]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/setup.c
[IA64] Wrong args to memset in efi_gettimeofday()
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73
74 extern void ia64_setup_printk_clock(void);
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93
94 static struct resource bss_resource = {
95 .name = "Kernel bss",
96 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98 extern char _text[], _end[], _etext[], _edata[], _bss[];
99
100 unsigned long ia64_max_cacheline_size;
101
102 int dma_get_cache_alignment(void)
103 {
104 return ia64_max_cacheline_size;
105 }
106 EXPORT_SYMBOL(dma_get_cache_alignment);
107
108 unsigned long ia64_iobase; /* virtual address for I/O accesses */
109 EXPORT_SYMBOL(ia64_iobase);
110 struct io_space io_space[MAX_IO_SPACES];
111 EXPORT_SYMBOL(io_space);
112 unsigned int num_io_spaces;
113
114 /*
115 * "flush_icache_range()" needs to know what processor dependent stride size to use
116 * when it makes i-cache(s) coherent with d-caches.
117 */
118 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
119 unsigned long ia64_i_cache_stride_shift = ~0;
120
121 /*
122 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
123 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125 * address of the second buffer must be aligned to (merge_mask+1) in order to be
126 * mergeable). By default, we assume there is no I/O MMU which can merge physically
127 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128 * page-size of 2^64.
129 */
130 unsigned long ia64_max_iommu_merge_mask = ~0UL;
131 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132
133 /*
134 * We use a special marker for the end of memory and it uses the extra (+1) slot
135 */
136 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137 int num_rsvd_regions __initdata;
138
139
140 /*
141 * Filter incoming memory segments based on the primitive map created from the boot
142 * parameters. Segments contained in the map are removed from the memory ranges. A
143 * caller-specified function is called with the memory ranges that remain after filtering.
144 * This routine does not assume the incoming segments are sorted.
145 */
146 int __init
147 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
148 {
149 unsigned long range_start, range_end, prev_start;
150 void (*func)(unsigned long, unsigned long, int);
151 int i;
152
153 #if IGNORE_PFN0
154 if (start == PAGE_OFFSET) {
155 printk(KERN_WARNING "warning: skipping physical page 0\n");
156 start += PAGE_SIZE;
157 if (start >= end) return 0;
158 }
159 #endif
160 /*
161 * lowest possible address(walker uses virtual)
162 */
163 prev_start = PAGE_OFFSET;
164 func = arg;
165
166 for (i = 0; i < num_rsvd_regions; ++i) {
167 range_start = max(start, prev_start);
168 range_end = min(end, rsvd_region[i].start);
169
170 if (range_start < range_end)
171 call_pernode_memory(__pa(range_start), range_end - range_start, func);
172
173 /* nothing more available in this segment */
174 if (range_end == end) return 0;
175
176 prev_start = rsvd_region[i].end;
177 }
178 /* end of memory marker allows full processing inside loop body */
179 return 0;
180 }
181
182 static void __init
183 sort_regions (struct rsvd_region *rsvd_region, int max)
184 {
185 int j;
186
187 /* simple bubble sorting */
188 while (max--) {
189 for (j = 0; j < max; ++j) {
190 if (rsvd_region[j].start > rsvd_region[j+1].start) {
191 struct rsvd_region tmp;
192 tmp = rsvd_region[j];
193 rsvd_region[j] = rsvd_region[j + 1];
194 rsvd_region[j + 1] = tmp;
195 }
196 }
197 }
198 }
199
200 /*
201 * Request address space for all standard resources
202 */
203 static int __init register_memory(void)
204 {
205 code_resource.start = ia64_tpa(_text);
206 code_resource.end = ia64_tpa(_etext) - 1;
207 data_resource.start = ia64_tpa(_etext);
208 data_resource.end = ia64_tpa(_edata) - 1;
209 bss_resource.start = ia64_tpa(_bss);
210 bss_resource.end = ia64_tpa(_end) - 1;
211 efi_initialize_iomem_resources(&code_resource, &data_resource,
212 &bss_resource);
213
214 return 0;
215 }
216
217 __initcall(register_memory);
218
219
220 #ifdef CONFIG_KEXEC
221 static void __init setup_crashkernel(unsigned long total, int *n)
222 {
223 unsigned long long base = 0, size = 0;
224 int ret;
225
226 ret = parse_crashkernel(boot_command_line, total,
227 &size, &base);
228 if (ret == 0 && size > 0) {
229 if (!base) {
230 sort_regions(rsvd_region, *n);
231 base = kdump_find_rsvd_region(size,
232 rsvd_region, *n);
233 }
234 if (base != ~0UL) {
235 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
236 "for crashkernel (System RAM: %ldMB)\n",
237 (unsigned long)(size >> 20),
238 (unsigned long)(base >> 20),
239 (unsigned long)(total >> 20));
240 rsvd_region[*n].start =
241 (unsigned long)__va(base);
242 rsvd_region[*n].end =
243 (unsigned long)__va(base + size);
244 (*n)++;
245 crashk_res.start = base;
246 crashk_res.end = base + size - 1;
247 }
248 }
249 efi_memmap_res.start = ia64_boot_param->efi_memmap;
250 efi_memmap_res.end = efi_memmap_res.start +
251 ia64_boot_param->efi_memmap_size;
252 boot_param_res.start = __pa(ia64_boot_param);
253 boot_param_res.end = boot_param_res.start +
254 sizeof(*ia64_boot_param);
255 }
256 #else
257 static inline void __init setup_crashkernel(unsigned long total, int *n)
258 {}
259 #endif
260
261 /**
262 * reserve_memory - setup reserved memory areas
263 *
264 * Setup the reserved memory areas set aside for the boot parameters,
265 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
266 * see include/asm-ia64/meminit.h if you need to define more.
267 */
268 void __init
269 reserve_memory (void)
270 {
271 int n = 0;
272 unsigned long total_memory;
273
274 /*
275 * none of the entries in this table overlap
276 */
277 rsvd_region[n].start = (unsigned long) ia64_boot_param;
278 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
279 n++;
280
281 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
282 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
283 n++;
284
285 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
286 rsvd_region[n].end = (rsvd_region[n].start
287 + strlen(__va(ia64_boot_param->command_line)) + 1);
288 n++;
289
290 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
291 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
292 n++;
293
294 #ifdef CONFIG_BLK_DEV_INITRD
295 if (ia64_boot_param->initrd_start) {
296 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
297 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
298 n++;
299 }
300 #endif
301
302 #ifdef CONFIG_PROC_VMCORE
303 if (reserve_elfcorehdr(&rsvd_region[n].start,
304 &rsvd_region[n].end) == 0)
305 n++;
306 #endif
307
308 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
309 n++;
310
311 setup_crashkernel(total_memory, &n);
312
313 /* end of memory marker */
314 rsvd_region[n].start = ~0UL;
315 rsvd_region[n].end = ~0UL;
316 n++;
317
318 num_rsvd_regions = n;
319 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
320
321 sort_regions(rsvd_region, num_rsvd_regions);
322 }
323
324
325 /**
326 * find_initrd - get initrd parameters from the boot parameter structure
327 *
328 * Grab the initrd start and end from the boot parameter struct given us by
329 * the boot loader.
330 */
331 void __init
332 find_initrd (void)
333 {
334 #ifdef CONFIG_BLK_DEV_INITRD
335 if (ia64_boot_param->initrd_start) {
336 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
337 initrd_end = initrd_start+ia64_boot_param->initrd_size;
338
339 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
340 initrd_start, ia64_boot_param->initrd_size);
341 }
342 #endif
343 }
344
345 static void __init
346 io_port_init (void)
347 {
348 unsigned long phys_iobase;
349
350 /*
351 * Set `iobase' based on the EFI memory map or, failing that, the
352 * value firmware left in ar.k0.
353 *
354 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
355 * the port's virtual address, so ia32_load_state() loads it with a
356 * user virtual address. But in ia64 mode, glibc uses the
357 * *physical* address in ar.k0 to mmap the appropriate area from
358 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
359 * cases, user-mode can only use the legacy 0-64K I/O port space.
360 *
361 * ar.k0 is not involved in kernel I/O port accesses, which can use
362 * any of the I/O port spaces and are done via MMIO using the
363 * virtual mmio_base from the appropriate io_space[].
364 */
365 phys_iobase = efi_get_iobase();
366 if (!phys_iobase) {
367 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
368 printk(KERN_INFO "No I/O port range found in EFI memory map, "
369 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
370 }
371 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
372 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
373
374 /* setup legacy IO port space */
375 io_space[0].mmio_base = ia64_iobase;
376 io_space[0].sparse = 1;
377 num_io_spaces = 1;
378 }
379
380 /**
381 * early_console_setup - setup debugging console
382 *
383 * Consoles started here require little enough setup that we can start using
384 * them very early in the boot process, either right after the machine
385 * vector initialization, or even before if the drivers can detect their hw.
386 *
387 * Returns non-zero if a console couldn't be setup.
388 */
389 static inline int __init
390 early_console_setup (char *cmdline)
391 {
392 int earlycons = 0;
393
394 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
395 {
396 extern int sn_serial_console_early_setup(void);
397 if (!sn_serial_console_early_setup())
398 earlycons++;
399 }
400 #endif
401 #ifdef CONFIG_EFI_PCDP
402 if (!efi_setup_pcdp_console(cmdline))
403 earlycons++;
404 #endif
405 if (!simcons_register())
406 earlycons++;
407
408 return (earlycons) ? 0 : -1;
409 }
410
411 static inline void
412 mark_bsp_online (void)
413 {
414 #ifdef CONFIG_SMP
415 /* If we register an early console, allow CPU 0 to printk */
416 cpu_set(smp_processor_id(), cpu_online_map);
417 #endif
418 }
419
420 static __initdata int nomca;
421 static __init int setup_nomca(char *s)
422 {
423 nomca = 1;
424 return 0;
425 }
426 early_param("nomca", setup_nomca);
427
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430 * stored by the crashed kernel.
431 */
432 static int __init parse_elfcorehdr(char *arg)
433 {
434 if (!arg)
435 return -EINVAL;
436
437 elfcorehdr_addr = memparse(arg, &arg);
438 return 0;
439 }
440 early_param("elfcorehdr", parse_elfcorehdr);
441
442 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
443 {
444 unsigned long length;
445
446 /* We get the address using the kernel command line,
447 * but the size is extracted from the EFI tables.
448 * Both address and size are required for reservation
449 * to work properly.
450 */
451
452 if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
453 return -EINVAL;
454
455 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
456 elfcorehdr_addr = ELFCORE_ADDR_MAX;
457 return -EINVAL;
458 }
459
460 *start = (unsigned long)__va(elfcorehdr_addr);
461 *end = *start + length;
462 return 0;
463 }
464
465 #endif /* CONFIG_PROC_VMCORE */
466
467 void __init
468 setup_arch (char **cmdline_p)
469 {
470 unw_init();
471
472 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
473
474 *cmdline_p = __va(ia64_boot_param->command_line);
475 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
476
477 efi_init();
478 io_port_init();
479
480 #ifdef CONFIG_IA64_GENERIC
481 /* machvec needs to be parsed from the command line
482 * before parse_early_param() is called to ensure
483 * that ia64_mv is initialised before any command line
484 * settings may cause console setup to occur
485 */
486 machvec_init_from_cmdline(*cmdline_p);
487 #endif
488
489 parse_early_param();
490
491 if (early_console_setup(*cmdline_p) == 0)
492 mark_bsp_online();
493
494 #ifdef CONFIG_ACPI
495 /* Initialize the ACPI boot-time table parser */
496 acpi_table_init();
497 # ifdef CONFIG_ACPI_NUMA
498 acpi_numa_init();
499 # endif
500 #else
501 # ifdef CONFIG_SMP
502 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
503 # endif
504 #endif /* CONFIG_APCI_BOOT */
505
506 find_memory();
507
508 /* process SAL system table: */
509 ia64_sal_init(__va(efi.sal_systab));
510
511 ia64_setup_printk_clock();
512
513 #ifdef CONFIG_SMP
514 cpu_physical_id(0) = hard_smp_processor_id();
515 #endif
516
517 cpu_init(); /* initialize the bootstrap CPU */
518 mmu_context_init(); /* initialize context_id bitmap */
519
520 check_sal_cache_flush();
521
522 #ifdef CONFIG_ACPI
523 acpi_boot_init();
524 #endif
525
526 #ifdef CONFIG_VT
527 if (!conswitchp) {
528 # if defined(CONFIG_DUMMY_CONSOLE)
529 conswitchp = &dummy_con;
530 # endif
531 # if defined(CONFIG_VGA_CONSOLE)
532 /*
533 * Non-legacy systems may route legacy VGA MMIO range to system
534 * memory. vga_con probes the MMIO hole, so memory looks like
535 * a VGA device to it. The EFI memory map can tell us if it's
536 * memory so we can avoid this problem.
537 */
538 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
539 conswitchp = &vga_con;
540 # endif
541 }
542 #endif
543
544 /* enable IA-64 Machine Check Abort Handling unless disabled */
545 if (!nomca)
546 ia64_mca_init();
547
548 platform_setup(cmdline_p);
549 paging_init();
550 }
551
552 /*
553 * Display cpu info for all CPUs.
554 */
555 static int
556 show_cpuinfo (struct seq_file *m, void *v)
557 {
558 #ifdef CONFIG_SMP
559 # define lpj c->loops_per_jiffy
560 # define cpunum c->cpu
561 #else
562 # define lpj loops_per_jiffy
563 # define cpunum 0
564 #endif
565 static struct {
566 unsigned long mask;
567 const char *feature_name;
568 } feature_bits[] = {
569 { 1UL << 0, "branchlong" },
570 { 1UL << 1, "spontaneous deferral"},
571 { 1UL << 2, "16-byte atomic ops" }
572 };
573 char features[128], *cp, *sep;
574 struct cpuinfo_ia64 *c = v;
575 unsigned long mask;
576 unsigned long proc_freq;
577 int i, size;
578
579 mask = c->features;
580
581 /* build the feature string: */
582 memcpy(features, "standard", 9);
583 cp = features;
584 size = sizeof(features);
585 sep = "";
586 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
587 if (mask & feature_bits[i].mask) {
588 cp += snprintf(cp, size, "%s%s", sep,
589 feature_bits[i].feature_name),
590 sep = ", ";
591 mask &= ~feature_bits[i].mask;
592 size = sizeof(features) - (cp - features);
593 }
594 }
595 if (mask && size > 1) {
596 /* print unknown features as a hex value */
597 snprintf(cp, size, "%s0x%lx", sep, mask);
598 }
599
600 proc_freq = cpufreq_quick_get(cpunum);
601 if (!proc_freq)
602 proc_freq = c->proc_freq / 1000;
603
604 seq_printf(m,
605 "processor : %d\n"
606 "vendor : %s\n"
607 "arch : IA-64\n"
608 "family : %u\n"
609 "model : %u\n"
610 "model name : %s\n"
611 "revision : %u\n"
612 "archrev : %u\n"
613 "features : %s\n"
614 "cpu number : %lu\n"
615 "cpu regs : %u\n"
616 "cpu MHz : %lu.%03lu\n"
617 "itc MHz : %lu.%06lu\n"
618 "BogoMIPS : %lu.%02lu\n",
619 cpunum, c->vendor, c->family, c->model,
620 c->model_name, c->revision, c->archrev,
621 features, c->ppn, c->number,
622 proc_freq / 1000, proc_freq % 1000,
623 c->itc_freq / 1000000, c->itc_freq % 1000000,
624 lpj*HZ/500000, (lpj*HZ/5000) % 100);
625 #ifdef CONFIG_SMP
626 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
627 if (c->socket_id != -1)
628 seq_printf(m, "physical id: %u\n", c->socket_id);
629 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
630 seq_printf(m,
631 "core id : %u\n"
632 "thread id : %u\n",
633 c->core_id, c->thread_id);
634 #endif
635 seq_printf(m,"\n");
636
637 return 0;
638 }
639
640 static void *
641 c_start (struct seq_file *m, loff_t *pos)
642 {
643 #ifdef CONFIG_SMP
644 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
645 ++*pos;
646 #endif
647 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
648 }
649
650 static void *
651 c_next (struct seq_file *m, void *v, loff_t *pos)
652 {
653 ++*pos;
654 return c_start(m, pos);
655 }
656
657 static void
658 c_stop (struct seq_file *m, void *v)
659 {
660 }
661
662 struct seq_operations cpuinfo_op = {
663 .start = c_start,
664 .next = c_next,
665 .stop = c_stop,
666 .show = show_cpuinfo
667 };
668
669 #define MAX_BRANDS 8
670 static char brandname[MAX_BRANDS][128];
671
672 static char * __cpuinit
673 get_model_name(__u8 family, __u8 model)
674 {
675 static int overflow;
676 char brand[128];
677 int i;
678
679 memcpy(brand, "Unknown", 8);
680 if (ia64_pal_get_brand_info(brand)) {
681 if (family == 0x7)
682 memcpy(brand, "Merced", 7);
683 else if (family == 0x1f) switch (model) {
684 case 0: memcpy(brand, "McKinley", 9); break;
685 case 1: memcpy(brand, "Madison", 8); break;
686 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
687 }
688 }
689 for (i = 0; i < MAX_BRANDS; i++)
690 if (strcmp(brandname[i], brand) == 0)
691 return brandname[i];
692 for (i = 0; i < MAX_BRANDS; i++)
693 if (brandname[i][0] == '\0')
694 return strcpy(brandname[i], brand);
695 if (overflow++ == 0)
696 printk(KERN_ERR
697 "%s: Table overflow. Some processor model information will be missing\n",
698 __FUNCTION__);
699 return "Unknown";
700 }
701
702 static void __cpuinit
703 identify_cpu (struct cpuinfo_ia64 *c)
704 {
705 union {
706 unsigned long bits[5];
707 struct {
708 /* id 0 & 1: */
709 char vendor[16];
710
711 /* id 2 */
712 u64 ppn; /* processor serial number */
713
714 /* id 3: */
715 unsigned number : 8;
716 unsigned revision : 8;
717 unsigned model : 8;
718 unsigned family : 8;
719 unsigned archrev : 8;
720 unsigned reserved : 24;
721
722 /* id 4: */
723 u64 features;
724 } field;
725 } cpuid;
726 pal_vm_info_1_u_t vm1;
727 pal_vm_info_2_u_t vm2;
728 pal_status_t status;
729 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
730 int i;
731 for (i = 0; i < 5; ++i)
732 cpuid.bits[i] = ia64_get_cpuid(i);
733
734 memcpy(c->vendor, cpuid.field.vendor, 16);
735 #ifdef CONFIG_SMP
736 c->cpu = smp_processor_id();
737
738 /* below default values will be overwritten by identify_siblings()
739 * for Multi-Threading/Multi-Core capable CPUs
740 */
741 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
742 c->socket_id = -1;
743
744 identify_siblings(c);
745
746 if (c->threads_per_core > smp_num_siblings)
747 smp_num_siblings = c->threads_per_core;
748 #endif
749 c->ppn = cpuid.field.ppn;
750 c->number = cpuid.field.number;
751 c->revision = cpuid.field.revision;
752 c->model = cpuid.field.model;
753 c->family = cpuid.field.family;
754 c->archrev = cpuid.field.archrev;
755 c->features = cpuid.field.features;
756 c->model_name = get_model_name(c->family, c->model);
757
758 status = ia64_pal_vm_summary(&vm1, &vm2);
759 if (status == PAL_STATUS_SUCCESS) {
760 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
761 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
762 }
763 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
764 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
765 }
766
767 void __init
768 setup_per_cpu_areas (void)
769 {
770 /* start_kernel() requires this... */
771 #ifdef CONFIG_ACPI_HOTPLUG_CPU
772 prefill_possible_map();
773 #endif
774 }
775
776 /*
777 * Calculate the max. cache line size.
778 *
779 * In addition, the minimum of the i-cache stride sizes is calculated for
780 * "flush_icache_range()".
781 */
782 static void __cpuinit
783 get_max_cacheline_size (void)
784 {
785 unsigned long line_size, max = 1;
786 u64 l, levels, unique_caches;
787 pal_cache_config_info_t cci;
788 s64 status;
789
790 status = ia64_pal_cache_summary(&levels, &unique_caches);
791 if (status != 0) {
792 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
793 __FUNCTION__, status);
794 max = SMP_CACHE_BYTES;
795 /* Safest setup for "flush_icache_range()" */
796 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
797 goto out;
798 }
799
800 for (l = 0; l < levels; ++l) {
801 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
802 &cci);
803 if (status != 0) {
804 printk(KERN_ERR
805 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
806 __FUNCTION__, l, status);
807 max = SMP_CACHE_BYTES;
808 /* The safest setup for "flush_icache_range()" */
809 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
810 cci.pcci_unified = 1;
811 }
812 line_size = 1 << cci.pcci_line_size;
813 if (line_size > max)
814 max = line_size;
815 if (!cci.pcci_unified) {
816 status = ia64_pal_cache_config_info(l,
817 /* cache_type (instruction)= */ 1,
818 &cci);
819 if (status != 0) {
820 printk(KERN_ERR
821 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
822 __FUNCTION__, l, status);
823 /* The safest setup for "flush_icache_range()" */
824 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
825 }
826 }
827 if (cci.pcci_stride < ia64_i_cache_stride_shift)
828 ia64_i_cache_stride_shift = cci.pcci_stride;
829 }
830 out:
831 if (max > ia64_max_cacheline_size)
832 ia64_max_cacheline_size = max;
833 }
834
835 /*
836 * cpu_init() initializes state that is per-CPU. This function acts
837 * as a 'CPU state barrier', nothing should get across.
838 */
839 void __cpuinit
840 cpu_init (void)
841 {
842 extern void __cpuinit ia64_mmu_init (void *);
843 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
844 unsigned long num_phys_stacked;
845 pal_vm_info_2_u_t vmi;
846 unsigned int max_ctx;
847 struct cpuinfo_ia64 *cpu_info;
848 void *cpu_data;
849
850 cpu_data = per_cpu_init();
851 #ifdef CONFIG_SMP
852 /*
853 * insert boot cpu into sibling and core mapes
854 * (must be done after per_cpu area is setup)
855 */
856 if (smp_processor_id() == 0) {
857 cpu_set(0, per_cpu(cpu_sibling_map, 0));
858 cpu_set(0, cpu_core_map[0]);
859 }
860 #endif
861
862 /*
863 * We set ar.k3 so that assembly code in MCA handler can compute
864 * physical addresses of per cpu variables with a simple:
865 * phys = ar.k3 + &per_cpu_var
866 */
867 ia64_set_kr(IA64_KR_PER_CPU_DATA,
868 ia64_tpa(cpu_data) - (long) __per_cpu_start);
869
870 get_max_cacheline_size();
871
872 /*
873 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
874 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
875 * depends on the data returned by identify_cpu(). We break the dependency by
876 * accessing cpu_data() through the canonical per-CPU address.
877 */
878 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
879 identify_cpu(cpu_info);
880
881 #ifdef CONFIG_MCKINLEY
882 {
883 # define FEATURE_SET 16
884 struct ia64_pal_retval iprv;
885
886 if (cpu_info->family == 0x1f) {
887 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
888 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
889 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
890 (iprv.v1 | 0x80), FEATURE_SET, 0);
891 }
892 }
893 #endif
894
895 /* Clear the stack memory reserved for pt_regs: */
896 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
897
898 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
899
900 /*
901 * Initialize the page-table base register to a global
902 * directory with all zeroes. This ensure that we can handle
903 * TLB-misses to user address-space even before we created the
904 * first user address-space. This may happen, e.g., due to
905 * aggressive use of lfetch.fault.
906 */
907 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
908
909 /*
910 * Initialize default control register to defer speculative faults except
911 * for those arising from TLB misses, which are not deferred. The
912 * kernel MUST NOT depend on a particular setting of these bits (in other words,
913 * the kernel must have recovery code for all speculative accesses). Turn on
914 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
915 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
916 * be fine).
917 */
918 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
919 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
920 atomic_inc(&init_mm.mm_count);
921 current->active_mm = &init_mm;
922 if (current->mm)
923 BUG();
924
925 ia64_mmu_init(ia64_imva(cpu_data));
926 ia64_mca_cpu_init(ia64_imva(cpu_data));
927
928 #ifdef CONFIG_IA32_SUPPORT
929 ia32_cpu_init();
930 #endif
931
932 /* Clear ITC to eliminate sched_clock() overflows in human time. */
933 ia64_set_itc(0);
934
935 /* disable all local interrupt sources: */
936 ia64_set_itv(1 << 16);
937 ia64_set_lrr0(1 << 16);
938 ia64_set_lrr1(1 << 16);
939 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
940 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
941
942 /* clear TPR & XTP to enable all interrupt classes: */
943 ia64_setreg(_IA64_REG_CR_TPR, 0);
944
945 /* Clear any pending interrupts left by SAL/EFI */
946 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
947 ia64_eoi();
948
949 #ifdef CONFIG_SMP
950 normal_xtp();
951 #endif
952
953 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
954 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
955 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
956 else {
957 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
958 max_ctx = (1U << 15) - 1; /* use architected minimum */
959 }
960 while (max_ctx < ia64_ctx.max_ctx) {
961 unsigned int old = ia64_ctx.max_ctx;
962 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
963 break;
964 }
965
966 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
967 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
968 "stacked regs\n");
969 num_phys_stacked = 96;
970 }
971 /* size of physical stacked register partition plus 8 bytes: */
972 if (num_phys_stacked > max_num_phys_stacked) {
973 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
974 max_num_phys_stacked = num_phys_stacked;
975 }
976 platform_cpu_init();
977 pm_idle = default_idle;
978 }
979
980 void __init
981 check_bugs (void)
982 {
983 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
984 (unsigned long) __end___mckinley_e9_bundles);
985 }
986
987 static int __init run_dmi_scan(void)
988 {
989 dmi_scan_machine();
990 return 0;
991 }
992 core_initcall(run_dmi_scan);