]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/ia64/kernel/salinfo.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / kernel / salinfo.c
1 /*
2 * salinfo.c
3 *
4 * Creates entries in /proc/sal for various system features.
5 *
6 * Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
7 * Copyright (c) 2003 Hewlett-Packard Co
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 *
10 * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
11 * code to create this file
12 * Oct 23 2003 kaos@sgi.com
13 * Replace IPI with set_cpus_allowed() to read a record from the required cpu.
14 * Redesign salinfo log processing to separate interrupt and user space
15 * contexts.
16 * Cache the record across multi-block reads from user space.
17 * Support > 64 cpus.
18 * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
19 *
20 * Jan 28 2004 kaos@sgi.com
21 * Periodically check for outstanding MCA or INIT records.
22 *
23 * Dec 5 2004 kaos@sgi.com
24 * Standardize which records are cleared automatically.
25 *
26 * Aug 18 2005 kaos@sgi.com
27 * mca.c may not pass a buffer, a NULL buffer just indicates that a new
28 * record is available in SAL.
29 * Replace some NR_CPUS by cpus_online, for hotplug cpu.
30 *
31 * Jan 5 2006 kaos@sgi.com
32 * Handle hotplug cpus coming online.
33 * Handle hotplug cpus going offline while they still have outstanding records.
34 * Use the cpu_* macros consistently.
35 * Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
36 * Modify the locking to make the test for "work to do" an atomic operation.
37 */
38
39 #include <linux/capability.h>
40 #include <linux/cpu.h>
41 #include <linux/types.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/module.h>
45 #include <linux/smp.h>
46 #include <linux/timer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/semaphore.h>
49
50 #include <asm/sal.h>
51 #include <linux/uaccess.h>
52
53 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
54 MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
55 MODULE_LICENSE("GPL");
56
57 static const struct file_operations proc_salinfo_fops;
58
59 typedef struct {
60 const char *name; /* name of the proc entry */
61 unsigned long feature; /* feature bit */
62 struct proc_dir_entry *entry; /* registered entry (removal) */
63 } salinfo_entry_t;
64
65 /*
66 * List {name,feature} pairs for every entry in /proc/sal/<feature>
67 * that this module exports
68 */
69 static const salinfo_entry_t salinfo_entries[]={
70 { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
71 { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
72 { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
73 { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
74 };
75
76 #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
77
78 static char *salinfo_log_name[] = {
79 "mca",
80 "init",
81 "cmc",
82 "cpe",
83 };
84
85 static struct proc_dir_entry *salinfo_proc_entries[
86 ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */
87 ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */
88 (2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */
89 1]; /* /proc/sal */
90
91 /* Some records we get ourselves, some are accessed as saved data in buffers
92 * that are owned by mca.c.
93 */
94 struct salinfo_data_saved {
95 u8* buffer;
96 u64 size;
97 u64 id;
98 int cpu;
99 };
100
101 /* State transitions. Actions are :-
102 * Write "read <cpunum>" to the data file.
103 * Write "clear <cpunum>" to the data file.
104 * Write "oemdata <cpunum> <offset> to the data file.
105 * Read from the data file.
106 * Close the data file.
107 *
108 * Start state is NO_DATA.
109 *
110 * NO_DATA
111 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
112 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
113 * write "oemdata <cpunum> <offset> -> return -EINVAL.
114 * read data -> return EOF.
115 * close -> unchanged. Free record areas.
116 *
117 * LOG_RECORD
118 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
119 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
120 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
121 * read data -> return the INIT/MCA/CMC/CPE record.
122 * close -> unchanged. Keep record areas.
123 *
124 * OEMDATA
125 * write "read <cpunum>" -> NO_DATA or LOG_RECORD.
126 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
127 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
128 * read data -> return the formatted oemdata.
129 * close -> unchanged. Keep record areas.
130 *
131 * Closing the data file does not change the state. This allows shell scripts
132 * to manipulate salinfo data, each shell redirection opens the file, does one
133 * action then closes it again. The record areas are only freed at close when
134 * the state is NO_DATA.
135 */
136 enum salinfo_state {
137 STATE_NO_DATA,
138 STATE_LOG_RECORD,
139 STATE_OEMDATA,
140 };
141
142 struct salinfo_data {
143 cpumask_t cpu_event; /* which cpus have outstanding events */
144 wait_queue_head_t read_wait;
145 u8 *log_buffer;
146 u64 log_size;
147 u8 *oemdata; /* decoded oem data */
148 u64 oemdata_size;
149 int open; /* single-open to prevent races */
150 u8 type;
151 u8 saved_num; /* using a saved record? */
152 enum salinfo_state state :8; /* processing state */
153 u8 padding;
154 int cpu_check; /* next CPU to check */
155 struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
156 };
157
158 static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
159
160 static DEFINE_SPINLOCK(data_lock);
161 static DEFINE_SPINLOCK(data_saved_lock);
162
163 /** salinfo_platform_oemdata - optional callback to decode oemdata from an error
164 * record.
165 * @sect_header: pointer to the start of the section to decode.
166 * @oemdata: returns vmalloc area containing the decoded output.
167 * @oemdata_size: returns length of decoded output (strlen).
168 *
169 * Description: If user space asks for oem data to be decoded by the kernel
170 * and/or prom and the platform has set salinfo_platform_oemdata to the address
171 * of a platform specific routine then call that routine. salinfo_platform_oemdata
172 * vmalloc's and formats its output area, returning the address of the text
173 * and its strlen. Returns 0 for success, -ve for error. The callback is
174 * invoked on the cpu that generated the error record.
175 */
176 int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
177
178 struct salinfo_platform_oemdata_parms {
179 const u8 *efi_guid;
180 u8 **oemdata;
181 u64 *oemdata_size;
182 };
183
184 static long
185 salinfo_platform_oemdata_cpu(void *context)
186 {
187 struct salinfo_platform_oemdata_parms *parms = context;
188
189 return salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
190 }
191
192 static void
193 shift1_data_saved (struct salinfo_data *data, int shift)
194 {
195 memcpy(data->data_saved+shift, data->data_saved+shift+1,
196 (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
197 memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
198 sizeof(data->data_saved[0]));
199 }
200
201 /* This routine is invoked in interrupt context. Note: mca.c enables
202 * interrupts before calling this code for CMC/CPE. MCA and INIT events are
203 * not irq safe, do not call any routines that use spinlocks, they may deadlock.
204 * MCA and INIT records are recorded, a timer event will look for any
205 * outstanding events and wake up the user space code.
206 *
207 * The buffer passed from mca.c points to the output from ia64_log_get. This is
208 * a persistent buffer but its contents can change between the interrupt and
209 * when user space processes the record. Save the record id to identify
210 * changes. If the buffer is NULL then just update the bitmap.
211 */
212 void
213 salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
214 {
215 struct salinfo_data *data = salinfo_data + type;
216 struct salinfo_data_saved *data_saved;
217 unsigned long flags = 0;
218 int i;
219 int saved_size = ARRAY_SIZE(data->data_saved);
220
221 BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
222
223 if (irqsafe)
224 spin_lock_irqsave(&data_saved_lock, flags);
225 if (buffer) {
226 for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
227 if (!data_saved->buffer)
228 break;
229 }
230 if (i == saved_size) {
231 if (!data->saved_num) {
232 shift1_data_saved(data, 0);
233 data_saved = data->data_saved + saved_size - 1;
234 } else
235 data_saved = NULL;
236 }
237 if (data_saved) {
238 data_saved->cpu = smp_processor_id();
239 data_saved->id = ((sal_log_record_header_t *)buffer)->id;
240 data_saved->size = size;
241 data_saved->buffer = buffer;
242 }
243 }
244 cpumask_set_cpu(smp_processor_id(), &data->cpu_event);
245 if (irqsafe) {
246 wake_up_interruptible(&data->read_wait);
247 spin_unlock_irqrestore(&data_saved_lock, flags);
248 }
249 }
250
251 /* Check for outstanding MCA/INIT records every minute (arbitrary) */
252 #define SALINFO_TIMER_DELAY (60*HZ)
253 static struct timer_list salinfo_timer;
254 extern void ia64_mlogbuf_dump(void);
255
256 static void
257 salinfo_timeout_check(struct salinfo_data *data)
258 {
259 if (!data->open)
260 return;
261 if (!cpumask_empty(&data->cpu_event))
262 wake_up_interruptible(&data->read_wait);
263 }
264
265 static void
266 salinfo_timeout(struct timer_list *unused)
267 {
268 ia64_mlogbuf_dump();
269 salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
270 salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
271 salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
272 add_timer(&salinfo_timer);
273 }
274
275 static int
276 salinfo_event_open(struct inode *inode, struct file *file)
277 {
278 if (!capable(CAP_SYS_ADMIN))
279 return -EPERM;
280 return 0;
281 }
282
283 static ssize_t
284 salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
285 {
286 struct salinfo_data *data = PDE_DATA(file_inode(file));
287 char cmd[32];
288 size_t size;
289 int i, n, cpu = -1;
290
291 retry:
292 if (cpumask_empty(&data->cpu_event)) {
293 if (file->f_flags & O_NONBLOCK)
294 return -EAGAIN;
295 if (wait_event_interruptible(data->read_wait,
296 !cpumask_empty(&data->cpu_event)))
297 return -EINTR;
298 }
299
300 n = data->cpu_check;
301 for (i = 0; i < nr_cpu_ids; i++) {
302 if (cpumask_test_cpu(n, &data->cpu_event)) {
303 if (!cpu_online(n)) {
304 cpumask_clear_cpu(n, &data->cpu_event);
305 continue;
306 }
307 cpu = n;
308 break;
309 }
310 if (++n == nr_cpu_ids)
311 n = 0;
312 }
313
314 if (cpu == -1)
315 goto retry;
316
317 ia64_mlogbuf_dump();
318
319 /* for next read, start checking at next CPU */
320 data->cpu_check = cpu;
321 if (++data->cpu_check == nr_cpu_ids)
322 data->cpu_check = 0;
323
324 snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
325
326 size = strlen(cmd);
327 if (size > count)
328 size = count;
329 if (copy_to_user(buffer, cmd, size))
330 return -EFAULT;
331
332 return size;
333 }
334
335 static const struct file_operations salinfo_event_fops = {
336 .open = salinfo_event_open,
337 .read = salinfo_event_read,
338 .llseek = noop_llseek,
339 };
340
341 static int
342 salinfo_log_open(struct inode *inode, struct file *file)
343 {
344 struct salinfo_data *data = PDE_DATA(inode);
345
346 if (!capable(CAP_SYS_ADMIN))
347 return -EPERM;
348
349 spin_lock(&data_lock);
350 if (data->open) {
351 spin_unlock(&data_lock);
352 return -EBUSY;
353 }
354 data->open = 1;
355 spin_unlock(&data_lock);
356
357 if (data->state == STATE_NO_DATA &&
358 !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
359 data->open = 0;
360 return -ENOMEM;
361 }
362
363 return 0;
364 }
365
366 static int
367 salinfo_log_release(struct inode *inode, struct file *file)
368 {
369 struct salinfo_data *data = PDE_DATA(inode);
370
371 if (data->state == STATE_NO_DATA) {
372 vfree(data->log_buffer);
373 vfree(data->oemdata);
374 data->log_buffer = NULL;
375 data->oemdata = NULL;
376 }
377 spin_lock(&data_lock);
378 data->open = 0;
379 spin_unlock(&data_lock);
380 return 0;
381 }
382
383 static long
384 salinfo_log_read_cpu(void *context)
385 {
386 struct salinfo_data *data = context;
387 sal_log_record_header_t *rh;
388 data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
389 rh = (sal_log_record_header_t *)(data->log_buffer);
390 /* Clear corrected errors as they are read from SAL */
391 if (rh->severity == sal_log_severity_corrected)
392 ia64_sal_clear_state_info(data->type);
393 return 0;
394 }
395
396 static void
397 salinfo_log_new_read(int cpu, struct salinfo_data *data)
398 {
399 struct salinfo_data_saved *data_saved;
400 unsigned long flags;
401 int i;
402 int saved_size = ARRAY_SIZE(data->data_saved);
403
404 data->saved_num = 0;
405 spin_lock_irqsave(&data_saved_lock, flags);
406 retry:
407 for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
408 if (data_saved->buffer && data_saved->cpu == cpu) {
409 sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
410 data->log_size = data_saved->size;
411 memcpy(data->log_buffer, rh, data->log_size);
412 barrier(); /* id check must not be moved */
413 if (rh->id == data_saved->id) {
414 data->saved_num = i+1;
415 break;
416 }
417 /* saved record changed by mca.c since interrupt, discard it */
418 shift1_data_saved(data, i);
419 goto retry;
420 }
421 }
422 spin_unlock_irqrestore(&data_saved_lock, flags);
423
424 if (!data->saved_num)
425 work_on_cpu_safe(cpu, salinfo_log_read_cpu, data);
426 if (!data->log_size) {
427 data->state = STATE_NO_DATA;
428 cpumask_clear_cpu(cpu, &data->cpu_event);
429 } else {
430 data->state = STATE_LOG_RECORD;
431 }
432 }
433
434 static ssize_t
435 salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
436 {
437 struct salinfo_data *data = PDE_DATA(file_inode(file));
438 u8 *buf;
439 u64 bufsize;
440
441 if (data->state == STATE_LOG_RECORD) {
442 buf = data->log_buffer;
443 bufsize = data->log_size;
444 } else if (data->state == STATE_OEMDATA) {
445 buf = data->oemdata;
446 bufsize = data->oemdata_size;
447 } else {
448 buf = NULL;
449 bufsize = 0;
450 }
451 return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
452 }
453
454 static long
455 salinfo_log_clear_cpu(void *context)
456 {
457 struct salinfo_data *data = context;
458
459 ia64_sal_clear_state_info(data->type);
460 return 0;
461 }
462
463 static int
464 salinfo_log_clear(struct salinfo_data *data, int cpu)
465 {
466 sal_log_record_header_t *rh;
467 unsigned long flags;
468 spin_lock_irqsave(&data_saved_lock, flags);
469 data->state = STATE_NO_DATA;
470 if (!cpumask_test_cpu(cpu, &data->cpu_event)) {
471 spin_unlock_irqrestore(&data_saved_lock, flags);
472 return 0;
473 }
474 cpumask_clear_cpu(cpu, &data->cpu_event);
475 if (data->saved_num) {
476 shift1_data_saved(data, data->saved_num - 1);
477 data->saved_num = 0;
478 }
479 spin_unlock_irqrestore(&data_saved_lock, flags);
480 rh = (sal_log_record_header_t *)(data->log_buffer);
481 /* Corrected errors have already been cleared from SAL */
482 if (rh->severity != sal_log_severity_corrected)
483 work_on_cpu_safe(cpu, salinfo_log_clear_cpu, data);
484 /* clearing a record may make a new record visible */
485 salinfo_log_new_read(cpu, data);
486 if (data->state == STATE_LOG_RECORD) {
487 spin_lock_irqsave(&data_saved_lock, flags);
488 cpumask_set_cpu(cpu, &data->cpu_event);
489 wake_up_interruptible(&data->read_wait);
490 spin_unlock_irqrestore(&data_saved_lock, flags);
491 }
492 return 0;
493 }
494
495 static ssize_t
496 salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
497 {
498 struct salinfo_data *data = PDE_DATA(file_inode(file));
499 char cmd[32];
500 size_t size;
501 u32 offset;
502 int cpu;
503
504 size = sizeof(cmd);
505 if (count < size)
506 size = count;
507 if (copy_from_user(cmd, buffer, size))
508 return -EFAULT;
509
510 if (sscanf(cmd, "read %d", &cpu) == 1) {
511 salinfo_log_new_read(cpu, data);
512 } else if (sscanf(cmd, "clear %d", &cpu) == 1) {
513 int ret;
514 if ((ret = salinfo_log_clear(data, cpu)))
515 count = ret;
516 } else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
517 if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
518 return -EINVAL;
519 if (offset > data->log_size - sizeof(efi_guid_t))
520 return -EINVAL;
521 data->state = STATE_OEMDATA;
522 if (salinfo_platform_oemdata) {
523 struct salinfo_platform_oemdata_parms parms = {
524 .efi_guid = data->log_buffer + offset,
525 .oemdata = &data->oemdata,
526 .oemdata_size = &data->oemdata_size
527 };
528 count = work_on_cpu_safe(cpu, salinfo_platform_oemdata_cpu,
529 &parms);
530 } else
531 data->oemdata_size = 0;
532 } else
533 return -EINVAL;
534
535 return count;
536 }
537
538 static const struct file_operations salinfo_data_fops = {
539 .open = salinfo_log_open,
540 .release = salinfo_log_release,
541 .read = salinfo_log_read,
542 .write = salinfo_log_write,
543 .llseek = default_llseek,
544 };
545
546 static int salinfo_cpu_online(unsigned int cpu)
547 {
548 unsigned int i, end = ARRAY_SIZE(salinfo_data);
549 struct salinfo_data *data;
550
551 spin_lock_irq(&data_saved_lock);
552 for (i = 0, data = salinfo_data; i < end; ++i, ++data) {
553 cpumask_set_cpu(cpu, &data->cpu_event);
554 wake_up_interruptible(&data->read_wait);
555 }
556 spin_unlock_irq(&data_saved_lock);
557 return 0;
558 }
559
560 static int salinfo_cpu_pre_down(unsigned int cpu)
561 {
562 unsigned int i, end = ARRAY_SIZE(salinfo_data);
563 struct salinfo_data *data;
564
565 spin_lock_irq(&data_saved_lock);
566 for (i = 0, data = salinfo_data; i < end; ++i, ++data) {
567 struct salinfo_data_saved *data_saved;
568 int j = ARRAY_SIZE(data->data_saved) - 1;
569
570 for (data_saved = data->data_saved + j; j >= 0;
571 --j, --data_saved) {
572 if (data_saved->buffer && data_saved->cpu == cpu)
573 shift1_data_saved(data, j);
574 }
575 cpumask_clear_cpu(cpu, &data->cpu_event);
576 }
577 spin_unlock_irq(&data_saved_lock);
578 return 0;
579 }
580
581 static int __init
582 salinfo_init(void)
583 {
584 struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
585 struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
586 struct proc_dir_entry *dir, *entry;
587 struct salinfo_data *data;
588 int i;
589
590 salinfo_dir = proc_mkdir("sal", NULL);
591 if (!salinfo_dir)
592 return 0;
593
594 for (i=0; i < NR_SALINFO_ENTRIES; i++) {
595 /* pass the feature bit in question as misc data */
596 *sdir++ = proc_create_data(salinfo_entries[i].name, 0, salinfo_dir,
597 &proc_salinfo_fops,
598 (void *)salinfo_entries[i].feature);
599 }
600
601 for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
602 data = salinfo_data + i;
603 data->type = i;
604 init_waitqueue_head(&data->read_wait);
605 dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
606 if (!dir)
607 continue;
608
609 entry = proc_create_data("event", S_IRUSR, dir,
610 &salinfo_event_fops, data);
611 if (!entry)
612 continue;
613 *sdir++ = entry;
614
615 entry = proc_create_data("data", S_IRUSR | S_IWUSR, dir,
616 &salinfo_data_fops, data);
617 if (!entry)
618 continue;
619 *sdir++ = entry;
620
621 *sdir++ = dir;
622 }
623
624 *sdir++ = salinfo_dir;
625
626 timer_setup(&salinfo_timer, salinfo_timeout, 0);
627 salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
628 add_timer(&salinfo_timer);
629
630 i = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/salinfo:online",
631 salinfo_cpu_online, salinfo_cpu_pre_down);
632 WARN_ON(i < 0);
633 return 0;
634 }
635
636 /*
637 * 'data' contains an integer that corresponds to the feature we're
638 * testing
639 */
640 static int proc_salinfo_show(struct seq_file *m, void *v)
641 {
642 unsigned long data = (unsigned long)v;
643 seq_puts(m, (sal_platform_features & data) ? "1\n" : "0\n");
644 return 0;
645 }
646
647 static int proc_salinfo_open(struct inode *inode, struct file *file)
648 {
649 return single_open(file, proc_salinfo_show, PDE_DATA(inode));
650 }
651
652 static const struct file_operations proc_salinfo_fops = {
653 .open = proc_salinfo_open,
654 .read = seq_read,
655 .llseek = seq_lseek,
656 .release = single_release,
657 };
658
659 module_init(salinfo_init);