]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/process.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
8 #include <linux/config.h>
9
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/elf.h>
13 #include <linux/errno.h>
14 #include <linux/kallsyms.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/notifier.h>
19 #include <linux/personality.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29
30 #include <asm/cpu.h>
31 #include <asm/delay.h>
32 #include <asm/elf.h>
33 #include <asm/ia32.h>
34 #include <asm/irq.h>
35 #include <asm/pgalloc.h>
36 #include <asm/processor.h>
37 #include <asm/sal.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/unwind.h>
41 #include <asm/user.h>
42
43 #include "entry.h"
44
45 #ifdef CONFIG_PERFMON
46 # include <asm/perfmon.h>
47 #endif
48
49 #include "sigframe.h"
50
51 void (*ia64_mark_idle)(int);
52 static cpumask_t cpu_idle_map;
53
54 unsigned long boot_option_idle_override = 0;
55 EXPORT_SYMBOL(boot_option_idle_override);
56
57 void
58 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
59 {
60 unsigned long ip, sp, bsp;
61 char buf[128]; /* don't make it so big that it overflows the stack! */
62
63 printk("\nCall Trace:\n");
64 do {
65 unw_get_ip(info, &ip);
66 if (ip == 0)
67 break;
68
69 unw_get_sp(info, &sp);
70 unw_get_bsp(info, &bsp);
71 snprintf(buf, sizeof(buf),
72 " [<%016lx>] %%s\n"
73 " sp=%016lx bsp=%016lx\n",
74 ip, sp, bsp);
75 print_symbol(buf, ip);
76 } while (unw_unwind(info) >= 0);
77 }
78
79 void
80 show_stack (struct task_struct *task, unsigned long *sp)
81 {
82 if (!task)
83 unw_init_running(ia64_do_show_stack, NULL);
84 else {
85 struct unw_frame_info info;
86
87 unw_init_from_blocked_task(&info, task);
88 ia64_do_show_stack(&info, NULL);
89 }
90 }
91
92 void
93 dump_stack (void)
94 {
95 show_stack(NULL, NULL);
96 }
97
98 EXPORT_SYMBOL(dump_stack);
99
100 void
101 show_regs (struct pt_regs *regs)
102 {
103 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
104
105 print_modules();
106 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
107 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
108 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
109 print_symbol("ip is at %s\n", ip);
110 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
111 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
112 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
113 regs->ar_rnat, regs->ar_bspstore, regs->pr);
114 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
115 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
116 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
117 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
118 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
119 regs->f6.u.bits[1], regs->f6.u.bits[0],
120 regs->f7.u.bits[1], regs->f7.u.bits[0]);
121 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
122 regs->f8.u.bits[1], regs->f8.u.bits[0],
123 regs->f9.u.bits[1], regs->f9.u.bits[0]);
124 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
125 regs->f10.u.bits[1], regs->f10.u.bits[0],
126 regs->f11.u.bits[1], regs->f11.u.bits[0]);
127
128 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
129 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
130 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
131 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
132 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
133 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
134 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
135 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
136 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
137
138 if (user_mode(regs)) {
139 /* print the stacked registers */
140 unsigned long val, *bsp, ndirty;
141 int i, sof, is_nat = 0;
142
143 sof = regs->cr_ifs & 0x7f; /* size of frame */
144 ndirty = (regs->loadrs >> 19);
145 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
146 for (i = 0; i < sof; ++i) {
147 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
148 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
149 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
150 }
151 } else
152 show_stack(NULL, NULL);
153 }
154
155 void
156 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
157 {
158 if (fsys_mode(current, &scr->pt)) {
159 /* defer signal-handling etc. until we return to privilege-level 0. */
160 if (!ia64_psr(&scr->pt)->lp)
161 ia64_psr(&scr->pt)->lp = 1;
162 return;
163 }
164
165 #ifdef CONFIG_PERFMON
166 if (current->thread.pfm_needs_checking)
167 pfm_handle_work();
168 #endif
169
170 /* deal with pending signal delivery */
171 if (test_thread_flag(TIF_SIGPENDING))
172 ia64_do_signal(oldset, scr, in_syscall);
173 }
174
175 static int pal_halt = 1;
176 static int __init nohalt_setup(char * str)
177 {
178 pal_halt = 0;
179 return 1;
180 }
181 __setup("nohalt", nohalt_setup);
182
183 /*
184 * We use this if we don't have any better idle routine..
185 */
186 void
187 default_idle (void)
188 {
189 unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
190
191 while (!need_resched())
192 if (pal_halt && !pmu_active)
193 safe_halt();
194 else
195 cpu_relax();
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
199 /* We don't actually take CPU down, just spin without interrupts. */
200 static inline void play_dead(void)
201 {
202 extern void ia64_cpu_local_tick (void);
203 /* Ack it */
204 __get_cpu_var(cpu_state) = CPU_DEAD;
205
206 /* We shouldn't have to disable interrupts while dead, but
207 * some interrupts just don't seem to go away, and this makes
208 * it "work" for testing purposes. */
209 max_xtp();
210 local_irq_disable();
211 /* Death loop */
212 while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
213 cpu_relax();
214
215 /*
216 * Enable timer interrupts from now on
217 * Not required if we put processor in SAL_BOOT_RENDEZ mode.
218 */
219 local_flush_tlb_all();
220 cpu_set(smp_processor_id(), cpu_online_map);
221 wmb();
222 ia64_cpu_local_tick ();
223 local_irq_enable();
224 }
225 #else
226 static inline void play_dead(void)
227 {
228 BUG();
229 }
230 #endif /* CONFIG_HOTPLUG_CPU */
231
232
233 void cpu_idle_wait(void)
234 {
235 int cpu;
236 cpumask_t map;
237
238 for_each_online_cpu(cpu)
239 cpu_set(cpu, cpu_idle_map);
240
241 wmb();
242 do {
243 ssleep(1);
244 cpus_and(map, cpu_idle_map, cpu_online_map);
245 } while (!cpus_empty(map));
246 }
247 EXPORT_SYMBOL_GPL(cpu_idle_wait);
248
249 void __attribute__((noreturn))
250 cpu_idle (void)
251 {
252 void (*mark_idle)(int) = ia64_mark_idle;
253 int cpu = smp_processor_id();
254
255 /* endless idle loop with no priority at all */
256 while (1) {
257 #ifdef CONFIG_SMP
258 if (!need_resched())
259 min_xtp();
260 #endif
261 while (!need_resched()) {
262 void (*idle)(void);
263
264 if (mark_idle)
265 (*mark_idle)(1);
266
267 if (cpu_isset(cpu, cpu_idle_map))
268 cpu_clear(cpu, cpu_idle_map);
269 rmb();
270 idle = pm_idle;
271 if (!idle)
272 idle = default_idle;
273 (*idle)();
274 }
275
276 if (mark_idle)
277 (*mark_idle)(0);
278
279 #ifdef CONFIG_SMP
280 normal_xtp();
281 #endif
282 schedule();
283 check_pgt_cache();
284 if (cpu_is_offline(smp_processor_id()))
285 play_dead();
286 }
287 }
288
289 void
290 ia64_save_extra (struct task_struct *task)
291 {
292 #ifdef CONFIG_PERFMON
293 unsigned long info;
294 #endif
295
296 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
297 ia64_save_debug_regs(&task->thread.dbr[0]);
298
299 #ifdef CONFIG_PERFMON
300 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
301 pfm_save_regs(task);
302
303 info = __get_cpu_var(pfm_syst_info);
304 if (info & PFM_CPUINFO_SYST_WIDE)
305 pfm_syst_wide_update_task(task, info, 0);
306 #endif
307
308 #ifdef CONFIG_IA32_SUPPORT
309 if (IS_IA32_PROCESS(ia64_task_regs(task)))
310 ia32_save_state(task);
311 #endif
312 }
313
314 void
315 ia64_load_extra (struct task_struct *task)
316 {
317 #ifdef CONFIG_PERFMON
318 unsigned long info;
319 #endif
320
321 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
322 ia64_load_debug_regs(&task->thread.dbr[0]);
323
324 #ifdef CONFIG_PERFMON
325 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
326 pfm_load_regs(task);
327
328 info = __get_cpu_var(pfm_syst_info);
329 if (info & PFM_CPUINFO_SYST_WIDE)
330 pfm_syst_wide_update_task(task, info, 1);
331 #endif
332
333 #ifdef CONFIG_IA32_SUPPORT
334 if (IS_IA32_PROCESS(ia64_task_regs(task)))
335 ia32_load_state(task);
336 #endif
337 }
338
339 /*
340 * Copy the state of an ia-64 thread.
341 *
342 * We get here through the following call chain:
343 *
344 * from user-level: from kernel:
345 *
346 * <clone syscall> <some kernel call frames>
347 * sys_clone :
348 * do_fork do_fork
349 * copy_thread copy_thread
350 *
351 * This means that the stack layout is as follows:
352 *
353 * +---------------------+ (highest addr)
354 * | struct pt_regs |
355 * +---------------------+
356 * | struct switch_stack |
357 * +---------------------+
358 * | |
359 * | memory stack |
360 * | | <-- sp (lowest addr)
361 * +---------------------+
362 *
363 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
364 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
365 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
366 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
367 * the stack is page aligned and the page size is at least 4KB, this is always the case,
368 * so there is nothing to worry about.
369 */
370 int
371 copy_thread (int nr, unsigned long clone_flags,
372 unsigned long user_stack_base, unsigned long user_stack_size,
373 struct task_struct *p, struct pt_regs *regs)
374 {
375 extern char ia64_ret_from_clone, ia32_ret_from_clone;
376 struct switch_stack *child_stack, *stack;
377 unsigned long rbs, child_rbs, rbs_size;
378 struct pt_regs *child_ptregs;
379 int retval = 0;
380
381 #ifdef CONFIG_SMP
382 /*
383 * For SMP idle threads, fork_by_hand() calls do_fork with
384 * NULL regs.
385 */
386 if (!regs)
387 return 0;
388 #endif
389
390 stack = ((struct switch_stack *) regs) - 1;
391
392 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
393 child_stack = (struct switch_stack *) child_ptregs - 1;
394
395 /* copy parent's switch_stack & pt_regs to child: */
396 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
397
398 rbs = (unsigned long) current + IA64_RBS_OFFSET;
399 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
400 rbs_size = stack->ar_bspstore - rbs;
401
402 /* copy the parent's register backing store to the child: */
403 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
404
405 if (likely(user_mode(child_ptregs))) {
406 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
407 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
408 if (user_stack_base) {
409 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
410 child_ptregs->ar_bspstore = user_stack_base;
411 child_ptregs->ar_rnat = 0;
412 child_ptregs->loadrs = 0;
413 }
414 } else {
415 /*
416 * Note: we simply preserve the relative position of
417 * the stack pointer here. There is no need to
418 * allocate a scratch area here, since that will have
419 * been taken care of by the caller of sys_clone()
420 * already.
421 */
422 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
423 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
424 }
425 child_stack->ar_bspstore = child_rbs + rbs_size;
426 if (IS_IA32_PROCESS(regs))
427 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
428 else
429 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
430
431 /* copy parts of thread_struct: */
432 p->thread.ksp = (unsigned long) child_stack - 16;
433
434 /* stop some PSR bits from being inherited.
435 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
436 * therefore we must specify them explicitly here and not include them in
437 * IA64_PSR_BITS_TO_CLEAR.
438 */
439 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
440 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
441
442 /*
443 * NOTE: The calling convention considers all floating point
444 * registers in the high partition (fph) to be scratch. Since
445 * the only way to get to this point is through a system call,
446 * we know that the values in fph are all dead. Hence, there
447 * is no need to inherit the fph state from the parent to the
448 * child and all we have to do is to make sure that
449 * IA64_THREAD_FPH_VALID is cleared in the child.
450 *
451 * XXX We could push this optimization a bit further by
452 * clearing IA64_THREAD_FPH_VALID on ANY system call.
453 * However, it's not clear this is worth doing. Also, it
454 * would be a slight deviation from the normal Linux system
455 * call behavior where scratch registers are preserved across
456 * system calls (unless used by the system call itself).
457 */
458 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
459 | IA64_THREAD_PM_VALID)
460 # define THREAD_FLAGS_TO_SET 0
461 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
462 | THREAD_FLAGS_TO_SET);
463 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
464 #ifdef CONFIG_IA32_SUPPORT
465 /*
466 * If we're cloning an IA32 task then save the IA32 extra
467 * state from the current task to the new task
468 */
469 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
470 ia32_save_state(p);
471 if (clone_flags & CLONE_SETTLS)
472 retval = ia32_clone_tls(p, child_ptregs);
473
474 /* Copy partially mapped page list */
475 if (!retval)
476 retval = ia32_copy_partial_page_list(p, clone_flags);
477 }
478 #endif
479
480 #ifdef CONFIG_PERFMON
481 if (current->thread.pfm_context)
482 pfm_inherit(p, child_ptregs);
483 #endif
484 return retval;
485 }
486
487 static void
488 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
489 {
490 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
491 elf_greg_t *dst = arg;
492 struct pt_regs *pt;
493 char nat;
494 int i;
495
496 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
497
498 if (unw_unwind_to_user(info) < 0)
499 return;
500
501 unw_get_sp(info, &sp);
502 pt = (struct pt_regs *) (sp + 16);
503
504 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
505
506 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
507 return;
508
509 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
510 &ar_rnat);
511
512 /*
513 * coredump format:
514 * r0-r31
515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
516 * predicate registers (p0-p63)
517 * b0-b7
518 * ip cfm user-mask
519 * ar.rsc ar.bsp ar.bspstore ar.rnat
520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
521 */
522
523 /* r0 is zero */
524 for (i = 1, mask = (1UL << i); i < 32; ++i) {
525 unw_get_gr(info, i, &dst[i], &nat);
526 if (nat)
527 nat_bits |= mask;
528 mask <<= 1;
529 }
530 dst[32] = nat_bits;
531 unw_get_pr(info, &dst[33]);
532
533 for (i = 0; i < 8; ++i)
534 unw_get_br(info, i, &dst[34 + i]);
535
536 unw_get_rp(info, &ip);
537 dst[42] = ip + ia64_psr(pt)->ri;
538 dst[43] = cfm;
539 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
540
541 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
542 /*
543 * For bsp and bspstore, unw_get_ar() would return the kernel
544 * addresses, but we need the user-level addresses instead:
545 */
546 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
547 dst[47] = pt->ar_bspstore;
548 dst[48] = ar_rnat;
549 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
550 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
551 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
552 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
553 unw_get_ar(info, UNW_AR_LC, &dst[53]);
554 unw_get_ar(info, UNW_AR_EC, &dst[54]);
555 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
556 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
557 }
558
559 void
560 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
561 {
562 elf_fpreg_t *dst = arg;
563 int i;
564
565 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
566
567 if (unw_unwind_to_user(info) < 0)
568 return;
569
570 /* f0 is 0.0, f1 is 1.0 */
571
572 for (i = 2; i < 32; ++i)
573 unw_get_fr(info, i, dst + i);
574
575 ia64_flush_fph(task);
576 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
577 memcpy(dst + 32, task->thread.fph, 96*16);
578 }
579
580 void
581 do_copy_regs (struct unw_frame_info *info, void *arg)
582 {
583 do_copy_task_regs(current, info, arg);
584 }
585
586 void
587 do_dump_fpu (struct unw_frame_info *info, void *arg)
588 {
589 do_dump_task_fpu(current, info, arg);
590 }
591
592 int
593 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
594 {
595 struct unw_frame_info tcore_info;
596
597 if (current == task) {
598 unw_init_running(do_copy_regs, regs);
599 } else {
600 memset(&tcore_info, 0, sizeof(tcore_info));
601 unw_init_from_blocked_task(&tcore_info, task);
602 do_copy_task_regs(task, &tcore_info, regs);
603 }
604 return 1;
605 }
606
607 void
608 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
609 {
610 unw_init_running(do_copy_regs, dst);
611 }
612
613 int
614 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
615 {
616 struct unw_frame_info tcore_info;
617
618 if (current == task) {
619 unw_init_running(do_dump_fpu, dst);
620 } else {
621 memset(&tcore_info, 0, sizeof(tcore_info));
622 unw_init_from_blocked_task(&tcore_info, task);
623 do_dump_task_fpu(task, &tcore_info, dst);
624 }
625 return 1;
626 }
627
628 int
629 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
630 {
631 unw_init_running(do_dump_fpu, dst);
632 return 1; /* f0-f31 are always valid so we always return 1 */
633 }
634
635 long
636 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
637 struct pt_regs *regs)
638 {
639 char *fname;
640 int error;
641
642 fname = getname(filename);
643 error = PTR_ERR(fname);
644 if (IS_ERR(fname))
645 goto out;
646 error = do_execve(fname, argv, envp, regs);
647 putname(fname);
648 out:
649 return error;
650 }
651
652 pid_t
653 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
654 {
655 extern void start_kernel_thread (void);
656 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
657 struct {
658 struct switch_stack sw;
659 struct pt_regs pt;
660 } regs;
661
662 memset(&regs, 0, sizeof(regs));
663 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
664 regs.pt.r1 = helper_fptr[1]; /* set GP */
665 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
666 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
667 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
668 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
669 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
670 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
671 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
672 regs.sw.pr = (1 << PRED_KERNEL_STACK);
673 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
674 }
675 EXPORT_SYMBOL(kernel_thread);
676
677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
678 int
679 kernel_thread_helper (int (*fn)(void *), void *arg)
680 {
681 #ifdef CONFIG_IA32_SUPPORT
682 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
683 /* A kernel thread is always a 64-bit process. */
684 current->thread.map_base = DEFAULT_MAP_BASE;
685 current->thread.task_size = DEFAULT_TASK_SIZE;
686 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
687 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
688 }
689 #endif
690 return (*fn)(arg);
691 }
692
693 /*
694 * Flush thread state. This is called when a thread does an execve().
695 */
696 void
697 flush_thread (void)
698 {
699 /* drop floating-point and debug-register state if it exists: */
700 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
701 ia64_drop_fpu(current);
702 if (IS_IA32_PROCESS(ia64_task_regs(current)))
703 ia32_drop_partial_page_list(current);
704 }
705
706 /*
707 * Clean up state associated with current thread. This is called when
708 * the thread calls exit().
709 */
710 void
711 exit_thread (void)
712 {
713 ia64_drop_fpu(current);
714 #ifdef CONFIG_PERFMON
715 /* if needed, stop monitoring and flush state to perfmon context */
716 if (current->thread.pfm_context)
717 pfm_exit_thread(current);
718
719 /* free debug register resources */
720 if (current->thread.flags & IA64_THREAD_DBG_VALID)
721 pfm_release_debug_registers(current);
722 #endif
723 if (IS_IA32_PROCESS(ia64_task_regs(current)))
724 ia32_drop_partial_page_list(current);
725 }
726
727 unsigned long
728 get_wchan (struct task_struct *p)
729 {
730 struct unw_frame_info info;
731 unsigned long ip;
732 int count = 0;
733
734 /*
735 * Note: p may not be a blocked task (it could be current or
736 * another process running on some other CPU. Rather than
737 * trying to determine if p is really blocked, we just assume
738 * it's blocked and rely on the unwind routines to fail
739 * gracefully if the process wasn't really blocked after all.
740 * --davidm 99/12/15
741 */
742 unw_init_from_blocked_task(&info, p);
743 do {
744 if (unw_unwind(&info) < 0)
745 return 0;
746 unw_get_ip(&info, &ip);
747 if (!in_sched_functions(ip))
748 return ip;
749 } while (count++ < 16);
750 return 0;
751 }
752
753 void
754 cpu_halt (void)
755 {
756 pal_power_mgmt_info_u_t power_info[8];
757 unsigned long min_power;
758 int i, min_power_state;
759
760 if (ia64_pal_halt_info(power_info) != 0)
761 return;
762
763 min_power_state = 0;
764 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
765 for (i = 1; i < 8; ++i)
766 if (power_info[i].pal_power_mgmt_info_s.im
767 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
768 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
769 min_power_state = i;
770 }
771
772 while (1)
773 ia64_pal_halt(min_power_state);
774 }
775
776 void
777 machine_restart (char *restart_cmd)
778 {
779 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
780 }
781
782 EXPORT_SYMBOL(machine_restart);
783
784 void
785 machine_halt (void)
786 {
787 cpu_halt();
788 }
789
790 EXPORT_SYMBOL(machine_halt);
791
792 void
793 machine_power_off (void)
794 {
795 if (pm_power_off)
796 pm_power_off();
797 machine_halt();
798 }
799
800 EXPORT_SYMBOL(machine_power_off);