]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/ia64/kernel/process.c
Merge branches 'fixes' and 'fixes2' into devel-late
[mirror_ubuntu-hirsute-kernel.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
10 */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32
33 #include <asm/cpu.h>
34 #include <asm/delay.h>
35 #include <asm/elf.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/switch_to.h>
42 #include <asm/tlbflush.h>
43 #include <asm/uaccess.h>
44 #include <asm/unwind.h>
45 #include <asm/user.h>
46
47 #include "entry.h"
48
49 #ifdef CONFIG_PERFMON
50 # include <asm/perfmon.h>
51 #endif
52
53 #include "sigframe.h"
54
55 void (*ia64_mark_idle)(int);
56
57 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
58 EXPORT_SYMBOL(boot_option_idle_override);
59 void (*pm_idle) (void);
60 EXPORT_SYMBOL(pm_idle);
61 void (*pm_power_off) (void);
62 EXPORT_SYMBOL(pm_power_off);
63
64 void
65 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
66 {
67 unsigned long ip, sp, bsp;
68 char buf[128]; /* don't make it so big that it overflows the stack! */
69
70 printk("\nCall Trace:\n");
71 do {
72 unw_get_ip(info, &ip);
73 if (ip == 0)
74 break;
75
76 unw_get_sp(info, &sp);
77 unw_get_bsp(info, &bsp);
78 snprintf(buf, sizeof(buf),
79 " [<%016lx>] %%s\n"
80 " sp=%016lx bsp=%016lx\n",
81 ip, sp, bsp);
82 print_symbol(buf, ip);
83 } while (unw_unwind(info) >= 0);
84 }
85
86 void
87 show_stack (struct task_struct *task, unsigned long *sp)
88 {
89 if (!task)
90 unw_init_running(ia64_do_show_stack, NULL);
91 else {
92 struct unw_frame_info info;
93
94 unw_init_from_blocked_task(&info, task);
95 ia64_do_show_stack(&info, NULL);
96 }
97 }
98
99 void
100 dump_stack (void)
101 {
102 show_stack(NULL, NULL);
103 }
104
105 EXPORT_SYMBOL(dump_stack);
106
107 void
108 show_regs (struct pt_regs *regs)
109 {
110 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
111
112 print_modules();
113 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
114 smp_processor_id(), current->comm);
115 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
116 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
117 init_utsname()->release);
118 print_symbol("ip is at %s\n", ip);
119 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
120 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
121 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
122 regs->ar_rnat, regs->ar_bspstore, regs->pr);
123 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
124 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
125 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
126 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
127 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
128 regs->f6.u.bits[1], regs->f6.u.bits[0],
129 regs->f7.u.bits[1], regs->f7.u.bits[0]);
130 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
131 regs->f8.u.bits[1], regs->f8.u.bits[0],
132 regs->f9.u.bits[1], regs->f9.u.bits[0]);
133 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
134 regs->f10.u.bits[1], regs->f10.u.bits[0],
135 regs->f11.u.bits[1], regs->f11.u.bits[0]);
136
137 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
138 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
139 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
140 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
141 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
142 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
143 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
144 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
145 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
146
147 if (user_mode(regs)) {
148 /* print the stacked registers */
149 unsigned long val, *bsp, ndirty;
150 int i, sof, is_nat = 0;
151
152 sof = regs->cr_ifs & 0x7f; /* size of frame */
153 ndirty = (regs->loadrs >> 19);
154 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
155 for (i = 0; i < sof; ++i) {
156 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
157 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
158 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
159 }
160 } else
161 show_stack(NULL, NULL);
162 }
163
164 /* local support for deprecated console_print */
165 void
166 console_print(const char *s)
167 {
168 printk(KERN_EMERG "%s", s);
169 }
170
171 void
172 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
173 {
174 if (fsys_mode(current, &scr->pt)) {
175 /*
176 * defer signal-handling etc. until we return to
177 * privilege-level 0.
178 */
179 if (!ia64_psr(&scr->pt)->lp)
180 ia64_psr(&scr->pt)->lp = 1;
181 return;
182 }
183
184 #ifdef CONFIG_PERFMON
185 if (current->thread.pfm_needs_checking)
186 /*
187 * Note: pfm_handle_work() allow us to call it with interrupts
188 * disabled, and may enable interrupts within the function.
189 */
190 pfm_handle_work();
191 #endif
192
193 /* deal with pending signal delivery */
194 if (test_thread_flag(TIF_SIGPENDING)) {
195 local_irq_enable(); /* force interrupt enable */
196 ia64_do_signal(scr, in_syscall);
197 }
198
199 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
200 clear_thread_flag(TIF_NOTIFY_RESUME);
201 tracehook_notify_resume(&scr->pt);
202 if (current->replacement_session_keyring)
203 key_replace_session_keyring();
204 }
205
206 /* copy user rbs to kernel rbs */
207 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
208 local_irq_enable(); /* force interrupt enable */
209 ia64_sync_krbs();
210 }
211
212 local_irq_disable(); /* force interrupt disable */
213 }
214
215 static int pal_halt = 1;
216 static int can_do_pal_halt = 1;
217
218 static int __init nohalt_setup(char * str)
219 {
220 pal_halt = can_do_pal_halt = 0;
221 return 1;
222 }
223 __setup("nohalt", nohalt_setup);
224
225 void
226 update_pal_halt_status(int status)
227 {
228 can_do_pal_halt = pal_halt && status;
229 }
230
231 /*
232 * We use this if we don't have any better idle routine..
233 */
234 void
235 default_idle (void)
236 {
237 local_irq_enable();
238 while (!need_resched()) {
239 if (can_do_pal_halt) {
240 local_irq_disable();
241 if (!need_resched()) {
242 safe_halt();
243 }
244 local_irq_enable();
245 } else
246 cpu_relax();
247 }
248 }
249
250 #ifdef CONFIG_HOTPLUG_CPU
251 /* We don't actually take CPU down, just spin without interrupts. */
252 static inline void play_dead(void)
253 {
254 unsigned int this_cpu = smp_processor_id();
255
256 /* Ack it */
257 __get_cpu_var(cpu_state) = CPU_DEAD;
258
259 max_xtp();
260 local_irq_disable();
261 idle_task_exit();
262 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
263 /*
264 * The above is a point of no-return, the processor is
265 * expected to be in SAL loop now.
266 */
267 BUG();
268 }
269 #else
270 static inline void play_dead(void)
271 {
272 BUG();
273 }
274 #endif /* CONFIG_HOTPLUG_CPU */
275
276 void __attribute__((noreturn))
277 cpu_idle (void)
278 {
279 void (*mark_idle)(int) = ia64_mark_idle;
280 int cpu = smp_processor_id();
281
282 /* endless idle loop with no priority at all */
283 while (1) {
284 if (can_do_pal_halt) {
285 current_thread_info()->status &= ~TS_POLLING;
286 /*
287 * TS_POLLING-cleared state must be visible before we
288 * test NEED_RESCHED:
289 */
290 smp_mb();
291 } else {
292 current_thread_info()->status |= TS_POLLING;
293 }
294
295 if (!need_resched()) {
296 void (*idle)(void);
297 #ifdef CONFIG_SMP
298 min_xtp();
299 #endif
300 rmb();
301 if (mark_idle)
302 (*mark_idle)(1);
303
304 idle = pm_idle;
305 if (!idle)
306 idle = default_idle;
307 (*idle)();
308 if (mark_idle)
309 (*mark_idle)(0);
310 #ifdef CONFIG_SMP
311 normal_xtp();
312 #endif
313 }
314 schedule_preempt_disabled();
315 check_pgt_cache();
316 if (cpu_is_offline(cpu))
317 play_dead();
318 }
319 }
320
321 void
322 ia64_save_extra (struct task_struct *task)
323 {
324 #ifdef CONFIG_PERFMON
325 unsigned long info;
326 #endif
327
328 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
329 ia64_save_debug_regs(&task->thread.dbr[0]);
330
331 #ifdef CONFIG_PERFMON
332 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
333 pfm_save_regs(task);
334
335 info = __get_cpu_var(pfm_syst_info);
336 if (info & PFM_CPUINFO_SYST_WIDE)
337 pfm_syst_wide_update_task(task, info, 0);
338 #endif
339 }
340
341 void
342 ia64_load_extra (struct task_struct *task)
343 {
344 #ifdef CONFIG_PERFMON
345 unsigned long info;
346 #endif
347
348 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
349 ia64_load_debug_regs(&task->thread.dbr[0]);
350
351 #ifdef CONFIG_PERFMON
352 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
353 pfm_load_regs(task);
354
355 info = __get_cpu_var(pfm_syst_info);
356 if (info & PFM_CPUINFO_SYST_WIDE)
357 pfm_syst_wide_update_task(task, info, 1);
358 #endif
359 }
360
361 /*
362 * Copy the state of an ia-64 thread.
363 *
364 * We get here through the following call chain:
365 *
366 * from user-level: from kernel:
367 *
368 * <clone syscall> <some kernel call frames>
369 * sys_clone :
370 * do_fork do_fork
371 * copy_thread copy_thread
372 *
373 * This means that the stack layout is as follows:
374 *
375 * +---------------------+ (highest addr)
376 * | struct pt_regs |
377 * +---------------------+
378 * | struct switch_stack |
379 * +---------------------+
380 * | |
381 * | memory stack |
382 * | | <-- sp (lowest addr)
383 * +---------------------+
384 *
385 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
386 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
387 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
388 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
389 * the stack is page aligned and the page size is at least 4KB, this is always the case,
390 * so there is nothing to worry about.
391 */
392 int
393 copy_thread(unsigned long clone_flags,
394 unsigned long user_stack_base, unsigned long user_stack_size,
395 struct task_struct *p, struct pt_regs *regs)
396 {
397 extern char ia64_ret_from_clone;
398 struct switch_stack *child_stack, *stack;
399 unsigned long rbs, child_rbs, rbs_size;
400 struct pt_regs *child_ptregs;
401 int retval = 0;
402
403 #ifdef CONFIG_SMP
404 /*
405 * For SMP idle threads, fork_by_hand() calls do_fork with
406 * NULL regs.
407 */
408 if (!regs)
409 return 0;
410 #endif
411
412 stack = ((struct switch_stack *) regs) - 1;
413
414 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
415 child_stack = (struct switch_stack *) child_ptregs - 1;
416
417 /* copy parent's switch_stack & pt_regs to child: */
418 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
419
420 rbs = (unsigned long) current + IA64_RBS_OFFSET;
421 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
422 rbs_size = stack->ar_bspstore - rbs;
423
424 /* copy the parent's register backing store to the child: */
425 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
426
427 if (likely(user_mode(child_ptregs))) {
428 if (clone_flags & CLONE_SETTLS)
429 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
430 if (user_stack_base) {
431 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
432 child_ptregs->ar_bspstore = user_stack_base;
433 child_ptregs->ar_rnat = 0;
434 child_ptregs->loadrs = 0;
435 }
436 } else {
437 /*
438 * Note: we simply preserve the relative position of
439 * the stack pointer here. There is no need to
440 * allocate a scratch area here, since that will have
441 * been taken care of by the caller of sys_clone()
442 * already.
443 */
444 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
445 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
446 }
447 child_stack->ar_bspstore = child_rbs + rbs_size;
448 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
449
450 /* copy parts of thread_struct: */
451 p->thread.ksp = (unsigned long) child_stack - 16;
452
453 /* stop some PSR bits from being inherited.
454 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
455 * therefore we must specify them explicitly here and not include them in
456 * IA64_PSR_BITS_TO_CLEAR.
457 */
458 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
459 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
460
461 /*
462 * NOTE: The calling convention considers all floating point
463 * registers in the high partition (fph) to be scratch. Since
464 * the only way to get to this point is through a system call,
465 * we know that the values in fph are all dead. Hence, there
466 * is no need to inherit the fph state from the parent to the
467 * child and all we have to do is to make sure that
468 * IA64_THREAD_FPH_VALID is cleared in the child.
469 *
470 * XXX We could push this optimization a bit further by
471 * clearing IA64_THREAD_FPH_VALID on ANY system call.
472 * However, it's not clear this is worth doing. Also, it
473 * would be a slight deviation from the normal Linux system
474 * call behavior where scratch registers are preserved across
475 * system calls (unless used by the system call itself).
476 */
477 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
478 | IA64_THREAD_PM_VALID)
479 # define THREAD_FLAGS_TO_SET 0
480 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
481 | THREAD_FLAGS_TO_SET);
482 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
483
484 #ifdef CONFIG_PERFMON
485 if (current->thread.pfm_context)
486 pfm_inherit(p, child_ptregs);
487 #endif
488 return retval;
489 }
490
491 static void
492 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
493 {
494 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
495 unsigned long uninitialized_var(ip); /* GCC be quiet */
496 elf_greg_t *dst = arg;
497 struct pt_regs *pt;
498 char nat;
499 int i;
500
501 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
502
503 if (unw_unwind_to_user(info) < 0)
504 return;
505
506 unw_get_sp(info, &sp);
507 pt = (struct pt_regs *) (sp + 16);
508
509 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
510
511 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
512 return;
513
514 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
515 &ar_rnat);
516
517 /*
518 * coredump format:
519 * r0-r31
520 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
521 * predicate registers (p0-p63)
522 * b0-b7
523 * ip cfm user-mask
524 * ar.rsc ar.bsp ar.bspstore ar.rnat
525 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
526 */
527
528 /* r0 is zero */
529 for (i = 1, mask = (1UL << i); i < 32; ++i) {
530 unw_get_gr(info, i, &dst[i], &nat);
531 if (nat)
532 nat_bits |= mask;
533 mask <<= 1;
534 }
535 dst[32] = nat_bits;
536 unw_get_pr(info, &dst[33]);
537
538 for (i = 0; i < 8; ++i)
539 unw_get_br(info, i, &dst[34 + i]);
540
541 unw_get_rp(info, &ip);
542 dst[42] = ip + ia64_psr(pt)->ri;
543 dst[43] = cfm;
544 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
545
546 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
547 /*
548 * For bsp and bspstore, unw_get_ar() would return the kernel
549 * addresses, but we need the user-level addresses instead:
550 */
551 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
552 dst[47] = pt->ar_bspstore;
553 dst[48] = ar_rnat;
554 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
555 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
556 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
557 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
558 unw_get_ar(info, UNW_AR_LC, &dst[53]);
559 unw_get_ar(info, UNW_AR_EC, &dst[54]);
560 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
561 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
562 }
563
564 void
565 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
566 {
567 elf_fpreg_t *dst = arg;
568 int i;
569
570 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
571
572 if (unw_unwind_to_user(info) < 0)
573 return;
574
575 /* f0 is 0.0, f1 is 1.0 */
576
577 for (i = 2; i < 32; ++i)
578 unw_get_fr(info, i, dst + i);
579
580 ia64_flush_fph(task);
581 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
582 memcpy(dst + 32, task->thread.fph, 96*16);
583 }
584
585 void
586 do_copy_regs (struct unw_frame_info *info, void *arg)
587 {
588 do_copy_task_regs(current, info, arg);
589 }
590
591 void
592 do_dump_fpu (struct unw_frame_info *info, void *arg)
593 {
594 do_dump_task_fpu(current, info, arg);
595 }
596
597 void
598 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
599 {
600 unw_init_running(do_copy_regs, dst);
601 }
602
603 int
604 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
605 {
606 unw_init_running(do_dump_fpu, dst);
607 return 1; /* f0-f31 are always valid so we always return 1 */
608 }
609
610 long
611 sys_execve (const char __user *filename,
612 const char __user *const __user *argv,
613 const char __user *const __user *envp,
614 struct pt_regs *regs)
615 {
616 char *fname;
617 int error;
618
619 fname = getname(filename);
620 error = PTR_ERR(fname);
621 if (IS_ERR(fname))
622 goto out;
623 error = do_execve(fname, argv, envp, regs);
624 putname(fname);
625 out:
626 return error;
627 }
628
629 pid_t
630 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
631 {
632 extern void start_kernel_thread (void);
633 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
634 struct {
635 struct switch_stack sw;
636 struct pt_regs pt;
637 } regs;
638
639 memset(&regs, 0, sizeof(regs));
640 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
641 regs.pt.r1 = helper_fptr[1]; /* set GP */
642 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
643 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
644 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
645 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
646 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
647 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
648 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
649 regs.sw.pr = (1 << PRED_KERNEL_STACK);
650 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
651 }
652 EXPORT_SYMBOL(kernel_thread);
653
654 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
655 int
656 kernel_thread_helper (int (*fn)(void *), void *arg)
657 {
658 return (*fn)(arg);
659 }
660
661 /*
662 * Flush thread state. This is called when a thread does an execve().
663 */
664 void
665 flush_thread (void)
666 {
667 /* drop floating-point and debug-register state if it exists: */
668 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
669 ia64_drop_fpu(current);
670 }
671
672 /*
673 * Clean up state associated with current thread. This is called when
674 * the thread calls exit().
675 */
676 void
677 exit_thread (void)
678 {
679
680 ia64_drop_fpu(current);
681 #ifdef CONFIG_PERFMON
682 /* if needed, stop monitoring and flush state to perfmon context */
683 if (current->thread.pfm_context)
684 pfm_exit_thread(current);
685
686 /* free debug register resources */
687 if (current->thread.flags & IA64_THREAD_DBG_VALID)
688 pfm_release_debug_registers(current);
689 #endif
690 }
691
692 unsigned long
693 get_wchan (struct task_struct *p)
694 {
695 struct unw_frame_info info;
696 unsigned long ip;
697 int count = 0;
698
699 if (!p || p == current || p->state == TASK_RUNNING)
700 return 0;
701
702 /*
703 * Note: p may not be a blocked task (it could be current or
704 * another process running on some other CPU. Rather than
705 * trying to determine if p is really blocked, we just assume
706 * it's blocked and rely on the unwind routines to fail
707 * gracefully if the process wasn't really blocked after all.
708 * --davidm 99/12/15
709 */
710 unw_init_from_blocked_task(&info, p);
711 do {
712 if (p->state == TASK_RUNNING)
713 return 0;
714 if (unw_unwind(&info) < 0)
715 return 0;
716 unw_get_ip(&info, &ip);
717 if (!in_sched_functions(ip))
718 return ip;
719 } while (count++ < 16);
720 return 0;
721 }
722
723 void
724 cpu_halt (void)
725 {
726 pal_power_mgmt_info_u_t power_info[8];
727 unsigned long min_power;
728 int i, min_power_state;
729
730 if (ia64_pal_halt_info(power_info) != 0)
731 return;
732
733 min_power_state = 0;
734 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
735 for (i = 1; i < 8; ++i)
736 if (power_info[i].pal_power_mgmt_info_s.im
737 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
738 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
739 min_power_state = i;
740 }
741
742 while (1)
743 ia64_pal_halt(min_power_state);
744 }
745
746 void machine_shutdown(void)
747 {
748 #ifdef CONFIG_HOTPLUG_CPU
749 int cpu;
750
751 for_each_online_cpu(cpu) {
752 if (cpu != smp_processor_id())
753 cpu_down(cpu);
754 }
755 #endif
756 #ifdef CONFIG_KEXEC
757 kexec_disable_iosapic();
758 #endif
759 }
760
761 void
762 machine_restart (char *restart_cmd)
763 {
764 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
765 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
766 }
767
768 void
769 machine_halt (void)
770 {
771 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
772 cpu_halt();
773 }
774
775 void
776 machine_power_off (void)
777 {
778 if (pm_power_off)
779 pm_power_off();
780 machine_halt();
781 }
782