]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/setup.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/threads.h>
40 #include <linux/screen_info.h>
41 #include <linux/dmi.h>
42 #include <linux/serial.h>
43 #include <linux/serial_core.h>
44 #include <linux/efi.h>
45 #include <linux/initrd.h>
46 #include <linux/pm.h>
47 #include <linux/cpufreq.h>
48 #include <linux/kexec.h>
49 #include <linux/crash_dump.h>
50
51 #include <asm/machvec.h>
52 #include <asm/mca.h>
53 #include <asm/meminit.h>
54 #include <asm/page.h>
55 #include <asm/patch.h>
56 #include <asm/pgtable.h>
57 #include <asm/processor.h>
58 #include <asm/sal.h>
59 #include <asm/sections.h>
60 #include <asm/setup.h>
61 #include <asm/smp.h>
62 #include <asm/tlbflush.h>
63 #include <asm/unistd.h>
64 #include <asm/hpsim.h>
65
66 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
67 # error "struct cpuinfo_ia64 too big!"
68 #endif
69
70 #ifdef CONFIG_SMP
71 unsigned long __per_cpu_offset[NR_CPUS];
72 EXPORT_SYMBOL(__per_cpu_offset);
73 #endif
74
75 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
76 EXPORT_SYMBOL(ia64_cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 #ifdef CONFIG_SMP
79 EXPORT_SYMBOL(local_per_cpu_offset);
80 #endif
81 unsigned long ia64_cycles_per_usec;
82 struct ia64_boot_param *ia64_boot_param;
83 struct screen_info screen_info;
84 unsigned long vga_console_iobase;
85 unsigned long vga_console_membase;
86
87 static struct resource data_resource = {
88 .name = "Kernel data",
89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91
92 static struct resource code_resource = {
93 .name = "Kernel code",
94 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
95 };
96
97 static struct resource bss_resource = {
98 .name = "Kernel bss",
99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100 };
101
102 unsigned long ia64_max_cacheline_size;
103
104 unsigned long ia64_iobase; /* virtual address for I/O accesses */
105 EXPORT_SYMBOL(ia64_iobase);
106 struct io_space io_space[MAX_IO_SPACES];
107 EXPORT_SYMBOL(io_space);
108 unsigned int num_io_spaces;
109
110 /*
111 * "flush_icache_range()" needs to know what processor dependent stride size to use
112 * when it makes i-cache(s) coherent with d-caches.
113 */
114 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
115 unsigned long ia64_i_cache_stride_shift = ~0;
116 /*
117 * "clflush_cache_range()" needs to know what processor dependent stride size to
118 * use when it flushes cache lines including both d-cache and i-cache.
119 */
120 /* Safest way to go: 32 bytes by 32 bytes */
121 #define CACHE_STRIDE_SHIFT 5
122 unsigned long ia64_cache_stride_shift = ~0;
123
124 /*
125 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
126 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
127 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
128 * address of the second buffer must be aligned to (merge_mask+1) in order to be
129 * mergeable). By default, we assume there is no I/O MMU which can merge physically
130 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
131 * page-size of 2^64.
132 */
133 unsigned long ia64_max_iommu_merge_mask = ~0UL;
134 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
135
136 /*
137 * We use a special marker for the end of memory and it uses the extra (+1) slot
138 */
139 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
140 int num_rsvd_regions __initdata;
141
142
143 /*
144 * Filter incoming memory segments based on the primitive map created from the boot
145 * parameters. Segments contained in the map are removed from the memory ranges. A
146 * caller-specified function is called with the memory ranges that remain after filtering.
147 * This routine does not assume the incoming segments are sorted.
148 */
149 int __init
150 filter_rsvd_memory (u64 start, u64 end, void *arg)
151 {
152 u64 range_start, range_end, prev_start;
153 void (*func)(unsigned long, unsigned long, int);
154 int i;
155
156 #if IGNORE_PFN0
157 if (start == PAGE_OFFSET) {
158 printk(KERN_WARNING "warning: skipping physical page 0\n");
159 start += PAGE_SIZE;
160 if (start >= end) return 0;
161 }
162 #endif
163 /*
164 * lowest possible address(walker uses virtual)
165 */
166 prev_start = PAGE_OFFSET;
167 func = arg;
168
169 for (i = 0; i < num_rsvd_regions; ++i) {
170 range_start = max(start, prev_start);
171 range_end = min(end, rsvd_region[i].start);
172
173 if (range_start < range_end)
174 call_pernode_memory(__pa(range_start), range_end - range_start, func);
175
176 /* nothing more available in this segment */
177 if (range_end == end) return 0;
178
179 prev_start = rsvd_region[i].end;
180 }
181 /* end of memory marker allows full processing inside loop body */
182 return 0;
183 }
184
185 /*
186 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
187 * are not filtered out.
188 */
189 int __init
190 filter_memory(u64 start, u64 end, void *arg)
191 {
192 void (*func)(unsigned long, unsigned long, int);
193
194 #if IGNORE_PFN0
195 if (start == PAGE_OFFSET) {
196 printk(KERN_WARNING "warning: skipping physical page 0\n");
197 start += PAGE_SIZE;
198 if (start >= end)
199 return 0;
200 }
201 #endif
202 func = arg;
203 if (start < end)
204 call_pernode_memory(__pa(start), end - start, func);
205 return 0;
206 }
207
208 static void __init
209 sort_regions (struct rsvd_region *rsvd_region, int max)
210 {
211 int j;
212
213 /* simple bubble sorting */
214 while (max--) {
215 for (j = 0; j < max; ++j) {
216 if (rsvd_region[j].start > rsvd_region[j+1].start) {
217 struct rsvd_region tmp;
218 tmp = rsvd_region[j];
219 rsvd_region[j] = rsvd_region[j + 1];
220 rsvd_region[j + 1] = tmp;
221 }
222 }
223 }
224 }
225
226 /* merge overlaps */
227 static int __init
228 merge_regions (struct rsvd_region *rsvd_region, int max)
229 {
230 int i;
231 for (i = 1; i < max; ++i) {
232 if (rsvd_region[i].start >= rsvd_region[i-1].end)
233 continue;
234 if (rsvd_region[i].end > rsvd_region[i-1].end)
235 rsvd_region[i-1].end = rsvd_region[i].end;
236 --max;
237 memmove(&rsvd_region[i], &rsvd_region[i+1],
238 (max - i) * sizeof(struct rsvd_region));
239 }
240 return max;
241 }
242
243 /*
244 * Request address space for all standard resources
245 */
246 static int __init register_memory(void)
247 {
248 code_resource.start = ia64_tpa(_text);
249 code_resource.end = ia64_tpa(_etext) - 1;
250 data_resource.start = ia64_tpa(_etext);
251 data_resource.end = ia64_tpa(_edata) - 1;
252 bss_resource.start = ia64_tpa(__bss_start);
253 bss_resource.end = ia64_tpa(_end) - 1;
254 efi_initialize_iomem_resources(&code_resource, &data_resource,
255 &bss_resource);
256
257 return 0;
258 }
259
260 __initcall(register_memory);
261
262
263 #ifdef CONFIG_KEXEC
264
265 /*
266 * This function checks if the reserved crashkernel is allowed on the specific
267 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
268 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
269 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
270 * in kdump case. See the comment in sba_init() in sba_iommu.c.
271 *
272 * So, the only machvec that really supports loading the kdump kernel
273 * over 4 GB is "sn2".
274 */
275 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
276 {
277 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
278 return 1;
279 else
280 return pbase < (1UL << 32);
281 }
282
283 static void __init setup_crashkernel(unsigned long total, int *n)
284 {
285 unsigned long long base = 0, size = 0;
286 int ret;
287
288 ret = parse_crashkernel(boot_command_line, total,
289 &size, &base);
290 if (ret == 0 && size > 0) {
291 if (!base) {
292 sort_regions(rsvd_region, *n);
293 *n = merge_regions(rsvd_region, *n);
294 base = kdump_find_rsvd_region(size,
295 rsvd_region, *n);
296 }
297
298 if (!check_crashkernel_memory(base, size)) {
299 pr_warning("crashkernel: There would be kdump memory "
300 "at %ld GB but this is unusable because it "
301 "must\nbe below 4 GB. Change the memory "
302 "configuration of the machine.\n",
303 (unsigned long)(base >> 30));
304 return;
305 }
306
307 if (base != ~0UL) {
308 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
309 "for crashkernel (System RAM: %ldMB)\n",
310 (unsigned long)(size >> 20),
311 (unsigned long)(base >> 20),
312 (unsigned long)(total >> 20));
313 rsvd_region[*n].start =
314 (unsigned long)__va(base);
315 rsvd_region[*n].end =
316 (unsigned long)__va(base + size);
317 (*n)++;
318 crashk_res.start = base;
319 crashk_res.end = base + size - 1;
320 }
321 }
322 efi_memmap_res.start = ia64_boot_param->efi_memmap;
323 efi_memmap_res.end = efi_memmap_res.start +
324 ia64_boot_param->efi_memmap_size;
325 boot_param_res.start = __pa(ia64_boot_param);
326 boot_param_res.end = boot_param_res.start +
327 sizeof(*ia64_boot_param);
328 }
329 #else
330 static inline void __init setup_crashkernel(unsigned long total, int *n)
331 {}
332 #endif
333
334 /**
335 * reserve_memory - setup reserved memory areas
336 *
337 * Setup the reserved memory areas set aside for the boot parameters,
338 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
339 * see arch/ia64/include/asm/meminit.h if you need to define more.
340 */
341 void __init
342 reserve_memory (void)
343 {
344 int n = 0;
345 unsigned long total_memory;
346
347 /*
348 * none of the entries in this table overlap
349 */
350 rsvd_region[n].start = (unsigned long) ia64_boot_param;
351 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
352 n++;
353
354 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
355 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
356 n++;
357
358 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
359 rsvd_region[n].end = (rsvd_region[n].start
360 + strlen(__va(ia64_boot_param->command_line)) + 1);
361 n++;
362
363 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
364 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
365 n++;
366
367 #ifdef CONFIG_BLK_DEV_INITRD
368 if (ia64_boot_param->initrd_start) {
369 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
370 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
371 n++;
372 }
373 #endif
374
375 #ifdef CONFIG_CRASH_DUMP
376 if (reserve_elfcorehdr(&rsvd_region[n].start,
377 &rsvd_region[n].end) == 0)
378 n++;
379 #endif
380
381 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
382 n++;
383
384 setup_crashkernel(total_memory, &n);
385
386 /* end of memory marker */
387 rsvd_region[n].start = ~0UL;
388 rsvd_region[n].end = ~0UL;
389 n++;
390
391 num_rsvd_regions = n;
392 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
393
394 sort_regions(rsvd_region, num_rsvd_regions);
395 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
396 }
397
398
399 /**
400 * find_initrd - get initrd parameters from the boot parameter structure
401 *
402 * Grab the initrd start and end from the boot parameter struct given us by
403 * the boot loader.
404 */
405 void __init
406 find_initrd (void)
407 {
408 #ifdef CONFIG_BLK_DEV_INITRD
409 if (ia64_boot_param->initrd_start) {
410 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
411 initrd_end = initrd_start+ia64_boot_param->initrd_size;
412
413 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
414 initrd_start, ia64_boot_param->initrd_size);
415 }
416 #endif
417 }
418
419 static void __init
420 io_port_init (void)
421 {
422 unsigned long phys_iobase;
423
424 /*
425 * Set `iobase' based on the EFI memory map or, failing that, the
426 * value firmware left in ar.k0.
427 *
428 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
429 * the port's virtual address, so ia32_load_state() loads it with a
430 * user virtual address. But in ia64 mode, glibc uses the
431 * *physical* address in ar.k0 to mmap the appropriate area from
432 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
433 * cases, user-mode can only use the legacy 0-64K I/O port space.
434 *
435 * ar.k0 is not involved in kernel I/O port accesses, which can use
436 * any of the I/O port spaces and are done via MMIO using the
437 * virtual mmio_base from the appropriate io_space[].
438 */
439 phys_iobase = efi_get_iobase();
440 if (!phys_iobase) {
441 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
442 printk(KERN_INFO "No I/O port range found in EFI memory map, "
443 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
444 }
445 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
446 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
447
448 /* setup legacy IO port space */
449 io_space[0].mmio_base = ia64_iobase;
450 io_space[0].sparse = 1;
451 num_io_spaces = 1;
452 }
453
454 /**
455 * early_console_setup - setup debugging console
456 *
457 * Consoles started here require little enough setup that we can start using
458 * them very early in the boot process, either right after the machine
459 * vector initialization, or even before if the drivers can detect their hw.
460 *
461 * Returns non-zero if a console couldn't be setup.
462 */
463 static inline int __init
464 early_console_setup (char *cmdline)
465 {
466 int earlycons = 0;
467
468 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
469 {
470 extern int sn_serial_console_early_setup(void);
471 if (!sn_serial_console_early_setup())
472 earlycons++;
473 }
474 #endif
475 #ifdef CONFIG_EFI_PCDP
476 if (!efi_setup_pcdp_console(cmdline))
477 earlycons++;
478 #endif
479 if (!simcons_register())
480 earlycons++;
481
482 return (earlycons) ? 0 : -1;
483 }
484
485 static inline void
486 mark_bsp_online (void)
487 {
488 #ifdef CONFIG_SMP
489 /* If we register an early console, allow CPU 0 to printk */
490 set_cpu_online(smp_processor_id(), true);
491 #endif
492 }
493
494 static __initdata int nomca;
495 static __init int setup_nomca(char *s)
496 {
497 nomca = 1;
498 return 0;
499 }
500 early_param("nomca", setup_nomca);
501
502 #ifdef CONFIG_CRASH_DUMP
503 int __init reserve_elfcorehdr(u64 *start, u64 *end)
504 {
505 u64 length;
506
507 /* We get the address using the kernel command line,
508 * but the size is extracted from the EFI tables.
509 * Both address and size are required for reservation
510 * to work properly.
511 */
512
513 if (!is_vmcore_usable())
514 return -EINVAL;
515
516 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
517 vmcore_unusable();
518 return -EINVAL;
519 }
520
521 *start = (unsigned long)__va(elfcorehdr_addr);
522 *end = *start + length;
523 return 0;
524 }
525
526 #endif /* CONFIG_PROC_VMCORE */
527
528 void __init
529 setup_arch (char **cmdline_p)
530 {
531 unw_init();
532
533 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
534
535 *cmdline_p = __va(ia64_boot_param->command_line);
536 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
537
538 efi_init();
539 io_port_init();
540
541 #ifdef CONFIG_IA64_GENERIC
542 /* machvec needs to be parsed from the command line
543 * before parse_early_param() is called to ensure
544 * that ia64_mv is initialised before any command line
545 * settings may cause console setup to occur
546 */
547 machvec_init_from_cmdline(*cmdline_p);
548 #endif
549
550 parse_early_param();
551
552 if (early_console_setup(*cmdline_p) == 0)
553 mark_bsp_online();
554
555 #ifdef CONFIG_ACPI
556 /* Initialize the ACPI boot-time table parser */
557 acpi_table_init();
558 early_acpi_boot_init();
559 # ifdef CONFIG_ACPI_NUMA
560 acpi_numa_init();
561 acpi_numa_fixup();
562 # ifdef CONFIG_ACPI_HOTPLUG_CPU
563 prefill_possible_map();
564 # endif
565 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
566 32 : cpumask_weight(&early_cpu_possible_map)),
567 additional_cpus > 0 ? additional_cpus : 0);
568 # endif
569 #endif /* CONFIG_APCI_BOOT */
570
571 #ifdef CONFIG_SMP
572 smp_build_cpu_map();
573 #endif
574 find_memory();
575
576 /* process SAL system table: */
577 ia64_sal_init(__va(efi.sal_systab));
578
579 #ifdef CONFIG_ITANIUM
580 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
581 #else
582 {
583 unsigned long num_phys_stacked;
584
585 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
586 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
587 }
588 #endif
589
590 #ifdef CONFIG_SMP
591 cpu_physical_id(0) = hard_smp_processor_id();
592 #endif
593
594 cpu_init(); /* initialize the bootstrap CPU */
595 mmu_context_init(); /* initialize context_id bitmap */
596
597 #ifdef CONFIG_VT
598 if (!conswitchp) {
599 # if defined(CONFIG_DUMMY_CONSOLE)
600 conswitchp = &dummy_con;
601 # endif
602 # if defined(CONFIG_VGA_CONSOLE)
603 /*
604 * Non-legacy systems may route legacy VGA MMIO range to system
605 * memory. vga_con probes the MMIO hole, so memory looks like
606 * a VGA device to it. The EFI memory map can tell us if it's
607 * memory so we can avoid this problem.
608 */
609 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
610 conswitchp = &vga_con;
611 # endif
612 }
613 #endif
614
615 /* enable IA-64 Machine Check Abort Handling unless disabled */
616 if (!nomca)
617 ia64_mca_init();
618
619 platform_setup(cmdline_p);
620 #ifndef CONFIG_IA64_HP_SIM
621 check_sal_cache_flush();
622 #endif
623 paging_init();
624
625 clear_sched_clock_stable();
626 }
627
628 /*
629 * Display cpu info for all CPUs.
630 */
631 static int
632 show_cpuinfo (struct seq_file *m, void *v)
633 {
634 #ifdef CONFIG_SMP
635 # define lpj c->loops_per_jiffy
636 # define cpunum c->cpu
637 #else
638 # define lpj loops_per_jiffy
639 # define cpunum 0
640 #endif
641 static struct {
642 unsigned long mask;
643 const char *feature_name;
644 } feature_bits[] = {
645 { 1UL << 0, "branchlong" },
646 { 1UL << 1, "spontaneous deferral"},
647 { 1UL << 2, "16-byte atomic ops" }
648 };
649 char features[128], *cp, *sep;
650 struct cpuinfo_ia64 *c = v;
651 unsigned long mask;
652 unsigned long proc_freq;
653 int i, size;
654
655 mask = c->features;
656
657 /* build the feature string: */
658 memcpy(features, "standard", 9);
659 cp = features;
660 size = sizeof(features);
661 sep = "";
662 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
663 if (mask & feature_bits[i].mask) {
664 cp += snprintf(cp, size, "%s%s", sep,
665 feature_bits[i].feature_name),
666 sep = ", ";
667 mask &= ~feature_bits[i].mask;
668 size = sizeof(features) - (cp - features);
669 }
670 }
671 if (mask && size > 1) {
672 /* print unknown features as a hex value */
673 snprintf(cp, size, "%s0x%lx", sep, mask);
674 }
675
676 proc_freq = cpufreq_quick_get(cpunum);
677 if (!proc_freq)
678 proc_freq = c->proc_freq / 1000;
679
680 seq_printf(m,
681 "processor : %d\n"
682 "vendor : %s\n"
683 "arch : IA-64\n"
684 "family : %u\n"
685 "model : %u\n"
686 "model name : %s\n"
687 "revision : %u\n"
688 "archrev : %u\n"
689 "features : %s\n"
690 "cpu number : %lu\n"
691 "cpu regs : %u\n"
692 "cpu MHz : %lu.%03lu\n"
693 "itc MHz : %lu.%06lu\n"
694 "BogoMIPS : %lu.%02lu\n",
695 cpunum, c->vendor, c->family, c->model,
696 c->model_name, c->revision, c->archrev,
697 features, c->ppn, c->number,
698 proc_freq / 1000, proc_freq % 1000,
699 c->itc_freq / 1000000, c->itc_freq % 1000000,
700 lpj*HZ/500000, (lpj*HZ/5000) % 100);
701 #ifdef CONFIG_SMP
702 seq_printf(m, "siblings : %u\n",
703 cpumask_weight(&cpu_core_map[cpunum]));
704 if (c->socket_id != -1)
705 seq_printf(m, "physical id: %u\n", c->socket_id);
706 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
707 seq_printf(m,
708 "core id : %u\n"
709 "thread id : %u\n",
710 c->core_id, c->thread_id);
711 #endif
712 seq_printf(m,"\n");
713
714 return 0;
715 }
716
717 static void *
718 c_start (struct seq_file *m, loff_t *pos)
719 {
720 #ifdef CONFIG_SMP
721 while (*pos < nr_cpu_ids && !cpu_online(*pos))
722 ++*pos;
723 #endif
724 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
725 }
726
727 static void *
728 c_next (struct seq_file *m, void *v, loff_t *pos)
729 {
730 ++*pos;
731 return c_start(m, pos);
732 }
733
734 static void
735 c_stop (struct seq_file *m, void *v)
736 {
737 }
738
739 const struct seq_operations cpuinfo_op = {
740 .start = c_start,
741 .next = c_next,
742 .stop = c_stop,
743 .show = show_cpuinfo
744 };
745
746 #define MAX_BRANDS 8
747 static char brandname[MAX_BRANDS][128];
748
749 static char *
750 get_model_name(__u8 family, __u8 model)
751 {
752 static int overflow;
753 char brand[128];
754 int i;
755
756 memcpy(brand, "Unknown", 8);
757 if (ia64_pal_get_brand_info(brand)) {
758 if (family == 0x7)
759 memcpy(brand, "Merced", 7);
760 else if (family == 0x1f) switch (model) {
761 case 0: memcpy(brand, "McKinley", 9); break;
762 case 1: memcpy(brand, "Madison", 8); break;
763 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
764 }
765 }
766 for (i = 0; i < MAX_BRANDS; i++)
767 if (strcmp(brandname[i], brand) == 0)
768 return brandname[i];
769 for (i = 0; i < MAX_BRANDS; i++)
770 if (brandname[i][0] == '\0')
771 return strcpy(brandname[i], brand);
772 if (overflow++ == 0)
773 printk(KERN_ERR
774 "%s: Table overflow. Some processor model information will be missing\n",
775 __func__);
776 return "Unknown";
777 }
778
779 static void
780 identify_cpu (struct cpuinfo_ia64 *c)
781 {
782 union {
783 unsigned long bits[5];
784 struct {
785 /* id 0 & 1: */
786 char vendor[16];
787
788 /* id 2 */
789 u64 ppn; /* processor serial number */
790
791 /* id 3: */
792 unsigned number : 8;
793 unsigned revision : 8;
794 unsigned model : 8;
795 unsigned family : 8;
796 unsigned archrev : 8;
797 unsigned reserved : 24;
798
799 /* id 4: */
800 u64 features;
801 } field;
802 } cpuid;
803 pal_vm_info_1_u_t vm1;
804 pal_vm_info_2_u_t vm2;
805 pal_status_t status;
806 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
807 int i;
808 for (i = 0; i < 5; ++i)
809 cpuid.bits[i] = ia64_get_cpuid(i);
810
811 memcpy(c->vendor, cpuid.field.vendor, 16);
812 #ifdef CONFIG_SMP
813 c->cpu = smp_processor_id();
814
815 /* below default values will be overwritten by identify_siblings()
816 * for Multi-Threading/Multi-Core capable CPUs
817 */
818 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
819 c->socket_id = -1;
820
821 identify_siblings(c);
822
823 if (c->threads_per_core > smp_num_siblings)
824 smp_num_siblings = c->threads_per_core;
825 #endif
826 c->ppn = cpuid.field.ppn;
827 c->number = cpuid.field.number;
828 c->revision = cpuid.field.revision;
829 c->model = cpuid.field.model;
830 c->family = cpuid.field.family;
831 c->archrev = cpuid.field.archrev;
832 c->features = cpuid.field.features;
833 c->model_name = get_model_name(c->family, c->model);
834
835 status = ia64_pal_vm_summary(&vm1, &vm2);
836 if (status == PAL_STATUS_SUCCESS) {
837 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
838 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
839 }
840 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
841 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
842 }
843
844 /*
845 * Do the following calculations:
846 *
847 * 1. the max. cache line size.
848 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
849 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
850 */
851 static void
852 get_cache_info(void)
853 {
854 unsigned long line_size, max = 1;
855 unsigned long l, levels, unique_caches;
856 pal_cache_config_info_t cci;
857 long status;
858
859 status = ia64_pal_cache_summary(&levels, &unique_caches);
860 if (status != 0) {
861 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
862 __func__, status);
863 max = SMP_CACHE_BYTES;
864 /* Safest setup for "flush_icache_range()" */
865 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
866 /* Safest setup for "clflush_cache_range()" */
867 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
868 goto out;
869 }
870
871 for (l = 0; l < levels; ++l) {
872 /* cache_type (data_or_unified)=2 */
873 status = ia64_pal_cache_config_info(l, 2, &cci);
874 if (status != 0) {
875 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
876 "(l=%lu, 2) failed (status=%ld)\n",
877 __func__, l, status);
878 max = SMP_CACHE_BYTES;
879 /* The safest setup for "flush_icache_range()" */
880 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
881 /* The safest setup for "clflush_cache_range()" */
882 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
883 cci.pcci_unified = 1;
884 } else {
885 if (cci.pcci_stride < ia64_cache_stride_shift)
886 ia64_cache_stride_shift = cci.pcci_stride;
887
888 line_size = 1 << cci.pcci_line_size;
889 if (line_size > max)
890 max = line_size;
891 }
892
893 if (!cci.pcci_unified) {
894 /* cache_type (instruction)=1*/
895 status = ia64_pal_cache_config_info(l, 1, &cci);
896 if (status != 0) {
897 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
898 "(l=%lu, 1) failed (status=%ld)\n",
899 __func__, l, status);
900 /* The safest setup for flush_icache_range() */
901 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
902 }
903 }
904 if (cci.pcci_stride < ia64_i_cache_stride_shift)
905 ia64_i_cache_stride_shift = cci.pcci_stride;
906 }
907 out:
908 if (max > ia64_max_cacheline_size)
909 ia64_max_cacheline_size = max;
910 }
911
912 /*
913 * cpu_init() initializes state that is per-CPU. This function acts
914 * as a 'CPU state barrier', nothing should get across.
915 */
916 void
917 cpu_init (void)
918 {
919 extern void ia64_mmu_init(void *);
920 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
921 unsigned long num_phys_stacked;
922 pal_vm_info_2_u_t vmi;
923 unsigned int max_ctx;
924 struct cpuinfo_ia64 *cpu_info;
925 void *cpu_data;
926
927 cpu_data = per_cpu_init();
928 #ifdef CONFIG_SMP
929 /*
930 * insert boot cpu into sibling and core mapes
931 * (must be done after per_cpu area is setup)
932 */
933 if (smp_processor_id() == 0) {
934 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
935 cpumask_set_cpu(0, &cpu_core_map[0]);
936 } else {
937 /*
938 * Set ar.k3 so that assembly code in MCA handler can compute
939 * physical addresses of per cpu variables with a simple:
940 * phys = ar.k3 + &per_cpu_var
941 * and the alt-dtlb-miss handler can set per-cpu mapping into
942 * the TLB when needed. head.S already did this for cpu0.
943 */
944 ia64_set_kr(IA64_KR_PER_CPU_DATA,
945 ia64_tpa(cpu_data) - (long) __per_cpu_start);
946 }
947 #endif
948
949 get_cache_info();
950
951 /*
952 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
953 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
954 * depends on the data returned by identify_cpu(). We break the dependency by
955 * accessing cpu_data() through the canonical per-CPU address.
956 */
957 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
958 identify_cpu(cpu_info);
959
960 #ifdef CONFIG_MCKINLEY
961 {
962 # define FEATURE_SET 16
963 struct ia64_pal_retval iprv;
964
965 if (cpu_info->family == 0x1f) {
966 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
967 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
968 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
969 (iprv.v1 | 0x80), FEATURE_SET, 0);
970 }
971 }
972 #endif
973
974 /* Clear the stack memory reserved for pt_regs: */
975 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
976
977 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
978
979 /*
980 * Initialize the page-table base register to a global
981 * directory with all zeroes. This ensure that we can handle
982 * TLB-misses to user address-space even before we created the
983 * first user address-space. This may happen, e.g., due to
984 * aggressive use of lfetch.fault.
985 */
986 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
987
988 /*
989 * Initialize default control register to defer speculative faults except
990 * for those arising from TLB misses, which are not deferred. The
991 * kernel MUST NOT depend on a particular setting of these bits (in other words,
992 * the kernel must have recovery code for all speculative accesses). Turn on
993 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
994 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
995 * be fine).
996 */
997 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
998 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
999 mmgrab(&init_mm);
1000 current->active_mm = &init_mm;
1001 BUG_ON(current->mm);
1002
1003 ia64_mmu_init(ia64_imva(cpu_data));
1004 ia64_mca_cpu_init(ia64_imva(cpu_data));
1005
1006 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1007 ia64_set_itc(0);
1008
1009 /* disable all local interrupt sources: */
1010 ia64_set_itv(1 << 16);
1011 ia64_set_lrr0(1 << 16);
1012 ia64_set_lrr1(1 << 16);
1013 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1014 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1015
1016 /* clear TPR & XTP to enable all interrupt classes: */
1017 ia64_setreg(_IA64_REG_CR_TPR, 0);
1018
1019 /* Clear any pending interrupts left by SAL/EFI */
1020 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1021 ia64_eoi();
1022
1023 #ifdef CONFIG_SMP
1024 normal_xtp();
1025 #endif
1026
1027 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1028 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1029 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1030 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1031 } else {
1032 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1033 max_ctx = (1U << 15) - 1; /* use architected minimum */
1034 }
1035 while (max_ctx < ia64_ctx.max_ctx) {
1036 unsigned int old = ia64_ctx.max_ctx;
1037 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1038 break;
1039 }
1040
1041 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1042 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1043 "stacked regs\n");
1044 num_phys_stacked = 96;
1045 }
1046 /* size of physical stacked register partition plus 8 bytes: */
1047 if (num_phys_stacked > max_num_phys_stacked) {
1048 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1049 max_num_phys_stacked = num_phys_stacked;
1050 }
1051 platform_cpu_init();
1052 }
1053
1054 void __init
1055 check_bugs (void)
1056 {
1057 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1058 (unsigned long) __end___mckinley_e9_bundles);
1059 }
1060
1061 static int __init run_dmi_scan(void)
1062 {
1063 dmi_scan_machine();
1064 dmi_memdev_walk();
1065 dmi_set_dump_stack_arch_desc();
1066 return 0;
1067 }
1068 core_initcall(run_dmi_scan);