]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/setup.c
Merge tag 'powerpc-4.13-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/cpu.h>
33 #include <linux/kernel.h>
34 #include <linux/reboot.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/clock.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/seq_file.h>
39 #include <linux/string.h>
40 #include <linux/threads.h>
41 #include <linux/screen_info.h>
42 #include <linux/dmi.h>
43 #include <linux/serial.h>
44 #include <linux/serial_core.h>
45 #include <linux/efi.h>
46 #include <linux/initrd.h>
47 #include <linux/pm.h>
48 #include <linux/cpufreq.h>
49 #include <linux/kexec.h>
50 #include <linux/crash_dump.h>
51
52 #include <asm/machvec.h>
53 #include <asm/mca.h>
54 #include <asm/meminit.h>
55 #include <asm/page.h>
56 #include <asm/patch.h>
57 #include <asm/pgtable.h>
58 #include <asm/processor.h>
59 #include <asm/sal.h>
60 #include <asm/sections.h>
61 #include <asm/setup.h>
62 #include <asm/smp.h>
63 #include <asm/tlbflush.h>
64 #include <asm/unistd.h>
65 #include <asm/hpsim.h>
66
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
69 #endif
70
71 #ifdef CONFIG_SMP
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
74 #endif
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
77 EXPORT_SYMBOL(ia64_cpu_info);
78 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
79 #ifdef CONFIG_SMP
80 EXPORT_SYMBOL(local_per_cpu_offset);
81 #endif
82 unsigned long ia64_cycles_per_usec;
83 struct ia64_boot_param *ia64_boot_param;
84 struct screen_info screen_info;
85 unsigned long vga_console_iobase;
86 unsigned long vga_console_membase;
87
88 static struct resource data_resource = {
89 .name = "Kernel data",
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91 };
92
93 static struct resource code_resource = {
94 .name = "Kernel code",
95 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96 };
97
98 static struct resource bss_resource = {
99 .name = "Kernel bss",
100 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101 };
102
103 unsigned long ia64_max_cacheline_size;
104
105 unsigned long ia64_iobase; /* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110
111 /*
112 * "flush_icache_range()" needs to know what processor dependent stride size to use
113 * when it makes i-cache(s) coherent with d-caches.
114 */
115 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117 /*
118 * "clflush_cache_range()" needs to know what processor dependent stride size to
119 * use when it flushes cache lines including both d-cache and i-cache.
120 */
121 /* Safest way to go: 32 bytes by 32 bytes */
122 #define CACHE_STRIDE_SHIFT 5
123 unsigned long ia64_cache_stride_shift = ~0;
124
125 /*
126 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
127 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
128 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
129 * address of the second buffer must be aligned to (merge_mask+1) in order to be
130 * mergeable). By default, we assume there is no I/O MMU which can merge physically
131 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
132 * page-size of 2^64.
133 */
134 unsigned long ia64_max_iommu_merge_mask = ~0UL;
135 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
136
137 /*
138 * We use a special marker for the end of memory and it uses the extra (+1) slot
139 */
140 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
141 int num_rsvd_regions __initdata;
142
143
144 /*
145 * Filter incoming memory segments based on the primitive map created from the boot
146 * parameters. Segments contained in the map are removed from the memory ranges. A
147 * caller-specified function is called with the memory ranges that remain after filtering.
148 * This routine does not assume the incoming segments are sorted.
149 */
150 int __init
151 filter_rsvd_memory (u64 start, u64 end, void *arg)
152 {
153 u64 range_start, range_end, prev_start;
154 void (*func)(unsigned long, unsigned long, int);
155 int i;
156
157 #if IGNORE_PFN0
158 if (start == PAGE_OFFSET) {
159 printk(KERN_WARNING "warning: skipping physical page 0\n");
160 start += PAGE_SIZE;
161 if (start >= end) return 0;
162 }
163 #endif
164 /*
165 * lowest possible address(walker uses virtual)
166 */
167 prev_start = PAGE_OFFSET;
168 func = arg;
169
170 for (i = 0; i < num_rsvd_regions; ++i) {
171 range_start = max(start, prev_start);
172 range_end = min(end, rsvd_region[i].start);
173
174 if (range_start < range_end)
175 call_pernode_memory(__pa(range_start), range_end - range_start, func);
176
177 /* nothing more available in this segment */
178 if (range_end == end) return 0;
179
180 prev_start = rsvd_region[i].end;
181 }
182 /* end of memory marker allows full processing inside loop body */
183 return 0;
184 }
185
186 /*
187 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
188 * are not filtered out.
189 */
190 int __init
191 filter_memory(u64 start, u64 end, void *arg)
192 {
193 void (*func)(unsigned long, unsigned long, int);
194
195 #if IGNORE_PFN0
196 if (start == PAGE_OFFSET) {
197 printk(KERN_WARNING "warning: skipping physical page 0\n");
198 start += PAGE_SIZE;
199 if (start >= end)
200 return 0;
201 }
202 #endif
203 func = arg;
204 if (start < end)
205 call_pernode_memory(__pa(start), end - start, func);
206 return 0;
207 }
208
209 static void __init
210 sort_regions (struct rsvd_region *rsvd_region, int max)
211 {
212 int j;
213
214 /* simple bubble sorting */
215 while (max--) {
216 for (j = 0; j < max; ++j) {
217 if (rsvd_region[j].start > rsvd_region[j+1].start) {
218 struct rsvd_region tmp;
219 tmp = rsvd_region[j];
220 rsvd_region[j] = rsvd_region[j + 1];
221 rsvd_region[j + 1] = tmp;
222 }
223 }
224 }
225 }
226
227 /* merge overlaps */
228 static int __init
229 merge_regions (struct rsvd_region *rsvd_region, int max)
230 {
231 int i;
232 for (i = 1; i < max; ++i) {
233 if (rsvd_region[i].start >= rsvd_region[i-1].end)
234 continue;
235 if (rsvd_region[i].end > rsvd_region[i-1].end)
236 rsvd_region[i-1].end = rsvd_region[i].end;
237 --max;
238 memmove(&rsvd_region[i], &rsvd_region[i+1],
239 (max - i) * sizeof(struct rsvd_region));
240 }
241 return max;
242 }
243
244 /*
245 * Request address space for all standard resources
246 */
247 static int __init register_memory(void)
248 {
249 code_resource.start = ia64_tpa(_text);
250 code_resource.end = ia64_tpa(_etext) - 1;
251 data_resource.start = ia64_tpa(_etext);
252 data_resource.end = ia64_tpa(_edata) - 1;
253 bss_resource.start = ia64_tpa(__bss_start);
254 bss_resource.end = ia64_tpa(_end) - 1;
255 efi_initialize_iomem_resources(&code_resource, &data_resource,
256 &bss_resource);
257
258 return 0;
259 }
260
261 __initcall(register_memory);
262
263
264 #ifdef CONFIG_KEXEC
265
266 /*
267 * This function checks if the reserved crashkernel is allowed on the specific
268 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
269 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
270 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
271 * in kdump case. See the comment in sba_init() in sba_iommu.c.
272 *
273 * So, the only machvec that really supports loading the kdump kernel
274 * over 4 GB is "sn2".
275 */
276 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
277 {
278 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
279 return 1;
280 else
281 return pbase < (1UL << 32);
282 }
283
284 static void __init setup_crashkernel(unsigned long total, int *n)
285 {
286 unsigned long long base = 0, size = 0;
287 int ret;
288
289 ret = parse_crashkernel(boot_command_line, total,
290 &size, &base);
291 if (ret == 0 && size > 0) {
292 if (!base) {
293 sort_regions(rsvd_region, *n);
294 *n = merge_regions(rsvd_region, *n);
295 base = kdump_find_rsvd_region(size,
296 rsvd_region, *n);
297 }
298
299 if (!check_crashkernel_memory(base, size)) {
300 pr_warning("crashkernel: There would be kdump memory "
301 "at %ld GB but this is unusable because it "
302 "must\nbe below 4 GB. Change the memory "
303 "configuration of the machine.\n",
304 (unsigned long)(base >> 30));
305 return;
306 }
307
308 if (base != ~0UL) {
309 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
310 "for crashkernel (System RAM: %ldMB)\n",
311 (unsigned long)(size >> 20),
312 (unsigned long)(base >> 20),
313 (unsigned long)(total >> 20));
314 rsvd_region[*n].start =
315 (unsigned long)__va(base);
316 rsvd_region[*n].end =
317 (unsigned long)__va(base + size);
318 (*n)++;
319 crashk_res.start = base;
320 crashk_res.end = base + size - 1;
321 }
322 }
323 efi_memmap_res.start = ia64_boot_param->efi_memmap;
324 efi_memmap_res.end = efi_memmap_res.start +
325 ia64_boot_param->efi_memmap_size;
326 boot_param_res.start = __pa(ia64_boot_param);
327 boot_param_res.end = boot_param_res.start +
328 sizeof(*ia64_boot_param);
329 }
330 #else
331 static inline void __init setup_crashkernel(unsigned long total, int *n)
332 {}
333 #endif
334
335 /**
336 * reserve_memory - setup reserved memory areas
337 *
338 * Setup the reserved memory areas set aside for the boot parameters,
339 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
340 * see arch/ia64/include/asm/meminit.h if you need to define more.
341 */
342 void __init
343 reserve_memory (void)
344 {
345 int n = 0;
346 unsigned long total_memory;
347
348 /*
349 * none of the entries in this table overlap
350 */
351 rsvd_region[n].start = (unsigned long) ia64_boot_param;
352 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
353 n++;
354
355 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
356 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
357 n++;
358
359 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
360 rsvd_region[n].end = (rsvd_region[n].start
361 + strlen(__va(ia64_boot_param->command_line)) + 1);
362 n++;
363
364 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
365 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
366 n++;
367
368 #ifdef CONFIG_BLK_DEV_INITRD
369 if (ia64_boot_param->initrd_start) {
370 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
371 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
372 n++;
373 }
374 #endif
375
376 #ifdef CONFIG_CRASH_DUMP
377 if (reserve_elfcorehdr(&rsvd_region[n].start,
378 &rsvd_region[n].end) == 0)
379 n++;
380 #endif
381
382 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
383 n++;
384
385 setup_crashkernel(total_memory, &n);
386
387 /* end of memory marker */
388 rsvd_region[n].start = ~0UL;
389 rsvd_region[n].end = ~0UL;
390 n++;
391
392 num_rsvd_regions = n;
393 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
394
395 sort_regions(rsvd_region, num_rsvd_regions);
396 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
397 }
398
399
400 /**
401 * find_initrd - get initrd parameters from the boot parameter structure
402 *
403 * Grab the initrd start and end from the boot parameter struct given us by
404 * the boot loader.
405 */
406 void __init
407 find_initrd (void)
408 {
409 #ifdef CONFIG_BLK_DEV_INITRD
410 if (ia64_boot_param->initrd_start) {
411 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
412 initrd_end = initrd_start+ia64_boot_param->initrd_size;
413
414 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
415 initrd_start, ia64_boot_param->initrd_size);
416 }
417 #endif
418 }
419
420 static void __init
421 io_port_init (void)
422 {
423 unsigned long phys_iobase;
424
425 /*
426 * Set `iobase' based on the EFI memory map or, failing that, the
427 * value firmware left in ar.k0.
428 *
429 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
430 * the port's virtual address, so ia32_load_state() loads it with a
431 * user virtual address. But in ia64 mode, glibc uses the
432 * *physical* address in ar.k0 to mmap the appropriate area from
433 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
434 * cases, user-mode can only use the legacy 0-64K I/O port space.
435 *
436 * ar.k0 is not involved in kernel I/O port accesses, which can use
437 * any of the I/O port spaces and are done via MMIO using the
438 * virtual mmio_base from the appropriate io_space[].
439 */
440 phys_iobase = efi_get_iobase();
441 if (!phys_iobase) {
442 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
443 printk(KERN_INFO "No I/O port range found in EFI memory map, "
444 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
445 }
446 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
447 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
448
449 /* setup legacy IO port space */
450 io_space[0].mmio_base = ia64_iobase;
451 io_space[0].sparse = 1;
452 num_io_spaces = 1;
453 }
454
455 /**
456 * early_console_setup - setup debugging console
457 *
458 * Consoles started here require little enough setup that we can start using
459 * them very early in the boot process, either right after the machine
460 * vector initialization, or even before if the drivers can detect their hw.
461 *
462 * Returns non-zero if a console couldn't be setup.
463 */
464 static inline int __init
465 early_console_setup (char *cmdline)
466 {
467 int earlycons = 0;
468
469 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
470 {
471 extern int sn_serial_console_early_setup(void);
472 if (!sn_serial_console_early_setup())
473 earlycons++;
474 }
475 #endif
476 #ifdef CONFIG_EFI_PCDP
477 if (!efi_setup_pcdp_console(cmdline))
478 earlycons++;
479 #endif
480 if (!simcons_register())
481 earlycons++;
482
483 return (earlycons) ? 0 : -1;
484 }
485
486 static inline void
487 mark_bsp_online (void)
488 {
489 #ifdef CONFIG_SMP
490 /* If we register an early console, allow CPU 0 to printk */
491 set_cpu_online(smp_processor_id(), true);
492 #endif
493 }
494
495 static __initdata int nomca;
496 static __init int setup_nomca(char *s)
497 {
498 nomca = 1;
499 return 0;
500 }
501 early_param("nomca", setup_nomca);
502
503 #ifdef CONFIG_CRASH_DUMP
504 int __init reserve_elfcorehdr(u64 *start, u64 *end)
505 {
506 u64 length;
507
508 /* We get the address using the kernel command line,
509 * but the size is extracted from the EFI tables.
510 * Both address and size are required for reservation
511 * to work properly.
512 */
513
514 if (!is_vmcore_usable())
515 return -EINVAL;
516
517 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
518 vmcore_unusable();
519 return -EINVAL;
520 }
521
522 *start = (unsigned long)__va(elfcorehdr_addr);
523 *end = *start + length;
524 return 0;
525 }
526
527 #endif /* CONFIG_PROC_VMCORE */
528
529 void __init
530 setup_arch (char **cmdline_p)
531 {
532 unw_init();
533
534 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
535
536 *cmdline_p = __va(ia64_boot_param->command_line);
537 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
538
539 efi_init();
540 io_port_init();
541
542 #ifdef CONFIG_IA64_GENERIC
543 /* machvec needs to be parsed from the command line
544 * before parse_early_param() is called to ensure
545 * that ia64_mv is initialised before any command line
546 * settings may cause console setup to occur
547 */
548 machvec_init_from_cmdline(*cmdline_p);
549 #endif
550
551 parse_early_param();
552
553 if (early_console_setup(*cmdline_p) == 0)
554 mark_bsp_online();
555
556 #ifdef CONFIG_ACPI
557 /* Initialize the ACPI boot-time table parser */
558 acpi_table_init();
559 early_acpi_boot_init();
560 # ifdef CONFIG_ACPI_NUMA
561 acpi_numa_init();
562 acpi_numa_fixup();
563 # ifdef CONFIG_ACPI_HOTPLUG_CPU
564 prefill_possible_map();
565 # endif
566 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
567 32 : cpumask_weight(&early_cpu_possible_map)),
568 additional_cpus > 0 ? additional_cpus : 0);
569 # endif
570 #endif /* CONFIG_APCI_BOOT */
571
572 #ifdef CONFIG_SMP
573 smp_build_cpu_map();
574 #endif
575 find_memory();
576
577 /* process SAL system table: */
578 ia64_sal_init(__va(efi.sal_systab));
579
580 #ifdef CONFIG_ITANIUM
581 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
582 #else
583 {
584 unsigned long num_phys_stacked;
585
586 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
587 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
588 }
589 #endif
590
591 #ifdef CONFIG_SMP
592 cpu_physical_id(0) = hard_smp_processor_id();
593 #endif
594
595 cpu_init(); /* initialize the bootstrap CPU */
596 mmu_context_init(); /* initialize context_id bitmap */
597
598 #ifdef CONFIG_VT
599 if (!conswitchp) {
600 # if defined(CONFIG_DUMMY_CONSOLE)
601 conswitchp = &dummy_con;
602 # endif
603 # if defined(CONFIG_VGA_CONSOLE)
604 /*
605 * Non-legacy systems may route legacy VGA MMIO range to system
606 * memory. vga_con probes the MMIO hole, so memory looks like
607 * a VGA device to it. The EFI memory map can tell us if it's
608 * memory so we can avoid this problem.
609 */
610 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
611 conswitchp = &vga_con;
612 # endif
613 }
614 #endif
615
616 /* enable IA-64 Machine Check Abort Handling unless disabled */
617 if (!nomca)
618 ia64_mca_init();
619
620 platform_setup(cmdline_p);
621 #ifndef CONFIG_IA64_HP_SIM
622 check_sal_cache_flush();
623 #endif
624 paging_init();
625
626 clear_sched_clock_stable();
627 }
628
629 /*
630 * Display cpu info for all CPUs.
631 */
632 static int
633 show_cpuinfo (struct seq_file *m, void *v)
634 {
635 #ifdef CONFIG_SMP
636 # define lpj c->loops_per_jiffy
637 # define cpunum c->cpu
638 #else
639 # define lpj loops_per_jiffy
640 # define cpunum 0
641 #endif
642 static struct {
643 unsigned long mask;
644 const char *feature_name;
645 } feature_bits[] = {
646 { 1UL << 0, "branchlong" },
647 { 1UL << 1, "spontaneous deferral"},
648 { 1UL << 2, "16-byte atomic ops" }
649 };
650 char features[128], *cp, *sep;
651 struct cpuinfo_ia64 *c = v;
652 unsigned long mask;
653 unsigned long proc_freq;
654 int i, size;
655
656 mask = c->features;
657
658 /* build the feature string: */
659 memcpy(features, "standard", 9);
660 cp = features;
661 size = sizeof(features);
662 sep = "";
663 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
664 if (mask & feature_bits[i].mask) {
665 cp += snprintf(cp, size, "%s%s", sep,
666 feature_bits[i].feature_name),
667 sep = ", ";
668 mask &= ~feature_bits[i].mask;
669 size = sizeof(features) - (cp - features);
670 }
671 }
672 if (mask && size > 1) {
673 /* print unknown features as a hex value */
674 snprintf(cp, size, "%s0x%lx", sep, mask);
675 }
676
677 proc_freq = cpufreq_quick_get(cpunum);
678 if (!proc_freq)
679 proc_freq = c->proc_freq / 1000;
680
681 seq_printf(m,
682 "processor : %d\n"
683 "vendor : %s\n"
684 "arch : IA-64\n"
685 "family : %u\n"
686 "model : %u\n"
687 "model name : %s\n"
688 "revision : %u\n"
689 "archrev : %u\n"
690 "features : %s\n"
691 "cpu number : %lu\n"
692 "cpu regs : %u\n"
693 "cpu MHz : %lu.%03lu\n"
694 "itc MHz : %lu.%06lu\n"
695 "BogoMIPS : %lu.%02lu\n",
696 cpunum, c->vendor, c->family, c->model,
697 c->model_name, c->revision, c->archrev,
698 features, c->ppn, c->number,
699 proc_freq / 1000, proc_freq % 1000,
700 c->itc_freq / 1000000, c->itc_freq % 1000000,
701 lpj*HZ/500000, (lpj*HZ/5000) % 100);
702 #ifdef CONFIG_SMP
703 seq_printf(m, "siblings : %u\n",
704 cpumask_weight(&cpu_core_map[cpunum]));
705 if (c->socket_id != -1)
706 seq_printf(m, "physical id: %u\n", c->socket_id);
707 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
708 seq_printf(m,
709 "core id : %u\n"
710 "thread id : %u\n",
711 c->core_id, c->thread_id);
712 #endif
713 seq_printf(m,"\n");
714
715 return 0;
716 }
717
718 static void *
719 c_start (struct seq_file *m, loff_t *pos)
720 {
721 #ifdef CONFIG_SMP
722 while (*pos < nr_cpu_ids && !cpu_online(*pos))
723 ++*pos;
724 #endif
725 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
726 }
727
728 static void *
729 c_next (struct seq_file *m, void *v, loff_t *pos)
730 {
731 ++*pos;
732 return c_start(m, pos);
733 }
734
735 static void
736 c_stop (struct seq_file *m, void *v)
737 {
738 }
739
740 const struct seq_operations cpuinfo_op = {
741 .start = c_start,
742 .next = c_next,
743 .stop = c_stop,
744 .show = show_cpuinfo
745 };
746
747 #define MAX_BRANDS 8
748 static char brandname[MAX_BRANDS][128];
749
750 static char *
751 get_model_name(__u8 family, __u8 model)
752 {
753 static int overflow;
754 char brand[128];
755 int i;
756
757 memcpy(brand, "Unknown", 8);
758 if (ia64_pal_get_brand_info(brand)) {
759 if (family == 0x7)
760 memcpy(brand, "Merced", 7);
761 else if (family == 0x1f) switch (model) {
762 case 0: memcpy(brand, "McKinley", 9); break;
763 case 1: memcpy(brand, "Madison", 8); break;
764 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
765 }
766 }
767 for (i = 0; i < MAX_BRANDS; i++)
768 if (strcmp(brandname[i], brand) == 0)
769 return brandname[i];
770 for (i = 0; i < MAX_BRANDS; i++)
771 if (brandname[i][0] == '\0')
772 return strcpy(brandname[i], brand);
773 if (overflow++ == 0)
774 printk(KERN_ERR
775 "%s: Table overflow. Some processor model information will be missing\n",
776 __func__);
777 return "Unknown";
778 }
779
780 static void
781 identify_cpu (struct cpuinfo_ia64 *c)
782 {
783 union {
784 unsigned long bits[5];
785 struct {
786 /* id 0 & 1: */
787 char vendor[16];
788
789 /* id 2 */
790 u64 ppn; /* processor serial number */
791
792 /* id 3: */
793 unsigned number : 8;
794 unsigned revision : 8;
795 unsigned model : 8;
796 unsigned family : 8;
797 unsigned archrev : 8;
798 unsigned reserved : 24;
799
800 /* id 4: */
801 u64 features;
802 } field;
803 } cpuid;
804 pal_vm_info_1_u_t vm1;
805 pal_vm_info_2_u_t vm2;
806 pal_status_t status;
807 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
808 int i;
809 for (i = 0; i < 5; ++i)
810 cpuid.bits[i] = ia64_get_cpuid(i);
811
812 memcpy(c->vendor, cpuid.field.vendor, 16);
813 #ifdef CONFIG_SMP
814 c->cpu = smp_processor_id();
815
816 /* below default values will be overwritten by identify_siblings()
817 * for Multi-Threading/Multi-Core capable CPUs
818 */
819 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
820 c->socket_id = -1;
821
822 identify_siblings(c);
823
824 if (c->threads_per_core > smp_num_siblings)
825 smp_num_siblings = c->threads_per_core;
826 #endif
827 c->ppn = cpuid.field.ppn;
828 c->number = cpuid.field.number;
829 c->revision = cpuid.field.revision;
830 c->model = cpuid.field.model;
831 c->family = cpuid.field.family;
832 c->archrev = cpuid.field.archrev;
833 c->features = cpuid.field.features;
834 c->model_name = get_model_name(c->family, c->model);
835
836 status = ia64_pal_vm_summary(&vm1, &vm2);
837 if (status == PAL_STATUS_SUCCESS) {
838 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
839 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
840 }
841 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
842 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
843 }
844
845 /*
846 * Do the following calculations:
847 *
848 * 1. the max. cache line size.
849 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
850 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
851 */
852 static void
853 get_cache_info(void)
854 {
855 unsigned long line_size, max = 1;
856 unsigned long l, levels, unique_caches;
857 pal_cache_config_info_t cci;
858 long status;
859
860 status = ia64_pal_cache_summary(&levels, &unique_caches);
861 if (status != 0) {
862 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
863 __func__, status);
864 max = SMP_CACHE_BYTES;
865 /* Safest setup for "flush_icache_range()" */
866 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
867 /* Safest setup for "clflush_cache_range()" */
868 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
869 goto out;
870 }
871
872 for (l = 0; l < levels; ++l) {
873 /* cache_type (data_or_unified)=2 */
874 status = ia64_pal_cache_config_info(l, 2, &cci);
875 if (status != 0) {
876 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
877 "(l=%lu, 2) failed (status=%ld)\n",
878 __func__, l, status);
879 max = SMP_CACHE_BYTES;
880 /* The safest setup for "flush_icache_range()" */
881 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
882 /* The safest setup for "clflush_cache_range()" */
883 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
884 cci.pcci_unified = 1;
885 } else {
886 if (cci.pcci_stride < ia64_cache_stride_shift)
887 ia64_cache_stride_shift = cci.pcci_stride;
888
889 line_size = 1 << cci.pcci_line_size;
890 if (line_size > max)
891 max = line_size;
892 }
893
894 if (!cci.pcci_unified) {
895 /* cache_type (instruction)=1*/
896 status = ia64_pal_cache_config_info(l, 1, &cci);
897 if (status != 0) {
898 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
899 "(l=%lu, 1) failed (status=%ld)\n",
900 __func__, l, status);
901 /* The safest setup for flush_icache_range() */
902 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
903 }
904 }
905 if (cci.pcci_stride < ia64_i_cache_stride_shift)
906 ia64_i_cache_stride_shift = cci.pcci_stride;
907 }
908 out:
909 if (max > ia64_max_cacheline_size)
910 ia64_max_cacheline_size = max;
911 }
912
913 /*
914 * cpu_init() initializes state that is per-CPU. This function acts
915 * as a 'CPU state barrier', nothing should get across.
916 */
917 void
918 cpu_init (void)
919 {
920 extern void ia64_mmu_init(void *);
921 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
922 unsigned long num_phys_stacked;
923 pal_vm_info_2_u_t vmi;
924 unsigned int max_ctx;
925 struct cpuinfo_ia64 *cpu_info;
926 void *cpu_data;
927
928 cpu_data = per_cpu_init();
929 #ifdef CONFIG_SMP
930 /*
931 * insert boot cpu into sibling and core mapes
932 * (must be done after per_cpu area is setup)
933 */
934 if (smp_processor_id() == 0) {
935 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
936 cpumask_set_cpu(0, &cpu_core_map[0]);
937 } else {
938 /*
939 * Set ar.k3 so that assembly code in MCA handler can compute
940 * physical addresses of per cpu variables with a simple:
941 * phys = ar.k3 + &per_cpu_var
942 * and the alt-dtlb-miss handler can set per-cpu mapping into
943 * the TLB when needed. head.S already did this for cpu0.
944 */
945 ia64_set_kr(IA64_KR_PER_CPU_DATA,
946 ia64_tpa(cpu_data) - (long) __per_cpu_start);
947 }
948 #endif
949
950 get_cache_info();
951
952 /*
953 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
954 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
955 * depends on the data returned by identify_cpu(). We break the dependency by
956 * accessing cpu_data() through the canonical per-CPU address.
957 */
958 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
959 identify_cpu(cpu_info);
960
961 #ifdef CONFIG_MCKINLEY
962 {
963 # define FEATURE_SET 16
964 struct ia64_pal_retval iprv;
965
966 if (cpu_info->family == 0x1f) {
967 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
968 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
969 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
970 (iprv.v1 | 0x80), FEATURE_SET, 0);
971 }
972 }
973 #endif
974
975 /* Clear the stack memory reserved for pt_regs: */
976 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
977
978 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
979
980 /*
981 * Initialize the page-table base register to a global
982 * directory with all zeroes. This ensure that we can handle
983 * TLB-misses to user address-space even before we created the
984 * first user address-space. This may happen, e.g., due to
985 * aggressive use of lfetch.fault.
986 */
987 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
988
989 /*
990 * Initialize default control register to defer speculative faults except
991 * for those arising from TLB misses, which are not deferred. The
992 * kernel MUST NOT depend on a particular setting of these bits (in other words,
993 * the kernel must have recovery code for all speculative accesses). Turn on
994 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
995 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
996 * be fine).
997 */
998 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
999 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1000 mmgrab(&init_mm);
1001 current->active_mm = &init_mm;
1002 BUG_ON(current->mm);
1003
1004 ia64_mmu_init(ia64_imva(cpu_data));
1005 ia64_mca_cpu_init(ia64_imva(cpu_data));
1006
1007 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1008 ia64_set_itc(0);
1009
1010 /* disable all local interrupt sources: */
1011 ia64_set_itv(1 << 16);
1012 ia64_set_lrr0(1 << 16);
1013 ia64_set_lrr1(1 << 16);
1014 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1015 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1016
1017 /* clear TPR & XTP to enable all interrupt classes: */
1018 ia64_setreg(_IA64_REG_CR_TPR, 0);
1019
1020 /* Clear any pending interrupts left by SAL/EFI */
1021 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1022 ia64_eoi();
1023
1024 #ifdef CONFIG_SMP
1025 normal_xtp();
1026 #endif
1027
1028 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1029 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1030 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1031 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1032 } else {
1033 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1034 max_ctx = (1U << 15) - 1; /* use architected minimum */
1035 }
1036 while (max_ctx < ia64_ctx.max_ctx) {
1037 unsigned int old = ia64_ctx.max_ctx;
1038 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1039 break;
1040 }
1041
1042 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1043 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1044 "stacked regs\n");
1045 num_phys_stacked = 96;
1046 }
1047 /* size of physical stacked register partition plus 8 bytes: */
1048 if (num_phys_stacked > max_num_phys_stacked) {
1049 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1050 max_num_phys_stacked = num_phys_stacked;
1051 }
1052 platform_cpu_init();
1053 }
1054
1055 void __init
1056 check_bugs (void)
1057 {
1058 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1059 (unsigned long) __end___mckinley_e9_bundles);
1060 }
1061
1062 static int __init run_dmi_scan(void)
1063 {
1064 dmi_scan_machine();
1065 dmi_memdev_walk();
1066 dmi_set_dump_stack_arch_desc();
1067 return 0;
1068 }
1069 core_initcall(run_dmi_scan);