]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/ia64/kernel/setup.c
[IA64] Ensure that machvec is set up takes place before serial console
[mirror_ubuntu-jammy-kernel.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73
74 extern void ia64_setup_printk_clock(void);
75
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern char _text[], _end[], _etext[];
94
95 unsigned long ia64_max_cacheline_size;
96
97 int dma_get_cache_alignment(void)
98 {
99 return ia64_max_cacheline_size;
100 }
101 EXPORT_SYMBOL(dma_get_cache_alignment);
102
103 unsigned long ia64_iobase; /* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
108
109 /*
110 * "flush_icache_range()" needs to know what processor dependent stride size to use
111 * when it makes i-cache(s) coherent with d-caches.
112 */
113 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
115
116 /*
117 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
118 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120 * address of the second buffer must be aligned to (merge_mask+1) in order to be
121 * mergeable). By default, we assume there is no I/O MMU which can merge physically
122 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123 * page-size of 2^64.
124 */
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
127
128 /*
129 * We use a special marker for the end of memory and it uses the extra (+1) slot
130 */
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
133
134
135 /*
136 * Filter incoming memory segments based on the primitive map created from the boot
137 * parameters. Segments contained in the map are removed from the memory ranges. A
138 * caller-specified function is called with the memory ranges that remain after filtering.
139 * This routine does not assume the incoming segments are sorted.
140 */
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
143 {
144 unsigned long range_start, range_end, prev_start;
145 void (*func)(unsigned long, unsigned long, int);
146 int i;
147
148 #if IGNORE_PFN0
149 if (start == PAGE_OFFSET) {
150 printk(KERN_WARNING "warning: skipping physical page 0\n");
151 start += PAGE_SIZE;
152 if (start >= end) return 0;
153 }
154 #endif
155 /*
156 * lowest possible address(walker uses virtual)
157 */
158 prev_start = PAGE_OFFSET;
159 func = arg;
160
161 for (i = 0; i < num_rsvd_regions; ++i) {
162 range_start = max(start, prev_start);
163 range_end = min(end, rsvd_region[i].start);
164
165 if (range_start < range_end)
166 call_pernode_memory(__pa(range_start), range_end - range_start, func);
167
168 /* nothing more available in this segment */
169 if (range_end == end) return 0;
170
171 prev_start = rsvd_region[i].end;
172 }
173 /* end of memory marker allows full processing inside loop body */
174 return 0;
175 }
176
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
179 {
180 int j;
181
182 /* simple bubble sorting */
183 while (max--) {
184 for (j = 0; j < max; ++j) {
185 if (rsvd_region[j].start > rsvd_region[j+1].start) {
186 struct rsvd_region tmp;
187 tmp = rsvd_region[j];
188 rsvd_region[j] = rsvd_region[j + 1];
189 rsvd_region[j + 1] = tmp;
190 }
191 }
192 }
193 }
194
195 /*
196 * Request address space for all standard resources
197 */
198 static int __init register_memory(void)
199 {
200 code_resource.start = ia64_tpa(_text);
201 code_resource.end = ia64_tpa(_etext) - 1;
202 data_resource.start = ia64_tpa(_etext);
203 data_resource.end = ia64_tpa(_end) - 1;
204 efi_initialize_iomem_resources(&code_resource, &data_resource);
205
206 return 0;
207 }
208
209 __initcall(register_memory);
210
211 /**
212 * reserve_memory - setup reserved memory areas
213 *
214 * Setup the reserved memory areas set aside for the boot parameters,
215 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
216 * see include/asm-ia64/meminit.h if you need to define more.
217 */
218 void __init
219 reserve_memory (void)
220 {
221 int n = 0;
222
223 /*
224 * none of the entries in this table overlap
225 */
226 rsvd_region[n].start = (unsigned long) ia64_boot_param;
227 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
228 n++;
229
230 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232 n++;
233
234 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235 rsvd_region[n].end = (rsvd_region[n].start
236 + strlen(__va(ia64_boot_param->command_line)) + 1);
237 n++;
238
239 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
241 n++;
242
243 #ifdef CONFIG_BLK_DEV_INITRD
244 if (ia64_boot_param->initrd_start) {
245 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
247 n++;
248 }
249 #endif
250
251 #ifdef CONFIG_PROC_VMCORE
252 if (reserve_elfcorehdr(&rsvd_region[n].start,
253 &rsvd_region[n].end) == 0)
254 n++;
255 #endif
256
257 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258 n++;
259
260 #ifdef CONFIG_KEXEC
261 /* crashkernel=size@offset specifies the size to reserve for a crash
262 * kernel. If offset is 0, then it is determined automatically.
263 * By reserving this memory we guarantee that linux never set's it
264 * up as a DMA target.Useful for holding code to do something
265 * appropriate after a kernel panic.
266 */
267 {
268 char *from = strstr(boot_command_line, "crashkernel=");
269 unsigned long base, size;
270 if (from) {
271 size = memparse(from + 12, &from);
272 if (*from == '@')
273 base = memparse(from+1, &from);
274 else
275 base = 0;
276 if (size) {
277 if (!base) {
278 sort_regions(rsvd_region, n);
279 base = kdump_find_rsvd_region(size,
280 rsvd_region, n);
281 }
282 if (base != ~0UL) {
283 rsvd_region[n].start =
284 (unsigned long)__va(base);
285 rsvd_region[n].end =
286 (unsigned long)__va(base + size);
287 n++;
288 crashk_res.start = base;
289 crashk_res.end = base + size - 1;
290 }
291 }
292 }
293 efi_memmap_res.start = ia64_boot_param->efi_memmap;
294 efi_memmap_res.end = efi_memmap_res.start +
295 ia64_boot_param->efi_memmap_size;
296 boot_param_res.start = __pa(ia64_boot_param);
297 boot_param_res.end = boot_param_res.start +
298 sizeof(*ia64_boot_param);
299 }
300 #endif
301 /* end of memory marker */
302 rsvd_region[n].start = ~0UL;
303 rsvd_region[n].end = ~0UL;
304 n++;
305
306 num_rsvd_regions = n;
307 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
308
309 sort_regions(rsvd_region, num_rsvd_regions);
310 }
311
312
313 /**
314 * find_initrd - get initrd parameters from the boot parameter structure
315 *
316 * Grab the initrd start and end from the boot parameter struct given us by
317 * the boot loader.
318 */
319 void __init
320 find_initrd (void)
321 {
322 #ifdef CONFIG_BLK_DEV_INITRD
323 if (ia64_boot_param->initrd_start) {
324 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325 initrd_end = initrd_start+ia64_boot_param->initrd_size;
326
327 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328 initrd_start, ia64_boot_param->initrd_size);
329 }
330 #endif
331 }
332
333 static void __init
334 io_port_init (void)
335 {
336 unsigned long phys_iobase;
337
338 /*
339 * Set `iobase' based on the EFI memory map or, failing that, the
340 * value firmware left in ar.k0.
341 *
342 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343 * the port's virtual address, so ia32_load_state() loads it with a
344 * user virtual address. But in ia64 mode, glibc uses the
345 * *physical* address in ar.k0 to mmap the appropriate area from
346 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
347 * cases, user-mode can only use the legacy 0-64K I/O port space.
348 *
349 * ar.k0 is not involved in kernel I/O port accesses, which can use
350 * any of the I/O port spaces and are done via MMIO using the
351 * virtual mmio_base from the appropriate io_space[].
352 */
353 phys_iobase = efi_get_iobase();
354 if (!phys_iobase) {
355 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356 printk(KERN_INFO "No I/O port range found in EFI memory map, "
357 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
358 }
359 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
361
362 /* setup legacy IO port space */
363 io_space[0].mmio_base = ia64_iobase;
364 io_space[0].sparse = 1;
365 num_io_spaces = 1;
366 }
367
368 /**
369 * early_console_setup - setup debugging console
370 *
371 * Consoles started here require little enough setup that we can start using
372 * them very early in the boot process, either right after the machine
373 * vector initialization, or even before if the drivers can detect their hw.
374 *
375 * Returns non-zero if a console couldn't be setup.
376 */
377 static inline int __init
378 early_console_setup (char *cmdline)
379 {
380 int earlycons = 0;
381
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
383 {
384 extern int sn_serial_console_early_setup(void);
385 if (!sn_serial_console_early_setup())
386 earlycons++;
387 }
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390 if (!efi_setup_pcdp_console(cmdline))
391 earlycons++;
392 #endif
393
394 return (earlycons) ? 0 : -1;
395 }
396
397 static inline void
398 mark_bsp_online (void)
399 {
400 #ifdef CONFIG_SMP
401 /* If we register an early console, allow CPU 0 to printk */
402 cpu_set(smp_processor_id(), cpu_online_map);
403 #endif
404 }
405
406 #ifdef CONFIG_SMP
407 static void __init
408 check_for_logical_procs (void)
409 {
410 pal_logical_to_physical_t info;
411 s64 status;
412
413 status = ia64_pal_logical_to_phys(0, &info);
414 if (status == -1) {
415 printk(KERN_INFO "No logical to physical processor mapping "
416 "available\n");
417 return;
418 }
419 if (status) {
420 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
421 status);
422 return;
423 }
424 /*
425 * Total number of siblings that BSP has. Though not all of them
426 * may have booted successfully. The correct number of siblings
427 * booted is in info.overview_num_log.
428 */
429 smp_num_siblings = info.overview_tpc;
430 smp_num_cpucores = info.overview_cpp;
431 }
432 #endif
433
434 static __initdata int nomca;
435 static __init int setup_nomca(char *s)
436 {
437 nomca = 1;
438 return 0;
439 }
440 early_param("nomca", setup_nomca);
441
442 #ifdef CONFIG_PROC_VMCORE
443 /* elfcorehdr= specifies the location of elf core header
444 * stored by the crashed kernel.
445 */
446 static int __init parse_elfcorehdr(char *arg)
447 {
448 if (!arg)
449 return -EINVAL;
450
451 elfcorehdr_addr = memparse(arg, &arg);
452 return 0;
453 }
454 early_param("elfcorehdr", parse_elfcorehdr);
455
456 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
457 {
458 unsigned long length;
459
460 /* We get the address using the kernel command line,
461 * but the size is extracted from the EFI tables.
462 * Both address and size are required for reservation
463 * to work properly.
464 */
465
466 if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
467 return -EINVAL;
468
469 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
470 elfcorehdr_addr = ELFCORE_ADDR_MAX;
471 return -EINVAL;
472 }
473
474 *start = (unsigned long)__va(elfcorehdr_addr);
475 *end = *start + length;
476 return 0;
477 }
478
479 #endif /* CONFIG_PROC_VMCORE */
480
481 void __init
482 setup_arch (char **cmdline_p)
483 {
484 unw_init();
485
486 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
487
488 *cmdline_p = __va(ia64_boot_param->command_line);
489 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
490
491 efi_init();
492 io_port_init();
493
494 #ifdef CONFIG_IA64_GENERIC
495 /* machvec needs to be parsed from the command line
496 * before parse_early_param() is called to ensure
497 * that ia64_mv is initialised before any command line
498 * settings may cause console setup to occur
499 */
500 machvec_init_from_cmdline(*cmdline_p);
501 #endif
502
503 parse_early_param();
504
505 if (early_console_setup(*cmdline_p) == 0)
506 mark_bsp_online();
507
508 #ifdef CONFIG_ACPI
509 /* Initialize the ACPI boot-time table parser */
510 acpi_table_init();
511 # ifdef CONFIG_ACPI_NUMA
512 acpi_numa_init();
513 # endif
514 #else
515 # ifdef CONFIG_SMP
516 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
517 # endif
518 #endif /* CONFIG_APCI_BOOT */
519
520 find_memory();
521
522 /* process SAL system table: */
523 ia64_sal_init(__va(efi.sal_systab));
524
525 ia64_setup_printk_clock();
526
527 #ifdef CONFIG_SMP
528 cpu_physical_id(0) = hard_smp_processor_id();
529
530 cpu_set(0, cpu_sibling_map[0]);
531 cpu_set(0, cpu_core_map[0]);
532
533 check_for_logical_procs();
534 if (smp_num_cpucores > 1)
535 printk(KERN_INFO
536 "cpu package is Multi-Core capable: number of cores=%d\n",
537 smp_num_cpucores);
538 if (smp_num_siblings > 1)
539 printk(KERN_INFO
540 "cpu package is Multi-Threading capable: number of siblings=%d\n",
541 smp_num_siblings);
542 #endif
543
544 cpu_init(); /* initialize the bootstrap CPU */
545 mmu_context_init(); /* initialize context_id bitmap */
546
547 check_sal_cache_flush();
548
549 #ifdef CONFIG_ACPI
550 acpi_boot_init();
551 #endif
552
553 #ifdef CONFIG_VT
554 if (!conswitchp) {
555 # if defined(CONFIG_DUMMY_CONSOLE)
556 conswitchp = &dummy_con;
557 # endif
558 # if defined(CONFIG_VGA_CONSOLE)
559 /*
560 * Non-legacy systems may route legacy VGA MMIO range to system
561 * memory. vga_con probes the MMIO hole, so memory looks like
562 * a VGA device to it. The EFI memory map can tell us if it's
563 * memory so we can avoid this problem.
564 */
565 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
566 conswitchp = &vga_con;
567 # endif
568 }
569 #endif
570
571 /* enable IA-64 Machine Check Abort Handling unless disabled */
572 if (!nomca)
573 ia64_mca_init();
574
575 platform_setup(cmdline_p);
576 paging_init();
577 }
578
579 /*
580 * Display cpu info for all CPUs.
581 */
582 static int
583 show_cpuinfo (struct seq_file *m, void *v)
584 {
585 #ifdef CONFIG_SMP
586 # define lpj c->loops_per_jiffy
587 # define cpunum c->cpu
588 #else
589 # define lpj loops_per_jiffy
590 # define cpunum 0
591 #endif
592 static struct {
593 unsigned long mask;
594 const char *feature_name;
595 } feature_bits[] = {
596 { 1UL << 0, "branchlong" },
597 { 1UL << 1, "spontaneous deferral"},
598 { 1UL << 2, "16-byte atomic ops" }
599 };
600 char features[128], *cp, *sep;
601 struct cpuinfo_ia64 *c = v;
602 unsigned long mask;
603 unsigned long proc_freq;
604 int i, size;
605
606 mask = c->features;
607
608 /* build the feature string: */
609 memcpy(features, "standard", 9);
610 cp = features;
611 size = sizeof(features);
612 sep = "";
613 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
614 if (mask & feature_bits[i].mask) {
615 cp += snprintf(cp, size, "%s%s", sep,
616 feature_bits[i].feature_name),
617 sep = ", ";
618 mask &= ~feature_bits[i].mask;
619 size = sizeof(features) - (cp - features);
620 }
621 }
622 if (mask && size > 1) {
623 /* print unknown features as a hex value */
624 snprintf(cp, size, "%s0x%lx", sep, mask);
625 }
626
627 proc_freq = cpufreq_quick_get(cpunum);
628 if (!proc_freq)
629 proc_freq = c->proc_freq / 1000;
630
631 seq_printf(m,
632 "processor : %d\n"
633 "vendor : %s\n"
634 "arch : IA-64\n"
635 "family : %u\n"
636 "model : %u\n"
637 "model name : %s\n"
638 "revision : %u\n"
639 "archrev : %u\n"
640 "features : %s\n"
641 "cpu number : %lu\n"
642 "cpu regs : %u\n"
643 "cpu MHz : %lu.%03lu\n"
644 "itc MHz : %lu.%06lu\n"
645 "BogoMIPS : %lu.%02lu\n",
646 cpunum, c->vendor, c->family, c->model,
647 c->model_name, c->revision, c->archrev,
648 features, c->ppn, c->number,
649 proc_freq / 1000, proc_freq % 1000,
650 c->itc_freq / 1000000, c->itc_freq % 1000000,
651 lpj*HZ/500000, (lpj*HZ/5000) % 100);
652 #ifdef CONFIG_SMP
653 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
654 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
655 seq_printf(m,
656 "physical id: %u\n"
657 "core id : %u\n"
658 "thread id : %u\n",
659 c->socket_id, c->core_id, c->thread_id);
660 #endif
661 seq_printf(m,"\n");
662
663 return 0;
664 }
665
666 static void *
667 c_start (struct seq_file *m, loff_t *pos)
668 {
669 #ifdef CONFIG_SMP
670 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
671 ++*pos;
672 #endif
673 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
674 }
675
676 static void *
677 c_next (struct seq_file *m, void *v, loff_t *pos)
678 {
679 ++*pos;
680 return c_start(m, pos);
681 }
682
683 static void
684 c_stop (struct seq_file *m, void *v)
685 {
686 }
687
688 struct seq_operations cpuinfo_op = {
689 .start = c_start,
690 .next = c_next,
691 .stop = c_stop,
692 .show = show_cpuinfo
693 };
694
695 #define MAX_BRANDS 8
696 static char brandname[MAX_BRANDS][128];
697
698 static char * __cpuinit
699 get_model_name(__u8 family, __u8 model)
700 {
701 static int overflow;
702 char brand[128];
703 int i;
704
705 memcpy(brand, "Unknown", 8);
706 if (ia64_pal_get_brand_info(brand)) {
707 if (family == 0x7)
708 memcpy(brand, "Merced", 7);
709 else if (family == 0x1f) switch (model) {
710 case 0: memcpy(brand, "McKinley", 9); break;
711 case 1: memcpy(brand, "Madison", 8); break;
712 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
713 }
714 }
715 for (i = 0; i < MAX_BRANDS; i++)
716 if (strcmp(brandname[i], brand) == 0)
717 return brandname[i];
718 for (i = 0; i < MAX_BRANDS; i++)
719 if (brandname[i][0] == '\0')
720 return strcpy(brandname[i], brand);
721 if (overflow++ == 0)
722 printk(KERN_ERR
723 "%s: Table overflow. Some processor model information will be missing\n",
724 __FUNCTION__);
725 return "Unknown";
726 }
727
728 static void __cpuinit
729 identify_cpu (struct cpuinfo_ia64 *c)
730 {
731 union {
732 unsigned long bits[5];
733 struct {
734 /* id 0 & 1: */
735 char vendor[16];
736
737 /* id 2 */
738 u64 ppn; /* processor serial number */
739
740 /* id 3: */
741 unsigned number : 8;
742 unsigned revision : 8;
743 unsigned model : 8;
744 unsigned family : 8;
745 unsigned archrev : 8;
746 unsigned reserved : 24;
747
748 /* id 4: */
749 u64 features;
750 } field;
751 } cpuid;
752 pal_vm_info_1_u_t vm1;
753 pal_vm_info_2_u_t vm2;
754 pal_status_t status;
755 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
756 int i;
757 for (i = 0; i < 5; ++i)
758 cpuid.bits[i] = ia64_get_cpuid(i);
759
760 memcpy(c->vendor, cpuid.field.vendor, 16);
761 #ifdef CONFIG_SMP
762 c->cpu = smp_processor_id();
763
764 /* below default values will be overwritten by identify_siblings()
765 * for Multi-Threading/Multi-Core capable CPUs
766 */
767 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
768 c->socket_id = -1;
769
770 identify_siblings(c);
771 #endif
772 c->ppn = cpuid.field.ppn;
773 c->number = cpuid.field.number;
774 c->revision = cpuid.field.revision;
775 c->model = cpuid.field.model;
776 c->family = cpuid.field.family;
777 c->archrev = cpuid.field.archrev;
778 c->features = cpuid.field.features;
779 c->model_name = get_model_name(c->family, c->model);
780
781 status = ia64_pal_vm_summary(&vm1, &vm2);
782 if (status == PAL_STATUS_SUCCESS) {
783 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
784 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
785 }
786 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
787 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
788 }
789
790 void __init
791 setup_per_cpu_areas (void)
792 {
793 /* start_kernel() requires this... */
794 #ifdef CONFIG_ACPI_HOTPLUG_CPU
795 prefill_possible_map();
796 #endif
797 }
798
799 /*
800 * Calculate the max. cache line size.
801 *
802 * In addition, the minimum of the i-cache stride sizes is calculated for
803 * "flush_icache_range()".
804 */
805 static void __cpuinit
806 get_max_cacheline_size (void)
807 {
808 unsigned long line_size, max = 1;
809 u64 l, levels, unique_caches;
810 pal_cache_config_info_t cci;
811 s64 status;
812
813 status = ia64_pal_cache_summary(&levels, &unique_caches);
814 if (status != 0) {
815 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
816 __FUNCTION__, status);
817 max = SMP_CACHE_BYTES;
818 /* Safest setup for "flush_icache_range()" */
819 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
820 goto out;
821 }
822
823 for (l = 0; l < levels; ++l) {
824 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
825 &cci);
826 if (status != 0) {
827 printk(KERN_ERR
828 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
829 __FUNCTION__, l, status);
830 max = SMP_CACHE_BYTES;
831 /* The safest setup for "flush_icache_range()" */
832 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
833 cci.pcci_unified = 1;
834 }
835 line_size = 1 << cci.pcci_line_size;
836 if (line_size > max)
837 max = line_size;
838 if (!cci.pcci_unified) {
839 status = ia64_pal_cache_config_info(l,
840 /* cache_type (instruction)= */ 1,
841 &cci);
842 if (status != 0) {
843 printk(KERN_ERR
844 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
845 __FUNCTION__, l, status);
846 /* The safest setup for "flush_icache_range()" */
847 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
848 }
849 }
850 if (cci.pcci_stride < ia64_i_cache_stride_shift)
851 ia64_i_cache_stride_shift = cci.pcci_stride;
852 }
853 out:
854 if (max > ia64_max_cacheline_size)
855 ia64_max_cacheline_size = max;
856 }
857
858 /*
859 * cpu_init() initializes state that is per-CPU. This function acts
860 * as a 'CPU state barrier', nothing should get across.
861 */
862 void __cpuinit
863 cpu_init (void)
864 {
865 extern void __cpuinit ia64_mmu_init (void *);
866 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
867 unsigned long num_phys_stacked;
868 pal_vm_info_2_u_t vmi;
869 unsigned int max_ctx;
870 struct cpuinfo_ia64 *cpu_info;
871 void *cpu_data;
872
873 cpu_data = per_cpu_init();
874
875 /*
876 * We set ar.k3 so that assembly code in MCA handler can compute
877 * physical addresses of per cpu variables with a simple:
878 * phys = ar.k3 + &per_cpu_var
879 */
880 ia64_set_kr(IA64_KR_PER_CPU_DATA,
881 ia64_tpa(cpu_data) - (long) __per_cpu_start);
882
883 get_max_cacheline_size();
884
885 /*
886 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
887 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
888 * depends on the data returned by identify_cpu(). We break the dependency by
889 * accessing cpu_data() through the canonical per-CPU address.
890 */
891 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
892 identify_cpu(cpu_info);
893
894 #ifdef CONFIG_MCKINLEY
895 {
896 # define FEATURE_SET 16
897 struct ia64_pal_retval iprv;
898
899 if (cpu_info->family == 0x1f) {
900 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
901 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
902 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
903 (iprv.v1 | 0x80), FEATURE_SET, 0);
904 }
905 }
906 #endif
907
908 /* Clear the stack memory reserved for pt_regs: */
909 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
910
911 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
912
913 /*
914 * Initialize the page-table base register to a global
915 * directory with all zeroes. This ensure that we can handle
916 * TLB-misses to user address-space even before we created the
917 * first user address-space. This may happen, e.g., due to
918 * aggressive use of lfetch.fault.
919 */
920 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
921
922 /*
923 * Initialize default control register to defer speculative faults except
924 * for those arising from TLB misses, which are not deferred. The
925 * kernel MUST NOT depend on a particular setting of these bits (in other words,
926 * the kernel must have recovery code for all speculative accesses). Turn on
927 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
928 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
929 * be fine).
930 */
931 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
932 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
933 atomic_inc(&init_mm.mm_count);
934 current->active_mm = &init_mm;
935 if (current->mm)
936 BUG();
937
938 ia64_mmu_init(ia64_imva(cpu_data));
939 ia64_mca_cpu_init(ia64_imva(cpu_data));
940
941 #ifdef CONFIG_IA32_SUPPORT
942 ia32_cpu_init();
943 #endif
944
945 /* Clear ITC to eliminate sched_clock() overflows in human time. */
946 ia64_set_itc(0);
947
948 /* disable all local interrupt sources: */
949 ia64_set_itv(1 << 16);
950 ia64_set_lrr0(1 << 16);
951 ia64_set_lrr1(1 << 16);
952 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
953 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
954
955 /* clear TPR & XTP to enable all interrupt classes: */
956 ia64_setreg(_IA64_REG_CR_TPR, 0);
957 #ifdef CONFIG_SMP
958 normal_xtp();
959 #endif
960
961 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
962 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
963 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
964 else {
965 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
966 max_ctx = (1U << 15) - 1; /* use architected minimum */
967 }
968 while (max_ctx < ia64_ctx.max_ctx) {
969 unsigned int old = ia64_ctx.max_ctx;
970 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
971 break;
972 }
973
974 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
975 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
976 "stacked regs\n");
977 num_phys_stacked = 96;
978 }
979 /* size of physical stacked register partition plus 8 bytes: */
980 if (num_phys_stacked > max_num_phys_stacked) {
981 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
982 max_num_phys_stacked = num_phys_stacked;
983 }
984 platform_cpu_init();
985 pm_idle = default_idle;
986 }
987
988 void __init
989 check_bugs (void)
990 {
991 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
992 (unsigned long) __end___mckinley_e9_bundles);
993 }
994
995 static int __init run_dmi_scan(void)
996 {
997 dmi_scan_machine();
998 return 0;
999 }
1000 core_initcall(run_dmi_scan);