|= 1 << PMU_PMC_OI
;
2944 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2945 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2948 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2950 /* verify validity of smpl_pmds */
2951 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2952 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2956 /* verify validity of reset_pmds */
2957 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2958 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2962 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2963 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2966 /* eventid on non-counting monitors are ignored */
2970 * execute write checker, if any
2972 if (likely(expert_mode
== 0 && wr_func
)) {
2973 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2974 if (ret
) goto error
;
2979 * no error on this register
2981 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2984 * Now we commit the changes to the software state
2988 * update overflow information
2992 * full flag update each time a register is programmed
2994 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2996 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2997 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2998 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3001 * Mark all PMDS to be accessed as used.
3003 * We do not keep track of PMC because we have to
3004 * systematically restore ALL of them.
3006 * We do not update the used_monitors mask, because
3007 * if we have not programmed them, then will be in
3008 * a quiescent state, therefore we will not need to
3009 * mask/restore then when context is MASKED.
3011 CTX_USED_PMD(ctx
, reset_pmds
);
3012 CTX_USED_PMD(ctx
, smpl_pmds
);
3014 * make sure we do not try to reset on
3015 * restart because we have established new values
3017 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3020 * Needed in case the user does not initialize the equivalent
3021 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3022 * possible leak here.
3024 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3027 * keep track of the monitor PMC that we are using.
3028 * we save the value of the pmc in ctx_pmcs[] and if
3029 * the monitoring is not stopped for the context we also
3030 * place it in the saved state area so that it will be
3031 * picked up later by the context switch code.
3033 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3035 * The value in th_pmcs[] may be modified on overflow, i.e., when
3036 * monitoring needs to be stopped.
3038 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3041 * update context state
3043 ctx
->ctx_pmcs
[cnum
] = value
;
3047 * write thread state
3049 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3052 * write hardware register if we can
3054 if (can_access_pmu
) {
3055 ia64_set_pmc(cnum
, value
);
3060 * per-task SMP only here
3062 * we are guaranteed that the task is not running on the other CPU,
3063 * we indicate that this PMD will need to be reloaded if the task
3064 * is rescheduled on the CPU it ran last on.
3066 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3071 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3077 ctx
->ctx_all_pmcs
[0],
3078 ctx
->ctx_used_pmds
[0],
3079 ctx
->ctx_pmds
[cnum
].eventid
,
3082 ctx
->ctx_reload_pmcs
[0],
3083 ctx
->ctx_used_monitors
[0],
3084 ctx
->ctx_ovfl_regs
[0]));
3088 * make sure the changes are visible
3090 if (can_access_pmu
) ia64_srlz_d();
3094 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3099 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3101 struct task_struct
*task
;
3102 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3103 unsigned long value
, hw_value
, ovfl_mask
;
3105 int i
, can_access_pmu
= 0, state
;
3106 int is_counting
, is_loaded
, is_system
, expert_mode
;
3108 pfm_reg_check_t wr_func
;
3111 state
= ctx
->ctx_state
;
3112 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3113 is_system
= ctx
->ctx_fl_system
;
3114 ovfl_mask
= pmu_conf
->ovfl_val
;
3115 task
= ctx
->ctx_task
;
3117 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3120 * on both UP and SMP, we can only write to the PMC when the task is
3121 * the owner of the local PMU.
3123 if (likely(is_loaded
)) {
3125 * In system wide and when the context is loaded, access can only happen
3126 * when the caller is running on the CPU being monitored by the session.
3127 * It does not have to be the owner (ctx_task) of the context per se.
3129 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3130 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3133 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3135 expert_mode
= pfm_sysctl
.expert_mode
;
3137 for (i
= 0; i
< count
; i
++, req
++) {
3139 cnum
= req
->reg_num
;
3140 value
= req
->reg_value
;
3142 if (!PMD_IS_IMPL(cnum
)) {
3143 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3146 is_counting
= PMD_IS_COUNTING(cnum
);
3147 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3150 * execute write checker, if any
3152 if (unlikely(expert_mode
== 0 && wr_func
)) {
3153 unsigned long v
= value
;
3155 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3156 if (ret
) goto abort_mission
;
3163 * no error on this register
3165 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3168 * now commit changes to software state
3173 * update virtualized (64bits) counter
3177 * write context state
3179 ctx
->ctx_pmds
[cnum
].lval
= value
;
3182 * when context is load we use the split value
3185 hw_value
= value
& ovfl_mask
;
3186 value
= value
& ~ovfl_mask
;
3190 * update reset values (not just for counters)
3192 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3193 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3196 * update randomization parameters (not just for counters)
3198 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3199 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3202 * update context value
3204 ctx
->ctx_pmds
[cnum
].val
= value
;
3207 * Keep track of what we use
3209 * We do not keep track of PMC because we have to
3210 * systematically restore ALL of them.
3212 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3215 * mark this PMD register used as well
3217 CTX_USED_PMD(ctx
, RDEP(cnum
));
3220 * make sure we do not try to reset on
3221 * restart because we have established new values
3223 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3224 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3229 * write thread state
3231 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3234 * write hardware register if we can
3236 if (can_access_pmu
) {
3237 ia64_set_pmd(cnum
, hw_value
);
3241 * we are guaranteed that the task is not running on the other CPU,
3242 * we indicate that this PMD will need to be reloaded if the task
3243 * is rescheduled on the CPU it ran last on.
3245 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3250 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3251 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3257 ctx
->ctx_pmds
[cnum
].val
,
3258 ctx
->ctx_pmds
[cnum
].short_reset
,
3259 ctx
->ctx_pmds
[cnum
].long_reset
,
3260 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3261 ctx
->ctx_pmds
[cnum
].seed
,
3262 ctx
->ctx_pmds
[cnum
].mask
,
3263 ctx
->ctx_used_pmds
[0],
3264 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3265 ctx
->ctx_reload_pmds
[0],
3266 ctx
->ctx_all_pmds
[0],
3267 ctx
->ctx_ovfl_regs
[0]));
3271 * make changes visible
3273 if (can_access_pmu
) ia64_srlz_d();
3279 * for now, we have only one possibility for error
3281 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3286 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3287 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3288 * interrupt is delivered during the call, it will be kept pending until we leave, making
3289 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3290 * guaranteed to return consistent data to the user, it may simply be old. It is not
3291 * trivial to treat the overflow while inside the call because you may end up in
3292 * some module sampling buffer code causing deadlocks.
3295 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3297 struct task_struct
*task
;
3298 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3299 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3300 unsigned int cnum
, reg_flags
= 0;
3301 int i
, can_access_pmu
= 0, state
;
3302 int is_loaded
, is_system
, is_counting
, expert_mode
;
3304 pfm_reg_check_t rd_func
;
3307 * access is possible when loaded only for
3308 * self-monitoring tasks or in UP mode
3311 state
= ctx
->ctx_state
;
3312 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3313 is_system
= ctx
->ctx_fl_system
;
3314 ovfl_mask
= pmu_conf
->ovfl_val
;
3315 task
= ctx
->ctx_task
;
3317 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3319 if (likely(is_loaded
)) {
3321 * In system wide and when the context is loaded, access can only happen
3322 * when the caller is running on the CPU being monitored by the session.
3323 * It does not have to be the owner (ctx_task) of the context per se.
3325 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3326 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3330 * this can be true when not self-monitoring only in UP
3332 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3334 if (can_access_pmu
) ia64_srlz_d();
3336 expert_mode
= pfm_sysctl
.expert_mode
;
3338 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3344 * on both UP and SMP, we can only read the PMD from the hardware register when
3345 * the task is the owner of the local PMU.
3348 for (i
= 0; i
< count
; i
++, req
++) {
3350 cnum
= req
->reg_num
;
3351 reg_flags
= req
->reg_flags
;
3353 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3355 * we can only read the register that we use. That includes
3356 * the one we explicitly initialize AND the one we want included
3357 * in the sampling buffer (smpl_regs).
3359 * Having this restriction allows optimization in the ctxsw routine
3360 * without compromising security (leaks)
3362 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3364 sval
= ctx
->ctx_pmds
[cnum
].val
;
3365 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3366 is_counting
= PMD_IS_COUNTING(cnum
);
3369 * If the task is not the current one, then we check if the
3370 * PMU state is still in the local live register due to lazy ctxsw.
3371 * If true, then we read directly from the registers.
3373 if (can_access_pmu
){
3374 val
= ia64_get_pmd(cnum
);
3377 * context has been saved
3378 * if context is zombie, then task does not exist anymore.
3379 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3381 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3383 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3387 * XXX: need to check for overflow when loaded
3394 * execute read checker, if any
3396 if (unlikely(expert_mode
== 0 && rd_func
)) {
3397 unsigned long v
= val
;
3398 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3399 if (ret
) goto error
;
3404 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3406 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3409 * update register return value, abort all if problem during copy.
3410 * we only modify the reg_flags field. no check mode is fine because
3411 * access has been verified upfront in sys_perfmonctl().
3413 req
->reg_value
= val
;
3414 req
->reg_flags
= reg_flags
;
3415 req
->reg_last_reset_val
= lval
;
3421 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3426 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3430 if (req
== NULL
) return -EINVAL
;
3432 ctx
= GET_PMU_CTX();
3434 if (ctx
== NULL
) return -EINVAL
;
3437 * for now limit to current task, which is enough when calling
3438 * from overflow handler
3440 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3442 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3444 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3447 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3451 if (req
== NULL
) return -EINVAL
;
3453 ctx
= GET_PMU_CTX();
3455 if (ctx
== NULL
) return -EINVAL
;
3458 * for now limit to current task, which is enough when calling
3459 * from overflow handler
3461 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3463 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3465 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3468 * Only call this function when a process it trying to
3469 * write the debug registers (reading is always allowed)
3472 pfm_use_debug_registers(struct task_struct
*task
)
3474 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3475 unsigned long flags
;
3478 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3480 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3485 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3488 * Even on SMP, we do not need to use an atomic here because
3489 * the only way in is via ptrace() and this is possible only when the
3490 * process is stopped. Even in the case where the ctxsw out is not totally
3491 * completed by the time we come here, there is no way the 'stopped' process
3492 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3493 * So this is always safe.
3495 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3500 * We cannot allow setting breakpoints when system wide monitoring
3501 * sessions are using the debug registers.
3503 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3506 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3508 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3509 pfm_sessions
.pfs_ptrace_use_dbregs
,
3510 pfm_sessions
.pfs_sys_use_dbregs
,
3511 task_pid_nr(task
), ret
));
3519 * This function is called for every task that exits with the
3520 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3521 * able to use the debug registers for debugging purposes via
3522 * ptrace(). Therefore we know it was not using them for
3523 * performance monitoring, so we only decrement the number
3524 * of "ptraced" debug register users to keep the count up to date
3527 pfm_release_debug_registers(struct task_struct
*task
)
3529 unsigned long flags
;
3532 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3535 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3536 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3539 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3548 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3550 struct task_struct
*task
;
3551 pfm_buffer_fmt_t
*fmt
;
3552 pfm_ovfl_ctrl_t rst_ctrl
;
3553 int state
, is_system
;
3556 state
= ctx
->ctx_state
;
3557 fmt
= ctx
->ctx_buf_fmt
;
3558 is_system
= ctx
->ctx_fl_system
;
3559 task
= PFM_CTX_TASK(ctx
);
3562 case PFM_CTX_MASKED
:
3564 case PFM_CTX_LOADED
:
3565 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3567 case PFM_CTX_UNLOADED
:
3568 case PFM_CTX_ZOMBIE
:
3569 DPRINT(("invalid state=%d\n", state
));
3572 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3577 * In system wide and when the context is loaded, access can only happen
3578 * when the caller is running on the CPU being monitored by the session.
3579 * It does not have to be the owner (ctx_task) of the context per se.
3581 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3582 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3587 if (unlikely(task
== NULL
)) {
3588 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3592 if (task
== current
|| is_system
) {
3594 fmt
= ctx
->ctx_buf_fmt
;
3596 DPRINT(("restarting self %d ovfl=0x%lx\n",
3598 ctx
->ctx_ovfl_regs
[0]));
3600 if (CTX_HAS_SMPL(ctx
)) {
3602 prefetch(ctx
->ctx_smpl_hdr
);
3604 rst_ctrl
.bits
.mask_monitoring
= 0;
3605 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3607 if (state
== PFM_CTX_LOADED
)
3608 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3610 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3612 rst_ctrl
.bits
.mask_monitoring
= 0;
3613 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3617 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3618 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3620 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3621 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3623 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3625 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3627 // cannot use pfm_stop_monitoring(task, regs);
3631 * clear overflowed PMD mask to remove any stale information
3633 ctx
->ctx_ovfl_regs
[0] = 0UL;
3636 * back to LOADED state
3638 ctx
->ctx_state
= PFM_CTX_LOADED
;
3641 * XXX: not really useful for self monitoring
3643 ctx
->ctx_fl_can_restart
= 0;
3649 * restart another task
3653 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3654 * one is seen by the task.
3656 if (state
== PFM_CTX_MASKED
) {
3657 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3659 * will prevent subsequent restart before this one is
3660 * seen by other task
3662 ctx
->ctx_fl_can_restart
= 0;
3666 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3667 * the task is blocked or on its way to block. That's the normal
3668 * restart path. If the monitoring is not masked, then the task
3669 * can be actively monitoring and we cannot directly intervene.
3670 * Therefore we use the trap mechanism to catch the task and
3671 * force it to reset the buffer/reset PMDs.
3673 * if non-blocking, then we ensure that the task will go into
3674 * pfm_handle_work() before returning to user mode.
3676 * We cannot explicitly reset another task, it MUST always
3677 * be done by the task itself. This works for system wide because
3678 * the tool that is controlling the session is logically doing
3679 * "self-monitoring".
3681 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3682 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3683 complete(&ctx
->ctx_restart_done
);
3685 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3687 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3689 PFM_SET_WORK_PENDING(task
, 1);
3691 set_notify_resume(task
);
3694 * XXX: send reschedule if task runs on another CPU
3701 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3703 unsigned int m
= *(unsigned int *)arg
;
3705 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3707 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3710 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3711 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3717 * arg can be NULL and count can be zero for this function
3720 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3722 struct thread_struct
*thread
= NULL
;
3723 struct task_struct
*task
;
3724 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3725 unsigned long flags
;
3730 int i
, can_access_pmu
= 0;
3731 int is_system
, is_loaded
;
3733 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3735 state
= ctx
->ctx_state
;
3736 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3737 is_system
= ctx
->ctx_fl_system
;
3738 task
= ctx
->ctx_task
;
3740 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3743 * on both UP and SMP, we can only write to the PMC when the task is
3744 * the owner of the local PMU.
3747 thread
= &task
->thread
;
3749 * In system wide and when the context is loaded, access can only happen
3750 * when the caller is running on the CPU being monitored by the session.
3751 * It does not have to be the owner (ctx_task) of the context per se.
3753 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3754 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3757 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3761 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3762 * ensuring that no real breakpoint can be installed via this call.
3764 * IMPORTANT: regs can be NULL in this function
3767 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3770 * don't bother if we are loaded and task is being debugged
3772 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3773 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3778 * check for debug registers in system wide mode
3780 * If though a check is done in pfm_context_load(),
3781 * we must repeat it here, in case the registers are
3782 * written after the context is loaded
3787 if (first_time
&& is_system
) {
3788 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3791 pfm_sessions
.pfs_sys_use_dbregs
++;
3796 if (ret
!= 0) return ret
;
3799 * mark ourself as user of the debug registers for
3802 ctx
->ctx_fl_using_dbreg
= 1;
3805 * clear hardware registers to make sure we don't
3806 * pick up stale state.
3808 * for a system wide session, we do not use
3809 * thread.dbr, thread.ibr because this process
3810 * never leaves the current CPU and the state
3811 * is shared by all processes running on it
3813 if (first_time
&& can_access_pmu
) {
3814 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3815 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3816 ia64_set_ibr(i
, 0UL);
3817 ia64_dv_serialize_instruction();
3820 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3821 ia64_set_dbr(i
, 0UL);
3822 ia64_dv_serialize_data();
3828 * Now install the values into the registers
3830 for (i
= 0; i
< count
; i
++, req
++) {
3832 rnum
= req
->dbreg_num
;
3833 dbreg
.val
= req
->dbreg_value
;
3837 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3838 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3839 rnum
, dbreg
.val
, mode
, i
, count
));
3845 * make sure we do not install enabled breakpoint
3848 if (mode
== PFM_CODE_RR
)
3849 dbreg
.ibr
.ibr_x
= 0;
3851 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3854 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3857 * Debug registers, just like PMC, can only be modified
3858 * by a kernel call. Moreover, perfmon() access to those
3859 * registers are centralized in this routine. The hardware
3860 * does not modify the value of these registers, therefore,
3861 * if we save them as they are written, we can avoid having
3862 * to save them on context switch out. This is made possible
3863 * by the fact that when perfmon uses debug registers, ptrace()
3864 * won't be able to modify them concurrently.
3866 if (mode
== PFM_CODE_RR
) {
3867 CTX_USED_IBR(ctx
, rnum
);
3869 if (can_access_pmu
) {
3870 ia64_set_ibr(rnum
, dbreg
.val
);
3871 ia64_dv_serialize_instruction();
3874 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3876 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3877 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3879 CTX_USED_DBR(ctx
, rnum
);
3881 if (can_access_pmu
) {
3882 ia64_set_dbr(rnum
, dbreg
.val
);
3883 ia64_dv_serialize_data();
3885 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3887 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3888 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3896 * in case it was our first attempt, we undo the global modifications
3900 if (ctx
->ctx_fl_system
) {
3901 pfm_sessions
.pfs_sys_use_dbregs
--;
3904 ctx
->ctx_fl_using_dbreg
= 0;
3907 * install error return flag
3909 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3915 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3917 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3921 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3923 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3927 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3931 if (req
== NULL
) return -EINVAL
;
3933 ctx
= GET_PMU_CTX();
3935 if (ctx
== NULL
) return -EINVAL
;
3938 * for now limit to current task, which is enough when calling
3939 * from overflow handler
3941 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3943 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3945 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3948 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3952 if (req
== NULL
) return -EINVAL
;
3954 ctx
= GET_PMU_CTX();
3956 if (ctx
== NULL
) return -EINVAL
;
3959 * for now limit to current task, which is enough when calling
3960 * from overflow handler
3962 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3964 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3966 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3970 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3972 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3974 req
->ft_version
= PFM_VERSION
;
3979 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3981 struct pt_regs
*tregs
;
3982 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3983 int state
, is_system
;
3985 state
= ctx
->ctx_state
;
3986 is_system
= ctx
->ctx_fl_system
;
3989 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3991 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3994 * In system wide and when the context is loaded, access can only happen
3995 * when the caller is running on the CPU being monitored by the session.
3996 * It does not have to be the owner (ctx_task) of the context per se.
3998 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3999 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4002 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4003 task_pid_nr(PFM_CTX_TASK(ctx
)),
4007 * in system mode, we need to update the PMU directly
4008 * and the user level state of the caller, which may not
4009 * necessarily be the creator of the context.
4013 * Update local PMU first
4017 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4021 * update local cpuinfo
4023 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4026 * stop monitoring, does srlz.i
4031 * stop monitoring in the caller
4033 ia64_psr(regs
)->pp
= 0;
4041 if (task
== current
) {
4042 /* stop monitoring at kernel level */
4046 * stop monitoring at the user level
4048 ia64_psr(regs
)->up
= 0;
4050 tregs
= task_pt_regs(task
);
4053 * stop monitoring at the user level
4055 ia64_psr(tregs
)->up
= 0;
4058 * monitoring disabled in kernel at next reschedule
4060 ctx
->ctx_saved_psr_up
= 0;
4061 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4068 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4070 struct pt_regs
*tregs
;
4071 int state
, is_system
;
4073 state
= ctx
->ctx_state
;
4074 is_system
= ctx
->ctx_fl_system
;
4076 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4079 * In system wide and when the context is loaded, access can only happen
4080 * when the caller is running on the CPU being monitored by the session.
4081 * It does not have to be the owner (ctx_task) of the context per se.
4083 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4084 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4089 * in system mode, we need to update the PMU directly
4090 * and the user level state of the caller, which may not
4091 * necessarily be the creator of the context.
4096 * set user level psr.pp for the caller
4098 ia64_psr(regs
)->pp
= 1;
4101 * now update the local PMU and cpuinfo
4103 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4106 * start monitoring at kernel level
4111 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4121 if (ctx
->ctx_task
== current
) {
4123 /* start monitoring at kernel level */
4127 * activate monitoring at user level
4129 ia64_psr(regs
)->up
= 1;
4132 tregs
= task_pt_regs(ctx
->ctx_task
);
4135 * start monitoring at the kernel level the next
4136 * time the task is scheduled
4138 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4141 * activate monitoring at user level
4143 ia64_psr(tregs
)->up
= 1;
4149 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4151 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4156 for (i
= 0; i
< count
; i
++, req
++) {
4158 cnum
= req
->reg_num
;
4160 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4162 req
->reg_value
= PMC_DFL_VAL(cnum
);
4164 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4166 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4171 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4176 pfm_check_task_exist(pfm_context_t
*ctx
)
4178 struct task_struct
*g
, *t
;
4181 read_lock(&tasklist_lock
);
4183 do_each_thread (g
, t
) {
4184 if (t
->thread
.pfm_context
== ctx
) {
4188 } while_each_thread (g
, t
);
4190 read_unlock(&tasklist_lock
);
4192 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4198 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4200 struct task_struct
*task
;
4201 struct thread_struct
*thread
;
4202 struct pfm_context_t
*old
;
4203 unsigned long flags
;
4205 struct task_struct
*owner_task
= NULL
;
4207 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4208 unsigned long *pmcs_source
, *pmds_source
;
4211 int state
, is_system
, set_dbregs
= 0;
4213 state
= ctx
->ctx_state
;
4214 is_system
= ctx
->ctx_fl_system
;
4216 * can only load from unloaded or terminated state
4218 if (state
!= PFM_CTX_UNLOADED
) {
4219 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4225 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4227 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4228 DPRINT(("cannot use blocking mode on self\n"));
4232 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4234 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4241 * system wide is self monitoring only
4243 if (is_system
&& task
!= current
) {
4244 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4249 thread
= &task
->thread
;
4253 * cannot load a context which is using range restrictions,
4254 * into a task that is being debugged.
4256 if (ctx
->ctx_fl_using_dbreg
) {
4257 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4259 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4265 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4266 DPRINT(("cannot load [%d] dbregs in use\n",
4267 task_pid_nr(task
)));
4270 pfm_sessions
.pfs_sys_use_dbregs
++;
4271 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4278 if (ret
) goto error
;
4282 * SMP system-wide monitoring implies self-monitoring.
4284 * The programming model expects the task to
4285 * be pinned on a CPU throughout the session.
4286 * Here we take note of the current CPU at the
4287 * time the context is loaded. No call from
4288 * another CPU will be allowed.
4290 * The pinning via shed_setaffinity()
4291 * must be done by the calling task prior
4294 * systemwide: keep track of CPU this session is supposed to run on
4296 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4300 * now reserve the session
4302 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4303 if (ret
) goto error
;
4306 * task is necessarily stopped at this point.
4308 * If the previous context was zombie, then it got removed in
4309 * pfm_save_regs(). Therefore we should not see it here.
4310 * If we see a context, then this is an active context
4312 * XXX: needs to be atomic
4314 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4315 thread
->pfm_context
, ctx
));
4318 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4320 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4324 pfm_reset_msgq(ctx
);
4326 ctx
->ctx_state
= PFM_CTX_LOADED
;
4329 * link context to task
4331 ctx
->ctx_task
= task
;
4335 * we load as stopped
4337 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4338 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4340 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4342 thread
->flags
|= IA64_THREAD_PM_VALID
;
4346 * propagate into thread-state
4348 pfm_copy_pmds(task
, ctx
);
4349 pfm_copy_pmcs(task
, ctx
);
4351 pmcs_source
= ctx
->th_pmcs
;
4352 pmds_source
= ctx
->th_pmds
;
4355 * always the case for system-wide
4357 if (task
== current
) {
4359 if (is_system
== 0) {
4361 /* allow user level control */
4362 ia64_psr(regs
)->sp
= 0;
4363 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4365 SET_LAST_CPU(ctx
, smp_processor_id());
4367 SET_ACTIVATION(ctx
);
4370 * push the other task out, if any
4372 owner_task
= GET_PMU_OWNER();
4373 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4377 * load all PMD from ctx to PMU (as opposed to thread state)
4378 * restore all PMC from ctx to PMU
4380 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4381 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4383 ctx
->ctx_reload_pmcs
[0] = 0UL;
4384 ctx
->ctx_reload_pmds
[0] = 0UL;
4387 * guaranteed safe by earlier check against DBG_VALID
4389 if (ctx
->ctx_fl_using_dbreg
) {
4390 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4391 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4396 SET_PMU_OWNER(task
, ctx
);
4398 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4401 * when not current, task MUST be stopped, so this is safe
4403 regs
= task_pt_regs(task
);
4405 /* force a full reload */
4406 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4407 SET_LAST_CPU(ctx
, -1);
4409 /* initial saved psr (stopped) */
4410 ctx
->ctx_saved_psr_up
= 0UL;
4411 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4417 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4420 * we must undo the dbregs setting (for system-wide)
4422 if (ret
&& set_dbregs
) {
4424 pfm_sessions
.pfs_sys_use_dbregs
--;
4428 * release task, there is now a link with the context
4430 if (is_system
== 0 && task
!= current
) {
4434 ret
= pfm_check_task_exist(ctx
);
4436 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4437 ctx
->ctx_task
= NULL
;
4445 * in this function, we do not need to increase the use count
4446 * for the task via get_task_struct(), because we hold the
4447 * context lock. If the task were to disappear while having
4448 * a context attached, it would go through pfm_exit_thread()
4449 * which also grabs the context lock and would therefore be blocked
4450 * until we are here.
4452 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4455 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4457 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4458 struct pt_regs
*tregs
;
4459 int prev_state
, is_system
;
4462 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4464 prev_state
= ctx
->ctx_state
;
4465 is_system
= ctx
->ctx_fl_system
;
4468 * unload only when necessary
4470 if (prev_state
== PFM_CTX_UNLOADED
) {
4471 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4476 * clear psr and dcr bits
4478 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4479 if (ret
) return ret
;
4481 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4484 * in system mode, we need to update the PMU directly
4485 * and the user level state of the caller, which may not
4486 * necessarily be the creator of the context.
4493 * local PMU is taken care of in pfm_stop()
4495 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4496 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4499 * save PMDs in context
4502 pfm_flush_pmds(current
, ctx
);
4505 * at this point we are done with the PMU
4506 * so we can unreserve the resource.
4508 if (prev_state
!= PFM_CTX_ZOMBIE
)
4509 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4512 * disconnect context from task
4514 task
->thread
.pfm_context
= NULL
;
4516 * disconnect task from context
4518 ctx
->ctx_task
= NULL
;
4521 * There is nothing more to cleanup here.
4529 tregs
= task
== current
? regs
: task_pt_regs(task
);
4531 if (task
== current
) {
4533 * cancel user level control
4535 ia64_psr(regs
)->sp
= 1;
4537 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4540 * save PMDs to context
4543 pfm_flush_pmds(task
, ctx
);
4546 * at this point we are done with the PMU
4547 * so we can unreserve the resource.
4549 * when state was ZOMBIE, we have already unreserved.
4551 if (prev_state
!= PFM_CTX_ZOMBIE
)
4552 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4555 * reset activation counter and psr
4557 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4558 SET_LAST_CPU(ctx
, -1);
4561 * PMU state will not be restored
4563 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4566 * break links between context and task
4568 task
->thread
.pfm_context
= NULL
;
4569 ctx
->ctx_task
= NULL
;
4571 PFM_SET_WORK_PENDING(task
, 0);
4573 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4574 ctx
->ctx_fl_can_restart
= 0;
4575 ctx
->ctx_fl_going_zombie
= 0;
4577 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4584 * called only from exit_thread(): task == current
4585 * we come here only if current has a context attached (loaded or masked)
4588 pfm_exit_thread(struct task_struct
*task
)
4591 unsigned long flags
;
4592 struct pt_regs
*regs
= task_pt_regs(task
);
4596 ctx
= PFM_GET_CTX(task
);
4598 PROTECT_CTX(ctx
, flags
);
4600 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4602 state
= ctx
->ctx_state
;
4604 case PFM_CTX_UNLOADED
:
4606 * only comes to this function if pfm_context is not NULL, i.e., cannot
4607 * be in unloaded state
4609 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4611 case PFM_CTX_LOADED
:
4612 case PFM_CTX_MASKED
:
4613 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4615 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4617 DPRINT(("ctx unloaded for current state was %d\n", state
));
4619 pfm_end_notify_user(ctx
);
4621 case PFM_CTX_ZOMBIE
:
4622 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4624 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4629 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4632 UNPROTECT_CTX(ctx
, flags
);
4634 { u64 psr
= pfm_get_psr();
4635 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4636 BUG_ON(GET_PMU_OWNER());
4637 BUG_ON(ia64_psr(regs
)->up
);
4638 BUG_ON(ia64_psr(regs
)->pp
);
4642 * All memory free operations (especially for vmalloc'ed memory)
4643 * MUST be done with interrupts ENABLED.
4645 if (free_ok
) pfm_context_free(ctx
);
4649 * functions MUST be listed in the increasing order of their index (see permfon.h)
4651 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4652 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4653 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4654 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4655 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4657 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4658 /* 0 */PFM_CMD_NONE
,
4659 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4660 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4661 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4662 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4663 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4664 /* 6 */PFM_CMD_NONE
,
4665 /* 7 */PFM_CMD_NONE
,
4666 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4667 /* 9 */PFM_CMD_NONE
,
4668 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4669 /* 11 */PFM_CMD_NONE
,
4670 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4671 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4672 /* 14 */PFM_CMD_NONE
,
4673 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4674 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4675 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4676 /* 18 */PFM_CMD_NONE
,
4677 /* 19 */PFM_CMD_NONE
,
4678 /* 20 */PFM_CMD_NONE
,
4679 /* 21 */PFM_CMD_NONE
,
4680 /* 22 */PFM_CMD_NONE
,
4681 /* 23 */PFM_CMD_NONE
,
4682 /* 24 */PFM_CMD_NONE
,
4683 /* 25 */PFM_CMD_NONE
,
4684 /* 26 */PFM_CMD_NONE
,
4685 /* 27 */PFM_CMD_NONE
,
4686 /* 28 */PFM_CMD_NONE
,
4687 /* 29 */PFM_CMD_NONE
,
4688 /* 30 */PFM_CMD_NONE
,
4689 /* 31 */PFM_CMD_NONE
,
4690 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4691 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4693 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4696 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4698 struct task_struct
*task
;
4699 int state
, old_state
;
4702 state
= ctx
->ctx_state
;
4703 task
= ctx
->ctx_task
;
4706 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4710 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4714 task
->state
, PFM_CMD_STOPPED(cmd
)));
4717 * self-monitoring always ok.
4719 * for system-wide the caller can either be the creator of the
4720 * context (to one to which the context is attached to) OR
4721 * a task running on the same CPU as the session.
4723 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4726 * we are monitoring another thread
4729 case PFM_CTX_UNLOADED
:
4731 * if context is UNLOADED we are safe to go
4734 case PFM_CTX_ZOMBIE
:
4736 * no command can operate on a zombie context
4738 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4740 case PFM_CTX_MASKED
:
4742 * PMU state has been saved to software even though
4743 * the thread may still be running.
4745 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4749 * context is LOADED or MASKED. Some commands may need to have
4752 * We could lift this restriction for UP but it would mean that
4753 * the user has no guarantee the task would not run between
4754 * two successive calls to perfmonctl(). That's probably OK.
4755 * If this user wants to ensure the task does not run, then
4756 * the task must be stopped.
4758 if (PFM_CMD_STOPPED(cmd
)) {
4759 if (!task_is_stopped_or_traced(task
)) {
4760 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4764 * task is now stopped, wait for ctxsw out
4766 * This is an interesting point in the code.
4767 * We need to unprotect the context because
4768 * the pfm_save_regs() routines needs to grab
4769 * the same lock. There are danger in doing
4770 * this because it leaves a window open for
4771 * another task to get access to the context
4772 * and possibly change its state. The one thing
4773 * that is not possible is for the context to disappear
4774 * because we are protected by the VFS layer, i.e.,
4775 * get_fd()/put_fd().
4779 UNPROTECT_CTX(ctx
, flags
);
4781 wait_task_inactive(task
, 0);
4783 PROTECT_CTX(ctx
, flags
);
4786 * we must recheck to verify if state has changed
4788 if (ctx
->ctx_state
!= old_state
) {
4789 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4797 * system-call entry point (must return long)
4800 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4802 struct file
*file
= NULL
;
4803 pfm_context_t
*ctx
= NULL
;
4804 unsigned long flags
= 0UL;
4805 void *args_k
= NULL
;
4806 long ret
; /* will expand int return types */
4807 size_t base_sz
, sz
, xtra_sz
= 0;
4808 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4809 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4810 int (*getsize
)(void *arg
, size_t *sz
);
4811 #define PFM_MAX_ARGSIZE 4096
4814 * reject any call if perfmon was disabled at initialization
4816 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4818 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4819 DPRINT(("invalid cmd=%d\n", cmd
));
4823 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4824 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4825 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4826 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4827 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4829 if (unlikely(func
== NULL
)) {
4830 DPRINT(("invalid cmd=%d\n", cmd
));
4834 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4842 * check if number of arguments matches what the command expects
4844 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4848 sz
= xtra_sz
+ base_sz
*count
;
4850 * limit abuse to min page size
4852 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4853 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4858 * allocate default-sized argument buffer
4860 if (likely(count
&& args_k
== NULL
)) {
4861 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4862 if (args_k
== NULL
) return -ENOMEM
;
4870 * assume sz = 0 for command without parameters
4872 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4873 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4878 * check if command supports extra parameters
4880 if (completed_args
== 0 && getsize
) {
4882 * get extra parameters size (based on main argument)
4884 ret
= (*getsize
)(args_k
, &xtra_sz
);
4885 if (ret
) goto error_args
;
4889 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4891 /* retry if necessary */
4892 if (likely(xtra_sz
)) goto restart_args
;
4895 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4900 if (unlikely(file
== NULL
)) {
4901 DPRINT(("invalid fd %d\n", fd
));
4904 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4905 DPRINT(("fd %d not related to perfmon\n", fd
));
4909 ctx
= (pfm_context_t
*)file
->private_data
;
4910 if (unlikely(ctx
== NULL
)) {
4911 DPRINT(("no context for fd %d\n", fd
));
4914 prefetch(&ctx
->ctx_state
);
4916 PROTECT_CTX(ctx
, flags
);
4919 * check task is stopped
4921 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4922 if (unlikely(ret
)) goto abort_locked
;
4925 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4931 DPRINT(("context unlocked\n"));
4932 UNPROTECT_CTX(ctx
, flags
);
4935 /* copy argument back to user, if needed */
4936 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4944 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4950 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4952 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4953 pfm_ovfl_ctrl_t rst_ctrl
;
4957 state
= ctx
->ctx_state
;
4959 * Unlock sampling buffer and reset index atomically
4960 * XXX: not really needed when blocking
4962 if (CTX_HAS_SMPL(ctx
)) {
4964 rst_ctrl
.bits
.mask_monitoring
= 0;
4965 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4967 if (state
== PFM_CTX_LOADED
)
4968 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4970 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4972 rst_ctrl
.bits
.mask_monitoring
= 0;
4973 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4977 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4978 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4980 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4981 DPRINT(("resuming monitoring\n"));
4982 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4984 DPRINT(("stopping monitoring\n"));
4985 //pfm_stop_monitoring(current, regs);
4987 ctx
->ctx_state
= PFM_CTX_LOADED
;
4992 * context MUST BE LOCKED when calling
4993 * can only be called for current
4996 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5000 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
5002 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5004 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
5008 * and wakeup controlling task, indicating we are now disconnected
5010 wake_up_interruptible(&ctx
->ctx_zombieq
);
5013 * given that context is still locked, the controlling
5014 * task will only get access when we return from
5015 * pfm_handle_work().
5019 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5022 * pfm_handle_work() can be called with interrupts enabled
5023 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5024 * call may sleep, therefore we must re-enable interrupts
5025 * to avoid deadlocks. It is safe to do so because this function
5026 * is called ONLY when returning to user level (pUStk=1), in which case
5027 * there is no risk of kernel stack overflow due to deep
5028 * interrupt nesting.
5031 pfm_handle_work(void)
5034 struct pt_regs
*regs
;
5035 unsigned long flags
, dummy_flags
;
5036 unsigned long ovfl_regs
;
5037 unsigned int reason
;
5040 ctx
= PFM_GET_CTX(current
);
5042 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
5043 task_pid_nr(current
));
5047 PROTECT_CTX(ctx
, flags
);
5049 PFM_SET_WORK_PENDING(current
, 0);
5051 regs
= task_pt_regs(current
);
5054 * extract reason for being here and clear
5056 reason
= ctx
->ctx_fl_trap_reason
;
5057 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5058 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5060 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5063 * must be done before we check for simple-reset mode
5065 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5068 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5069 if (reason
== PFM_TRAP_REASON_RESET
)
5073 * restore interrupt mask to what it was on entry.
5074 * Could be enabled/diasbled.
5076 UNPROTECT_CTX(ctx
, flags
);
5079 * force interrupt enable because of down_interruptible()
5083 DPRINT(("before block sleeping\n"));
5086 * may go through without blocking on SMP systems
5087 * if restart has been received already by the time we call down()
5089 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5091 DPRINT(("after block sleeping ret=%d\n", ret
));
5094 * lock context and mask interrupts again
5095 * We save flags into a dummy because we may have
5096 * altered interrupts mask compared to entry in this
5099 PROTECT_CTX(ctx
, dummy_flags
);
5102 * we need to read the ovfl_regs only after wake-up
5103 * because we may have had pfm_write_pmds() in between
5104 * and that can changed PMD values and therefore
5105 * ovfl_regs is reset for these new PMD values.
5107 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5109 if (ctx
->ctx_fl_going_zombie
) {
5111 DPRINT(("context is zombie, bailing out\n"));
5112 pfm_context_force_terminate(ctx
, regs
);
5116 * in case of interruption of down() we don't restart anything
5122 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5123 ctx
->ctx_ovfl_regs
[0] = 0UL;
5127 * restore flags as they were upon entry
5129 UNPROTECT_CTX(ctx
, flags
);
5133 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5135 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5136 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140 DPRINT(("waking up somebody\n"));
5142 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5145 * safe, we are not in intr handler, nor in ctxsw when
5148 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5154 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5156 pfm_msg_t
*msg
= NULL
;
5158 if (ctx
->ctx_fl_no_msg
== 0) {
5159 msg
= pfm_get_new_msg(ctx
);
5161 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5166 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5167 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5168 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5169 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5170 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5171 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5172 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5175 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5181 return pfm_notify_user(ctx
, msg
);
5185 pfm_end_notify_user(pfm_context_t
*ctx
)
5189 msg
= pfm_get_new_msg(ctx
);
5191 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5195 memset(msg
, 0, sizeof(*msg
));
5197 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5198 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5199 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5201 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5206 return pfm_notify_user(ctx
, msg
);
5210 * main overflow processing routine.
5211 * it can be called from the interrupt path or explicitly during the context switch code
5213 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5214 unsigned long pmc0
, struct pt_regs
*regs
)
5216 pfm_ovfl_arg_t
*ovfl_arg
;
5218 unsigned long old_val
, ovfl_val
, new_val
;
5219 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5220 unsigned long tstamp
;
5221 pfm_ovfl_ctrl_t ovfl_ctrl
;
5222 unsigned int i
, has_smpl
;
5223 int must_notify
= 0;
5225 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5228 * sanity test. Should never happen
5230 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5232 tstamp
= ia64_get_itc();
5233 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5234 ovfl_val
= pmu_conf
->ovfl_val
;
5235 has_smpl
= CTX_HAS_SMPL(ctx
);
5237 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5238 "used_pmds=0x%lx\n",
5240 task
? task_pid_nr(task
): -1,
5241 (regs
? regs
->cr_iip
: 0),
5242 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5243 ctx
->ctx_used_pmds
[0]));
5247 * first we update the virtual counters
5248 * assume there was a prior ia64_srlz_d() issued
5250 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5252 /* skip pmd which did not overflow */
5253 if ((mask
& 0x1) == 0) continue;
5256 * Note that the pmd is not necessarily 0 at this point as qualified events
5257 * may have happened before the PMU was frozen. The residual count is not
5258 * taken into consideration here but will be with any read of the pmd via
5261 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5262 new_val
+= 1 + ovfl_val
;
5263 ctx
->ctx_pmds
[i
].val
= new_val
;
5266 * check for overflow condition
5268 if (likely(old_val
> new_val
)) {
5269 ovfl_pmds
|= 1UL << i
;
5270 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5273 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277 ia64_get_pmd(i
) & ovfl_val
,
5283 * there was no 64-bit overflow, nothing else to do
5285 if (ovfl_pmds
== 0UL) return;
5288 * reset all control bits
5294 * if a sampling format module exists, then we "cache" the overflow by
5295 * calling the module's handler() routine.
5298 unsigned long start_cycles
, end_cycles
;
5299 unsigned long pmd_mask
;
5301 int this_cpu
= smp_processor_id();
5303 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5304 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5306 prefetch(ctx
->ctx_smpl_hdr
);
5308 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5312 if ((pmd_mask
& 0x1) == 0) continue;
5314 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5315 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5316 ovfl_arg
->active_set
= 0;
5317 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5318 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5320 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5321 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5322 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5325 * copy values of pmds of interest. Sampling format may copy them
5326 * into sampling buffer.
5329 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5330 if ((smpl_pmds
& 0x1) == 0) continue;
5331 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5332 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5336 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5338 start_cycles
= ia64_get_itc();
5341 * call custom buffer format record (handler) routine
5343 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5345 end_cycles
= ia64_get_itc();
5348 * For those controls, we take the union because they have
5349 * an all or nothing behavior.
5351 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5352 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5353 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5355 * build the bitmask of pmds to reset now
5357 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5359 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5362 * when the module cannot handle the rest of the overflows, we abort right here
5364 if (ret
&& pmd_mask
) {
5365 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5366 pmd_mask
<<PMU_FIRST_COUNTER
));
5369 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371 ovfl_pmds
&= ~reset_pmds
;
5374 * when no sampling module is used, then the default
5375 * is to notify on overflow if requested by user
5377 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5378 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5379 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5380 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5382 * if needed, we reset all overflowed pmds
5384 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5387 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5390 * reset the requested PMD registers using the short reset values
5393 unsigned long bm
= reset_pmds
;
5394 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5397 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5399 * keep track of what to reset when unblocking
5401 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5404 * check for blocking context
5406 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5408 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5411 * set the perfmon specific checking pending work for the task
5413 PFM_SET_WORK_PENDING(task
, 1);
5416 * when coming from ctxsw, current still points to the
5417 * previous task, therefore we must work with task and not current.
5419 set_notify_resume(task
);
5422 * defer until state is changed (shorten spin window). the context is locked
5423 * anyway, so the signal receiver would come spin for nothing.
5428 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5429 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5430 PFM_GET_WORK_PENDING(task
),
5431 ctx
->ctx_fl_trap_reason
,
5434 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5436 * in case monitoring must be stopped, we toggle the psr bits
5438 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5439 pfm_mask_monitoring(task
);
5440 ctx
->ctx_state
= PFM_CTX_MASKED
;
5441 ctx
->ctx_fl_can_restart
= 1;
5445 * send notification now
5447 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5452 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454 task
? task_pid_nr(task
) : -1,
5460 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5461 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5462 * come here as zombie only if the task is the current task. In which case, we
5463 * can access the PMU hardware directly.
5465 * Note that zombies do have PM_VALID set. So here we do the minimal.
5467 * In case the context was zombified it could not be reclaimed at the time
5468 * the monitoring program exited. At this point, the PMU reservation has been
5469 * returned, the sampiing buffer has been freed. We must convert this call
5470 * into a spurious interrupt. However, we must also avoid infinite overflows
5471 * by stopping monitoring for this task. We can only come here for a per-task
5472 * context. All we need to do is to stop monitoring using the psr bits which
5473 * are always task private. By re-enabling secure montioring, we ensure that
5474 * the monitored task will not be able to re-activate monitoring.
5475 * The task will eventually be context switched out, at which point the context
5476 * will be reclaimed (that includes releasing ownership of the PMU).
5478 * So there might be a window of time where the number of per-task session is zero
5479 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5480 * context. This is safe because if a per-task session comes in, it will push this one
5481 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5482 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5483 * also push our zombie context out.
5485 * Overall pretty hairy stuff....
5487 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5489 ia64_psr(regs
)->up
= 0;
5490 ia64_psr(regs
)->sp
= 1;
5495 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5497 struct task_struct
*task
;
5499 unsigned long flags
;
5501 int this_cpu
= smp_processor_id();
5504 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5507 * srlz.d done before arriving here
5509 pmc0
= ia64_get_pmc(0);
5511 task
= GET_PMU_OWNER();
5512 ctx
= GET_PMU_CTX();
5515 * if we have some pending bits set
5516 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5520 * we assume that pmc0.fr is always set here
5524 if (!ctx
) goto report_spurious1
;
5526 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5527 goto report_spurious2
;
5529 PROTECT_CTX_NOPRINT(ctx
, flags
);
5531 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5533 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5536 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5540 * keep it unfrozen at all times
5547 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5548 this_cpu
, task_pid_nr(task
));
5552 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5560 pfm_interrupt_handler(int irq
, void *arg
)
5562 unsigned long start_cycles
, total_cycles
;
5563 unsigned long min
, max
;
5566 struct pt_regs
*regs
= get_irq_regs();
5568 this_cpu
= get_cpu();
5569 if (likely(!pfm_alt_intr_handler
)) {
5570 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5571 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5573 start_cycles
= ia64_get_itc();
5575 ret
= pfm_do_interrupt_handler(arg
, regs
);
5577 total_cycles
= ia64_get_itc();
5580 * don't measure spurious interrupts
5582 if (likely(ret
== 0)) {
5583 total_cycles
-= start_cycles
;
5585 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5586 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5588 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5592 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5600 * /proc/perfmon interface, for debug only
5603 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5606 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5609 return PFM_PROC_SHOW_HEADER
;
5612 while (*pos
<= nr_cpu_ids
) {
5613 if (cpu_online(*pos
- 1)) {
5614 return (void *)*pos
;
5622 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5625 return pfm_proc_start(m
, pos
);
5629 pfm_proc_stop(struct seq_file
*m
, void *v
)
5634 pfm_proc_show_header(struct seq_file
*m
)
5636 struct list_head
* pos
;
5637 pfm_buffer_fmt_t
* entry
;
5638 unsigned long flags
;
5641 "perfmon version : %u.%u\n"
5644 "expert mode : %s\n"
5645 "ovfl_mask : 0x%lx\n"
5646 "PMU flags : 0x%x\n",
5647 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5649 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5650 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5657 "proc_sessions : %u\n"
5658 "sys_sessions : %u\n"
5659 "sys_use_dbregs : %u\n"
5660 "ptrace_use_dbregs : %u\n",
5661 pfm_sessions
.pfs_task_sessions
,
5662 pfm_sessions
.pfs_sys_sessions
,
5663 pfm_sessions
.pfs_sys_use_dbregs
,
5664 pfm_sessions
.pfs_ptrace_use_dbregs
);
5668 spin_lock(&pfm_buffer_fmt_lock
);
5670 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5671 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5672 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5683 entry
->fmt_uuid
[10],
5684 entry
->fmt_uuid
[11],
5685 entry
->fmt_uuid
[12],
5686 entry
->fmt_uuid
[13],
5687 entry
->fmt_uuid
[14],
5688 entry
->fmt_uuid
[15],
5691 spin_unlock(&pfm_buffer_fmt_lock
);
5696 pfm_proc_show(struct seq_file
*m
, void *v
)
5702 if (v
== PFM_PROC_SHOW_HEADER
) {
5703 pfm_proc_show_header(m
);
5707 /* show info for CPU (v - 1) */
5711 "CPU%-2d overflow intrs : %lu\n"
5712 "CPU%-2d overflow cycles : %lu\n"
5713 "CPU%-2d overflow min : %lu\n"
5714 "CPU%-2d overflow max : %lu\n"
5715 "CPU%-2d smpl handler calls : %lu\n"
5716 "CPU%-2d smpl handler cycles : %lu\n"
5717 "CPU%-2d spurious intrs : %lu\n"
5718 "CPU%-2d replay intrs : %lu\n"
5719 "CPU%-2d syst_wide : %d\n"
5720 "CPU%-2d dcr_pp : %d\n"
5721 "CPU%-2d exclude idle : %d\n"
5722 "CPU%-2d owner : %d\n"
5723 "CPU%-2d context : %p\n"
5724 "CPU%-2d activations : %lu\n",
5725 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5726 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5727 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5728 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5729 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5730 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5731 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5732 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5733 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5734 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5735 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5736 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5737 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5738 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5740 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5742 psr
= pfm_get_psr();
5747 "CPU%-2d psr : 0x%lx\n"
5748 "CPU%-2d pmc0 : 0x%lx\n",
5750 cpu
, ia64_get_pmc(0));
5752 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5753 if (PMC_IS_COUNTING(i
) == 0) continue;
5755 "CPU%-2d pmc%u : 0x%lx\n"
5756 "CPU%-2d pmd%u : 0x%lx\n",
5757 cpu
, i
, ia64_get_pmc(i
),
5758 cpu
, i
, ia64_get_pmd(i
));
5764 const struct seq_operations pfm_seq_ops
= {
5765 .start
= pfm_proc_start
,
5766 .next
= pfm_proc_next
,
5767 .stop
= pfm_proc_stop
,
5768 .show
= pfm_proc_show
5772 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5774 return seq_open(file
, &pfm_seq_ops
);
5779 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5780 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5781 * is active or inactive based on mode. We must rely on the value in
5782 * local_cpu_data->pfm_syst_info
5785 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5787 struct pt_regs
*regs
;
5789 unsigned long dcr_pp
;
5791 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5794 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5795 * on every CPU, so we can rely on the pid to identify the idle task.
5797 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5798 regs
= task_pt_regs(task
);
5799 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5803 * if monitoring has started
5806 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5808 * context switching in?
5811 /* mask monitoring for the idle task */
5812 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5818 * context switching out
5819 * restore monitoring for next task
5821 * Due to inlining this odd if-then-else construction generates
5824 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5833 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5835 struct task_struct
*task
= ctx
->ctx_task
;
5837 ia64_psr(regs
)->up
= 0;
5838 ia64_psr(regs
)->sp
= 1;
5840 if (GET_PMU_OWNER() == task
) {
5841 DPRINT(("cleared ownership for [%d]\n",
5842 task_pid_nr(ctx
->ctx_task
)));
5843 SET_PMU_OWNER(NULL
, NULL
);
5847 * disconnect the task from the context and vice-versa
5849 PFM_SET_WORK_PENDING(task
, 0);
5851 task
->thread
.pfm_context
= NULL
;
5852 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5854 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5859 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5862 pfm_save_regs(struct task_struct
*task
)
5865 unsigned long flags
;
5869 ctx
= PFM_GET_CTX(task
);
5870 if (ctx
== NULL
) return;
5873 * we always come here with interrupts ALREADY disabled by
5874 * the scheduler. So we simply need to protect against concurrent
5875 * access, not CPU concurrency.
5877 flags
= pfm_protect_ctx_ctxsw(ctx
);
5879 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5880 struct pt_regs
*regs
= task_pt_regs(task
);
5884 pfm_force_cleanup(ctx
, regs
);
5886 BUG_ON(ctx
->ctx_smpl_hdr
);
5888 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5890 pfm_context_free(ctx
);
5895 * save current PSR: needed because we modify it
5898 psr
= pfm_get_psr();
5900 BUG_ON(psr
& (IA64_PSR_I
));
5904 * This is the last instruction which may generate an overflow
5906 * We do not need to set psr.sp because, it is irrelevant in kernel.
5907 * It will be restored from ipsr when going back to user level
5912 * keep a copy of psr.up (for reload)
5914 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5917 * release ownership of this PMU.
5918 * PM interrupts are masked, so nothing
5921 SET_PMU_OWNER(NULL
, NULL
);
5924 * we systematically save the PMD as we have no
5925 * guarantee we will be schedule at that same
5928 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5931 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5932 * we will need it on the restore path to check
5933 * for pending overflow.
5935 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5938 * unfreeze PMU if had pending overflows
5940 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5943 * finally, allow context access.
5944 * interrupts will still be masked after this call.
5946 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5949 #else /* !CONFIG_SMP */
5951 pfm_save_regs(struct task_struct
*task
)
5956 ctx
= PFM_GET_CTX(task
);
5957 if (ctx
== NULL
) return;
5960 * save current PSR: needed because we modify it
5962 psr
= pfm_get_psr();
5964 BUG_ON(psr
& (IA64_PSR_I
));
5968 * This is the last instruction which may generate an overflow
5970 * We do not need to set psr.sp because, it is irrelevant in kernel.
5971 * It will be restored from ipsr when going back to user level
5976 * keep a copy of psr.up (for reload)
5978 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5982 pfm_lazy_save_regs (struct task_struct
*task
)
5985 unsigned long flags
;
5987 { u64 psr
= pfm_get_psr();
5988 BUG_ON(psr
& IA64_PSR_UP
);
5991 ctx
= PFM_GET_CTX(task
);
5994 * we need to mask PMU overflow here to
5995 * make sure that we maintain pmc0 until
5996 * we save it. overflow interrupts are
5997 * treated as spurious if there is no
6000 * XXX: I don't think this is necessary
6002 PROTECT_CTX(ctx
,flags
);
6005 * release ownership of this PMU.
6006 * must be done before we save the registers.
6008 * after this call any PMU interrupt is treated
6011 SET_PMU_OWNER(NULL
, NULL
);
6014 * save all the pmds we use
6016 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
6019 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6020 * it is needed to check for pended overflow
6021 * on the restore path
6023 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
6026 * unfreeze PMU if had pending overflows
6028 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6031 * now get can unmask PMU interrupts, they will
6032 * be treated as purely spurious and we will not
6033 * lose any information
6035 UNPROTECT_CTX(ctx
,flags
);
6037 #endif /* CONFIG_SMP */
6041 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6044 pfm_load_regs (struct task_struct
*task
)
6047 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6048 unsigned long flags
;
6050 int need_irq_resend
;
6052 ctx
= PFM_GET_CTX(task
);
6053 if (unlikely(ctx
== NULL
)) return;
6055 BUG_ON(GET_PMU_OWNER());
6058 * possible on unload
6060 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6063 * we always come here with interrupts ALREADY disabled by
6064 * the scheduler. So we simply need to protect against concurrent
6065 * access, not CPU concurrency.
6067 flags
= pfm_protect_ctx_ctxsw(ctx
);
6068 psr
= pfm_get_psr();
6070 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6072 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6073 BUG_ON(psr
& IA64_PSR_I
);
6075 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6076 struct pt_regs
*regs
= task_pt_regs(task
);
6078 BUG_ON(ctx
->ctx_smpl_hdr
);
6080 pfm_force_cleanup(ctx
, regs
);
6082 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6085 * this one (kmalloc'ed) is fine with interrupts disabled
6087 pfm_context_free(ctx
);
6093 * we restore ALL the debug registers to avoid picking up
6096 if (ctx
->ctx_fl_using_dbreg
) {
6097 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6098 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6101 * retrieve saved psr.up
6103 psr_up
= ctx
->ctx_saved_psr_up
;
6106 * if we were the last user of the PMU on that CPU,
6107 * then nothing to do except restore psr
6109 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6112 * retrieve partial reload masks (due to user modifications)
6114 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6115 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6119 * To avoid leaking information to the user level when psr.sp=0,
6120 * we must reload ALL implemented pmds (even the ones we don't use).
6121 * In the kernel we only allow PFM_READ_PMDS on registers which
6122 * we initialized or requested (sampling) so there is no risk there.
6124 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6127 * ALL accessible PMCs are systematically reloaded, unused registers
6128 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6129 * up stale configuration.
6131 * PMC0 is never in the mask. It is always restored separately.
6133 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6136 * when context is MASKED, we will restore PMC with plm=0
6137 * and PMD with stale information, but that's ok, nothing
6140 * XXX: optimize here
6142 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6143 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6146 * check for pending overflow at the time the state
6149 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6151 * reload pmc0 with the overflow information
6152 * On McKinley PMU, this will trigger a PMU interrupt
6154 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6156 ctx
->th_pmcs
[0] = 0UL;
6159 * will replay the PMU interrupt
6161 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6163 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6167 * we just did a reload, so we reset the partial reload fields
6169 ctx
->ctx_reload_pmcs
[0] = 0UL;
6170 ctx
->ctx_reload_pmds
[0] = 0UL;
6172 SET_LAST_CPU(ctx
, smp_processor_id());
6175 * dump activation value for this PMU
6179 * record current activation for this context
6181 SET_ACTIVATION(ctx
);
6184 * establish new ownership.
6186 SET_PMU_OWNER(task
, ctx
);
6189 * restore the psr.up bit. measurement
6191 * no PMU interrupt can happen at this point
6192 * because we still have interrupts disabled.
6194 if (likely(psr_up
)) pfm_set_psr_up();
6197 * allow concurrent access to context
6199 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6201 #else /* !CONFIG_SMP */
6203 * reload PMU state for UP kernels
6204 * in 2.5 we come here with interrupts disabled
6207 pfm_load_regs (struct task_struct
*task
)
6210 struct task_struct
*owner
;
6211 unsigned long pmd_mask
, pmc_mask
;
6213 int need_irq_resend
;
6215 owner
= GET_PMU_OWNER();
6216 ctx
= PFM_GET_CTX(task
);
6217 psr
= pfm_get_psr();
6219 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6220 BUG_ON(psr
& IA64_PSR_I
);
6223 * we restore ALL the debug registers to avoid picking up
6226 * This must be done even when the task is still the owner
6227 * as the registers may have been modified via ptrace()
6228 * (not perfmon) by the previous task.
6230 if (ctx
->ctx_fl_using_dbreg
) {
6231 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6232 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6236 * retrieved saved psr.up
6238 psr_up
= ctx
->ctx_saved_psr_up
;
6239 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6242 * short path, our state is still there, just
6243 * need to restore psr and we go
6245 * we do not touch either PMC nor PMD. the psr is not touched
6246 * by the overflow_handler. So we are safe w.r.t. to interrupt
6247 * concurrency even without interrupt masking.
6249 if (likely(owner
== task
)) {
6250 if (likely(psr_up
)) pfm_set_psr_up();
6255 * someone else is still using the PMU, first push it out and
6256 * then we'll be able to install our stuff !
6258 * Upon return, there will be no owner for the current PMU
6260 if (owner
) pfm_lazy_save_regs(owner
);
6263 * To avoid leaking information to the user level when psr.sp=0,
6264 * we must reload ALL implemented pmds (even the ones we don't use).
6265 * In the kernel we only allow PFM_READ_PMDS on registers which
6266 * we initialized or requested (sampling) so there is no risk there.
6268 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6271 * ALL accessible PMCs are systematically reloaded, unused registers
6272 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6273 * up stale configuration.
6275 * PMC0 is never in the mask. It is always restored separately
6277 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6279 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6280 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6283 * check for pending overflow at the time the state
6286 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6288 * reload pmc0 with the overflow information
6289 * On McKinley PMU, this will trigger a PMU interrupt
6291 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6294 ctx
->th_pmcs
[0] = 0UL;
6297 * will replay the PMU interrupt
6299 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6301 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6305 * establish new ownership.
6307 SET_PMU_OWNER(task
, ctx
);
6310 * restore the psr.up bit. measurement
6312 * no PMU interrupt can happen at this point
6313 * because we still have interrupts disabled.
6315 if (likely(psr_up
)) pfm_set_psr_up();
6317 #endif /* CONFIG_SMP */
6320 * this function assumes monitoring is stopped
6323 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6326 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6327 int i
, can_access_pmu
= 0;
6331 * is the caller the task being monitored (or which initiated the
6332 * session for system wide measurements)
6334 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6337 * can access PMU is task is the owner of the PMU state on the current CPU
6338 * or if we are running on the CPU bound to the context in system-wide mode
6339 * (that is not necessarily the task the context is attached to in this mode).
6340 * In system-wide we always have can_access_pmu true because a task running on an
6341 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6343 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6344 if (can_access_pmu
) {
6346 * Mark the PMU as not owned
6347 * This will cause the interrupt handler to do nothing in case an overflow
6348 * interrupt was in-flight
6349 * This also guarantees that pmc0 will contain the final state
6350 * It virtually gives us full control on overflow processing from that point
6353 SET_PMU_OWNER(NULL
, NULL
);
6354 DPRINT(("releasing ownership\n"));
6357 * read current overflow status:
6359 * we are guaranteed to read the final stable state
6362 pmc0
= ia64_get_pmc(0); /* slow */
6365 * reset freeze bit, overflow status information destroyed
6369 pmc0
= ctx
->th_pmcs
[0];
6371 * clear whatever overflow status bits there were
6373 ctx
->th_pmcs
[0] = 0;
6375 ovfl_val
= pmu_conf
->ovfl_val
;
6377 * we save all the used pmds
6378 * we take care of overflows for counting PMDs
6380 * XXX: sampling situation is not taken into account here
6382 mask2
= ctx
->ctx_used_pmds
[0];
6384 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6386 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6388 /* skip non used pmds */
6389 if ((mask2
& 0x1) == 0) continue;
6392 * can access PMU always true in system wide mode
6394 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6396 if (PMD_IS_COUNTING(i
)) {
6397 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6400 ctx
->ctx_pmds
[i
].val
,
6404 * we rebuild the full 64 bit value of the counter
6406 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6409 * now everything is in ctx_pmds[] and we need
6410 * to clear the saved context from save_regs() such that
6411 * pfm_read_pmds() gets the correct value
6416 * take care of overflow inline
6418 if (pmc0
& (1UL << i
)) {
6419 val
+= 1 + ovfl_val
;
6420 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6424 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6426 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6428 ctx
->ctx_pmds
[i
].val
= val
;
6432 static struct irqaction perfmon_irqaction
= {
6433 .handler
= pfm_interrupt_handler
,
6434 .flags
= IRQF_DISABLED
,
6439 pfm_alt_save_pmu_state(void *data
)
6441 struct pt_regs
*regs
;
6443 regs
= task_pt_regs(current
);
6445 DPRINT(("called\n"));
6448 * should not be necessary but
6449 * let's take not risk
6453 ia64_psr(regs
)->pp
= 0;
6456 * This call is required
6457 * May cause a spurious interrupt on some processors
6465 pfm_alt_restore_pmu_state(void *data
)
6467 struct pt_regs
*regs
;
6469 regs
= task_pt_regs(current
);
6471 DPRINT(("called\n"));
6474 * put PMU back in state expected
6479 ia64_psr(regs
)->pp
= 0;
6482 * perfmon runs with PMU unfrozen at all times
6490 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6495 /* some sanity checks */
6496 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6498 /* do the easy test first */
6499 if (pfm_alt_intr_handler
) return -EBUSY
;
6501 /* one at a time in the install or remove, just fail the others */
6502 if (!spin_trylock(&pfm_alt_install_check
)) {
6506 /* reserve our session */
6507 for_each_online_cpu(reserve_cpu
) {
6508 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6509 if (ret
) goto cleanup_reserve
;
6512 /* save the current system wide pmu states */
6513 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6515 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6516 goto cleanup_reserve
;
6519 /* officially change to the alternate interrupt handler */
6520 pfm_alt_intr_handler
= hdl
;
6522 spin_unlock(&pfm_alt_install_check
);
6527 for_each_online_cpu(i
) {
6528 /* don't unreserve more than we reserved */
6529 if (i
>= reserve_cpu
) break;
6531 pfm_unreserve_session(NULL
, 1, i
);
6534 spin_unlock(&pfm_alt_install_check
);
6538 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6541 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6546 if (hdl
== NULL
) return -EINVAL
;
6548 /* cannot remove someone else's handler! */
6549 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6551 /* one at a time in the install or remove, just fail the others */
6552 if (!spin_trylock(&pfm_alt_install_check
)) {
6556 pfm_alt_intr_handler
= NULL
;
6558 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6560 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6563 for_each_online_cpu(i
) {
6564 pfm_unreserve_session(NULL
, 1, i
);
6567 spin_unlock(&pfm_alt_install_check
);
6571 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6574 * perfmon initialization routine, called from the initcall() table
6576 static int init_pfm_fs(void);
6584 family
= local_cpu_data
->family
;
6589 if ((*p
)->probe() == 0) goto found
;
6590 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6601 static const struct file_operations pfm_proc_fops
= {
6602 .open
= pfm_proc_open
,
6604 .llseek
= seq_lseek
,
6605 .release
= seq_release
,
6611 unsigned int n
, n_counters
, i
;
6613 printk("perfmon: version %u.%u IRQ %u\n",
6616 IA64_PERFMON_VECTOR
);
6618 if (pfm_probe_pmu()) {
6619 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6620 local_cpu_data
->family
);
6625 * compute the number of implemented PMD/PMC from the
6626 * description tables
6629 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6630 if (PMC_IS_IMPL(i
) == 0) continue;
6631 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6634 pmu_conf
->num_pmcs
= n
;
6636 n
= 0; n_counters
= 0;
6637 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6638 if (PMD_IS_IMPL(i
) == 0) continue;
6639 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6641 if (PMD_IS_COUNTING(i
)) n_counters
++;
6643 pmu_conf
->num_pmds
= n
;
6644 pmu_conf
->num_counters
= n_counters
;
6647 * sanity checks on the number of debug registers
6649 if (pmu_conf
->use_rr_dbregs
) {
6650 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6651 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6655 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6656 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6662 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6666 pmu_conf
->num_counters
,
6667 ffz(pmu_conf
->ovfl_val
));
6670 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6671 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6677 * create /proc/perfmon (mostly for debugging purposes)
6679 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6680 if (perfmon_dir
== NULL
) {
6681 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6687 * create /proc/sys/kernel/perfmon (for debugging purposes)
6689 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6692 * initialize all our spinlocks
6694 spin_lock_init(&pfm_sessions
.pfs_lock
);
6695 spin_lock_init(&pfm_buffer_fmt_lock
);
6699 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6704 __initcall(pfm_init
);
6707 * this function is called before pfm_init()
6710 pfm_init_percpu (void)
6712 static int first_time
=1;
6714 * make sure no measurement is active
6715 * (may inherit programmed PMCs from EFI).
6721 * we run with the PMU not frozen at all times
6726 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6730 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6735 * used for debug purposes only
6738 dump_pmu_state(const char *from
)
6740 struct task_struct
*task
;
6741 struct pt_regs
*regs
;
6743 unsigned long psr
, dcr
, info
, flags
;
6746 local_irq_save(flags
);
6748 this_cpu
= smp_processor_id();
6749 regs
= task_pt_regs(current
);
6750 info
= PFM_CPUINFO_GET();
6751 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6753 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6754 local_irq_restore(flags
);
6758 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6761 task_pid_nr(current
),
6765 task
= GET_PMU_OWNER();
6766 ctx
= GET_PMU_CTX();
6768 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6770 psr
= pfm_get_psr();
6772 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6775 psr
& IA64_PSR_PP
? 1 : 0,
6776 psr
& IA64_PSR_UP
? 1 : 0,
6777 dcr
& IA64_DCR_PP
? 1 : 0,
6780 ia64_psr(regs
)->pp
);
6782 ia64_psr(regs
)->up
= 0;
6783 ia64_psr(regs
)->pp
= 0;
6785 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6786 if (PMC_IS_IMPL(i
) == 0) continue;
6787 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6790 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6791 if (PMD_IS_IMPL(i
) == 0) continue;
6792 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6796 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6799 ctx
->ctx_smpl_vaddr
,
6803 ctx
->ctx_saved_psr_up
);
6805 local_irq_restore(flags
);
6809 * called from process.c:copy_thread(). task is new child.
6812 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6814 struct thread_struct
*thread
;
6816 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6818 thread
= &task
->thread
;
6821 * cut links inherited from parent (current)
6823 thread
->pfm_context
= NULL
;
6825 PFM_SET_WORK_PENDING(task
, 0);
6828 * the psr bits are already set properly in copy_threads()
6831 #else /* !CONFIG_PERFMON */
6833 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6837 #endif /* CONFIG_PERFMON */