]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/ia64/kernel/process.c
Merge branch 'drm-next' of ../main_line/linux-drm into dave-drm-next
[mirror_ubuntu-hirsute-kernel.git] / arch / ia64 / kernel / process.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 *
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
10 */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32
33 #include <asm/cpu.h>
34 #include <asm/delay.h>
35 #include <asm/elf.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/switch_to.h>
42 #include <asm/tlbflush.h>
43 #include <asm/uaccess.h>
44 #include <asm/unwind.h>
45 #include <asm/user.h>
46
47 #include "entry.h"
48
49 #ifdef CONFIG_PERFMON
50 # include <asm/perfmon.h>
51 #endif
52
53 #include "sigframe.h"
54
55 void (*ia64_mark_idle)(int);
56
57 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
58 EXPORT_SYMBOL(boot_option_idle_override);
59 void (*pm_idle) (void);
60 EXPORT_SYMBOL(pm_idle);
61 void (*pm_power_off) (void);
62 EXPORT_SYMBOL(pm_power_off);
63
64 void
65 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
66 {
67 unsigned long ip, sp, bsp;
68 char buf[128]; /* don't make it so big that it overflows the stack! */
69
70 printk("\nCall Trace:\n");
71 do {
72 unw_get_ip(info, &ip);
73 if (ip == 0)
74 break;
75
76 unw_get_sp(info, &sp);
77 unw_get_bsp(info, &bsp);
78 snprintf(buf, sizeof(buf),
79 " [<%016lx>] %%s\n"
80 " sp=%016lx bsp=%016lx\n",
81 ip, sp, bsp);
82 print_symbol(buf, ip);
83 } while (unw_unwind(info) >= 0);
84 }
85
86 void
87 show_stack (struct task_struct *task, unsigned long *sp)
88 {
89 if (!task)
90 unw_init_running(ia64_do_show_stack, NULL);
91 else {
92 struct unw_frame_info info;
93
94 unw_init_from_blocked_task(&info, task);
95 ia64_do_show_stack(&info, NULL);
96 }
97 }
98
99 void
100 dump_stack (void)
101 {
102 show_stack(NULL, NULL);
103 }
104
105 EXPORT_SYMBOL(dump_stack);
106
107 void
108 show_regs (struct pt_regs *regs)
109 {
110 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
111
112 print_modules();
113 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
114 smp_processor_id(), current->comm);
115 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
116 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
117 init_utsname()->release);
118 print_symbol("ip is at %s\n", ip);
119 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
120 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
121 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
122 regs->ar_rnat, regs->ar_bspstore, regs->pr);
123 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
124 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
125 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
126 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
127 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
128 regs->f6.u.bits[1], regs->f6.u.bits[0],
129 regs->f7.u.bits[1], regs->f7.u.bits[0]);
130 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
131 regs->f8.u.bits[1], regs->f8.u.bits[0],
132 regs->f9.u.bits[1], regs->f9.u.bits[0]);
133 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
134 regs->f10.u.bits[1], regs->f10.u.bits[0],
135 regs->f11.u.bits[1], regs->f11.u.bits[0]);
136
137 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
138 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
139 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
140 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
141 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
142 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
143 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
144 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
145 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
146
147 if (user_mode(regs)) {
148 /* print the stacked registers */
149 unsigned long val, *bsp, ndirty;
150 int i, sof, is_nat = 0;
151
152 sof = regs->cr_ifs & 0x7f; /* size of frame */
153 ndirty = (regs->loadrs >> 19);
154 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
155 for (i = 0; i < sof; ++i) {
156 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
157 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
158 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
159 }
160 } else
161 show_stack(NULL, NULL);
162 }
163
164 /* local support for deprecated console_print */
165 void
166 console_print(const char *s)
167 {
168 printk(KERN_EMERG "%s", s);
169 }
170
171 void
172 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
173 {
174 if (fsys_mode(current, &scr->pt)) {
175 /*
176 * defer signal-handling etc. until we return to
177 * privilege-level 0.
178 */
179 if (!ia64_psr(&scr->pt)->lp)
180 ia64_psr(&scr->pt)->lp = 1;
181 return;
182 }
183
184 #ifdef CONFIG_PERFMON
185 if (current->thread.pfm_needs_checking)
186 /*
187 * Note: pfm_handle_work() allow us to call it with interrupts
188 * disabled, and may enable interrupts within the function.
189 */
190 pfm_handle_work();
191 #endif
192
193 /* deal with pending signal delivery */
194 if (test_thread_flag(TIF_SIGPENDING)) {
195 local_irq_enable(); /* force interrupt enable */
196 ia64_do_signal(scr, in_syscall);
197 }
198
199 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
200 clear_thread_flag(TIF_NOTIFY_RESUME);
201 tracehook_notify_resume(&scr->pt);
202 }
203
204 /* copy user rbs to kernel rbs */
205 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
206 local_irq_enable(); /* force interrupt enable */
207 ia64_sync_krbs();
208 }
209
210 local_irq_disable(); /* force interrupt disable */
211 }
212
213 static int pal_halt = 1;
214 static int can_do_pal_halt = 1;
215
216 static int __init nohalt_setup(char * str)
217 {
218 pal_halt = can_do_pal_halt = 0;
219 return 1;
220 }
221 __setup("nohalt", nohalt_setup);
222
223 void
224 update_pal_halt_status(int status)
225 {
226 can_do_pal_halt = pal_halt && status;
227 }
228
229 /*
230 * We use this if we don't have any better idle routine..
231 */
232 void
233 default_idle (void)
234 {
235 local_irq_enable();
236 while (!need_resched()) {
237 if (can_do_pal_halt) {
238 local_irq_disable();
239 if (!need_resched()) {
240 safe_halt();
241 }
242 local_irq_enable();
243 } else
244 cpu_relax();
245 }
246 }
247
248 #ifdef CONFIG_HOTPLUG_CPU
249 /* We don't actually take CPU down, just spin without interrupts. */
250 static inline void play_dead(void)
251 {
252 unsigned int this_cpu = smp_processor_id();
253
254 /* Ack it */
255 __get_cpu_var(cpu_state) = CPU_DEAD;
256
257 max_xtp();
258 local_irq_disable();
259 idle_task_exit();
260 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
261 /*
262 * The above is a point of no-return, the processor is
263 * expected to be in SAL loop now.
264 */
265 BUG();
266 }
267 #else
268 static inline void play_dead(void)
269 {
270 BUG();
271 }
272 #endif /* CONFIG_HOTPLUG_CPU */
273
274 void __attribute__((noreturn))
275 cpu_idle (void)
276 {
277 void (*mark_idle)(int) = ia64_mark_idle;
278 int cpu = smp_processor_id();
279
280 /* endless idle loop with no priority at all */
281 while (1) {
282 if (can_do_pal_halt) {
283 current_thread_info()->status &= ~TS_POLLING;
284 /*
285 * TS_POLLING-cleared state must be visible before we
286 * test NEED_RESCHED:
287 */
288 smp_mb();
289 } else {
290 current_thread_info()->status |= TS_POLLING;
291 }
292
293 if (!need_resched()) {
294 void (*idle)(void);
295 #ifdef CONFIG_SMP
296 min_xtp();
297 #endif
298 rmb();
299 if (mark_idle)
300 (*mark_idle)(1);
301
302 idle = pm_idle;
303 if (!idle)
304 idle = default_idle;
305 (*idle)();
306 if (mark_idle)
307 (*mark_idle)(0);
308 #ifdef CONFIG_SMP
309 normal_xtp();
310 #endif
311 }
312 schedule_preempt_disabled();
313 check_pgt_cache();
314 if (cpu_is_offline(cpu))
315 play_dead();
316 }
317 }
318
319 void
320 ia64_save_extra (struct task_struct *task)
321 {
322 #ifdef CONFIG_PERFMON
323 unsigned long info;
324 #endif
325
326 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
327 ia64_save_debug_regs(&task->thread.dbr[0]);
328
329 #ifdef CONFIG_PERFMON
330 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
331 pfm_save_regs(task);
332
333 info = __get_cpu_var(pfm_syst_info);
334 if (info & PFM_CPUINFO_SYST_WIDE)
335 pfm_syst_wide_update_task(task, info, 0);
336 #endif
337 }
338
339 void
340 ia64_load_extra (struct task_struct *task)
341 {
342 #ifdef CONFIG_PERFMON
343 unsigned long info;
344 #endif
345
346 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
347 ia64_load_debug_regs(&task->thread.dbr[0]);
348
349 #ifdef CONFIG_PERFMON
350 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
351 pfm_load_regs(task);
352
353 info = __get_cpu_var(pfm_syst_info);
354 if (info & PFM_CPUINFO_SYST_WIDE)
355 pfm_syst_wide_update_task(task, info, 1);
356 #endif
357 }
358
359 /*
360 * Copy the state of an ia-64 thread.
361 *
362 * We get here through the following call chain:
363 *
364 * from user-level: from kernel:
365 *
366 * <clone syscall> <some kernel call frames>
367 * sys_clone :
368 * do_fork do_fork
369 * copy_thread copy_thread
370 *
371 * This means that the stack layout is as follows:
372 *
373 * +---------------------+ (highest addr)
374 * | struct pt_regs |
375 * +---------------------+
376 * | struct switch_stack |
377 * +---------------------+
378 * | |
379 * | memory stack |
380 * | | <-- sp (lowest addr)
381 * +---------------------+
382 *
383 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
384 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
385 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
386 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
387 * the stack is page aligned and the page size is at least 4KB, this is always the case,
388 * so there is nothing to worry about.
389 */
390 int
391 copy_thread(unsigned long clone_flags,
392 unsigned long user_stack_base, unsigned long user_stack_size,
393 struct task_struct *p, struct pt_regs *regs)
394 {
395 extern char ia64_ret_from_clone;
396 struct switch_stack *child_stack, *stack;
397 unsigned long rbs, child_rbs, rbs_size;
398 struct pt_regs *child_ptregs;
399 int retval = 0;
400
401 #ifdef CONFIG_SMP
402 /*
403 * For SMP idle threads, fork_by_hand() calls do_fork with
404 * NULL regs.
405 */
406 if (!regs)
407 return 0;
408 #endif
409
410 stack = ((struct switch_stack *) regs) - 1;
411
412 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
413 child_stack = (struct switch_stack *) child_ptregs - 1;
414
415 /* copy parent's switch_stack & pt_regs to child: */
416 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
417
418 rbs = (unsigned long) current + IA64_RBS_OFFSET;
419 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
420 rbs_size = stack->ar_bspstore - rbs;
421
422 /* copy the parent's register backing store to the child: */
423 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
424
425 if (likely(user_mode(child_ptregs))) {
426 if (clone_flags & CLONE_SETTLS)
427 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
428 if (user_stack_base) {
429 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
430 child_ptregs->ar_bspstore = user_stack_base;
431 child_ptregs->ar_rnat = 0;
432 child_ptregs->loadrs = 0;
433 }
434 } else {
435 /*
436 * Note: we simply preserve the relative position of
437 * the stack pointer here. There is no need to
438 * allocate a scratch area here, since that will have
439 * been taken care of by the caller of sys_clone()
440 * already.
441 */
442 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
443 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
444 }
445 child_stack->ar_bspstore = child_rbs + rbs_size;
446 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
447
448 /* copy parts of thread_struct: */
449 p->thread.ksp = (unsigned long) child_stack - 16;
450
451 /* stop some PSR bits from being inherited.
452 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
453 * therefore we must specify them explicitly here and not include them in
454 * IA64_PSR_BITS_TO_CLEAR.
455 */
456 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
457 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
458
459 /*
460 * NOTE: The calling convention considers all floating point
461 * registers in the high partition (fph) to be scratch. Since
462 * the only way to get to this point is through a system call,
463 * we know that the values in fph are all dead. Hence, there
464 * is no need to inherit the fph state from the parent to the
465 * child and all we have to do is to make sure that
466 * IA64_THREAD_FPH_VALID is cleared in the child.
467 *
468 * XXX We could push this optimization a bit further by
469 * clearing IA64_THREAD_FPH_VALID on ANY system call.
470 * However, it's not clear this is worth doing. Also, it
471 * would be a slight deviation from the normal Linux system
472 * call behavior where scratch registers are preserved across
473 * system calls (unless used by the system call itself).
474 */
475 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
476 | IA64_THREAD_PM_VALID)
477 # define THREAD_FLAGS_TO_SET 0
478 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
479 | THREAD_FLAGS_TO_SET);
480 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
481
482 #ifdef CONFIG_PERFMON
483 if (current->thread.pfm_context)
484 pfm_inherit(p, child_ptregs);
485 #endif
486 return retval;
487 }
488
489 static void
490 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
491 {
492 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
493 unsigned long uninitialized_var(ip); /* GCC be quiet */
494 elf_greg_t *dst = arg;
495 struct pt_regs *pt;
496 char nat;
497 int i;
498
499 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
500
501 if (unw_unwind_to_user(info) < 0)
502 return;
503
504 unw_get_sp(info, &sp);
505 pt = (struct pt_regs *) (sp + 16);
506
507 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
508
509 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
510 return;
511
512 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
513 &ar_rnat);
514
515 /*
516 * coredump format:
517 * r0-r31
518 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
519 * predicate registers (p0-p63)
520 * b0-b7
521 * ip cfm user-mask
522 * ar.rsc ar.bsp ar.bspstore ar.rnat
523 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
524 */
525
526 /* r0 is zero */
527 for (i = 1, mask = (1UL << i); i < 32; ++i) {
528 unw_get_gr(info, i, &dst[i], &nat);
529 if (nat)
530 nat_bits |= mask;
531 mask <<= 1;
532 }
533 dst[32] = nat_bits;
534 unw_get_pr(info, &dst[33]);
535
536 for (i = 0; i < 8; ++i)
537 unw_get_br(info, i, &dst[34 + i]);
538
539 unw_get_rp(info, &ip);
540 dst[42] = ip + ia64_psr(pt)->ri;
541 dst[43] = cfm;
542 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
543
544 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
545 /*
546 * For bsp and bspstore, unw_get_ar() would return the kernel
547 * addresses, but we need the user-level addresses instead:
548 */
549 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
550 dst[47] = pt->ar_bspstore;
551 dst[48] = ar_rnat;
552 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
553 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
554 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
555 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
556 unw_get_ar(info, UNW_AR_LC, &dst[53]);
557 unw_get_ar(info, UNW_AR_EC, &dst[54]);
558 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
559 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
560 }
561
562 void
563 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
564 {
565 elf_fpreg_t *dst = arg;
566 int i;
567
568 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
569
570 if (unw_unwind_to_user(info) < 0)
571 return;
572
573 /* f0 is 0.0, f1 is 1.0 */
574
575 for (i = 2; i < 32; ++i)
576 unw_get_fr(info, i, dst + i);
577
578 ia64_flush_fph(task);
579 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
580 memcpy(dst + 32, task->thread.fph, 96*16);
581 }
582
583 void
584 do_copy_regs (struct unw_frame_info *info, void *arg)
585 {
586 do_copy_task_regs(current, info, arg);
587 }
588
589 void
590 do_dump_fpu (struct unw_frame_info *info, void *arg)
591 {
592 do_dump_task_fpu(current, info, arg);
593 }
594
595 void
596 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
597 {
598 unw_init_running(do_copy_regs, dst);
599 }
600
601 int
602 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
603 {
604 unw_init_running(do_dump_fpu, dst);
605 return 1; /* f0-f31 are always valid so we always return 1 */
606 }
607
608 long
609 sys_execve (const char __user *filename,
610 const char __user *const __user *argv,
611 const char __user *const __user *envp,
612 struct pt_regs *regs)
613 {
614 char *fname;
615 int error;
616
617 fname = getname(filename);
618 error = PTR_ERR(fname);
619 if (IS_ERR(fname))
620 goto out;
621 error = do_execve(fname, argv, envp, regs);
622 putname(fname);
623 out:
624 return error;
625 }
626
627 pid_t
628 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
629 {
630 extern void start_kernel_thread (void);
631 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
632 struct {
633 struct switch_stack sw;
634 struct pt_regs pt;
635 } regs;
636
637 memset(&regs, 0, sizeof(regs));
638 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
639 regs.pt.r1 = helper_fptr[1]; /* set GP */
640 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
641 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
642 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
643 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
644 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
645 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
646 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
647 regs.sw.pr = (1 << PRED_KERNEL_STACK);
648 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
649 }
650 EXPORT_SYMBOL(kernel_thread);
651
652 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
653 int
654 kernel_thread_helper (int (*fn)(void *), void *arg)
655 {
656 return (*fn)(arg);
657 }
658
659 /*
660 * Flush thread state. This is called when a thread does an execve().
661 */
662 void
663 flush_thread (void)
664 {
665 /* drop floating-point and debug-register state if it exists: */
666 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
667 ia64_drop_fpu(current);
668 }
669
670 /*
671 * Clean up state associated with current thread. This is called when
672 * the thread calls exit().
673 */
674 void
675 exit_thread (void)
676 {
677
678 ia64_drop_fpu(current);
679 #ifdef CONFIG_PERFMON
680 /* if needed, stop monitoring and flush state to perfmon context */
681 if (current->thread.pfm_context)
682 pfm_exit_thread(current);
683
684 /* free debug register resources */
685 if (current->thread.flags & IA64_THREAD_DBG_VALID)
686 pfm_release_debug_registers(current);
687 #endif
688 }
689
690 unsigned long
691 get_wchan (struct task_struct *p)
692 {
693 struct unw_frame_info info;
694 unsigned long ip;
695 int count = 0;
696
697 if (!p || p == current || p->state == TASK_RUNNING)
698 return 0;
699
700 /*
701 * Note: p may not be a blocked task (it could be current or
702 * another process running on some other CPU. Rather than
703 * trying to determine if p is really blocked, we just assume
704 * it's blocked and rely on the unwind routines to fail
705 * gracefully if the process wasn't really blocked after all.
706 * --davidm 99/12/15
707 */
708 unw_init_from_blocked_task(&info, p);
709 do {
710 if (p->state == TASK_RUNNING)
711 return 0;
712 if (unw_unwind(&info) < 0)
713 return 0;
714 unw_get_ip(&info, &ip);
715 if (!in_sched_functions(ip))
716 return ip;
717 } while (count++ < 16);
718 return 0;
719 }
720
721 void
722 cpu_halt (void)
723 {
724 pal_power_mgmt_info_u_t power_info[8];
725 unsigned long min_power;
726 int i, min_power_state;
727
728 if (ia64_pal_halt_info(power_info) != 0)
729 return;
730
731 min_power_state = 0;
732 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
733 for (i = 1; i < 8; ++i)
734 if (power_info[i].pal_power_mgmt_info_s.im
735 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
736 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
737 min_power_state = i;
738 }
739
740 while (1)
741 ia64_pal_halt(min_power_state);
742 }
743
744 void machine_shutdown(void)
745 {
746 #ifdef CONFIG_HOTPLUG_CPU
747 int cpu;
748
749 for_each_online_cpu(cpu) {
750 if (cpu != smp_processor_id())
751 cpu_down(cpu);
752 }
753 #endif
754 #ifdef CONFIG_KEXEC
755 kexec_disable_iosapic();
756 #endif
757 }
758
759 void
760 machine_restart (char *restart_cmd)
761 {
762 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
763 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
764 }
765
766 void
767 machine_halt (void)
768 {
769 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
770 cpu_halt();
771 }
772
773 void
774 machine_power_off (void)
775 {
776 if (pm_power_off)
777 pm_power_off();
778 machine_halt();
779 }
780