]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/ia64/kernel/setup.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-kernels.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/tty.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46
47 #include <asm/ia32.h>
48 #include <asm/machvec.h>
49 #include <asm/mca.h>
50 #include <asm/meminit.h>
51 #include <asm/page.h>
52 #include <asm/patch.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/sal.h>
56 #include <asm/sections.h>
57 #include <asm/serial.h>
58 #include <asm/setup.h>
59 #include <asm/smp.h>
60 #include <asm/system.h>
61 #include <asm/unistd.h>
62 #include <asm/system.h>
63
64 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
65 # error "struct cpuinfo_ia64 too big!"
66 #endif
67
68 #ifdef CONFIG_SMP
69 unsigned long __per_cpu_offset[NR_CPUS];
70 EXPORT_SYMBOL(__per_cpu_offset);
71 #endif
72
73 extern void ia64_setup_printk_clock(void);
74
75 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
77 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83
84 static struct resource data_resource = {
85 .name = "Kernel data",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88
89 static struct resource code_resource = {
90 .name = "Kernel code",
91 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern void efi_initialize_iomem_resources(struct resource *,
94 struct resource *);
95 extern char _text[], _end[], _etext[];
96
97 unsigned long ia64_max_cacheline_size;
98
99 int dma_get_cache_alignment(void)
100 {
101 return ia64_max_cacheline_size;
102 }
103 EXPORT_SYMBOL(dma_get_cache_alignment);
104
105 unsigned long ia64_iobase; /* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110
111 /*
112 * "flush_icache_range()" needs to know what processor dependent stride size to use
113 * when it makes i-cache(s) coherent with d-caches.
114 */
115 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117
118 /*
119 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
120 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
121 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
122 * address of the second buffer must be aligned to (merge_mask+1) in order to be
123 * mergeable). By default, we assume there is no I/O MMU which can merge physically
124 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
125 * page-size of 2^64.
126 */
127 unsigned long ia64_max_iommu_merge_mask = ~0UL;
128 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129
130 /*
131 * We use a special marker for the end of memory and it uses the extra (+1) slot
132 */
133 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134 int num_rsvd_regions __initdata;
135
136
137 /*
138 * Filter incoming memory segments based on the primitive map created from the boot
139 * parameters. Segments contained in the map are removed from the memory ranges. A
140 * caller-specified function is called with the memory ranges that remain after filtering.
141 * This routine does not assume the incoming segments are sorted.
142 */
143 int __init
144 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 {
146 unsigned long range_start, range_end, prev_start;
147 void (*func)(unsigned long, unsigned long, int);
148 int i;
149
150 #if IGNORE_PFN0
151 if (start == PAGE_OFFSET) {
152 printk(KERN_WARNING "warning: skipping physical page 0\n");
153 start += PAGE_SIZE;
154 if (start >= end) return 0;
155 }
156 #endif
157 /*
158 * lowest possible address(walker uses virtual)
159 */
160 prev_start = PAGE_OFFSET;
161 func = arg;
162
163 for (i = 0; i < num_rsvd_regions; ++i) {
164 range_start = max(start, prev_start);
165 range_end = min(end, rsvd_region[i].start);
166
167 if (range_start < range_end)
168 call_pernode_memory(__pa(range_start), range_end - range_start, func);
169
170 /* nothing more available in this segment */
171 if (range_end == end) return 0;
172
173 prev_start = rsvd_region[i].end;
174 }
175 /* end of memory marker allows full processing inside loop body */
176 return 0;
177 }
178
179 static void __init
180 sort_regions (struct rsvd_region *rsvd_region, int max)
181 {
182 int j;
183
184 /* simple bubble sorting */
185 while (max--) {
186 for (j = 0; j < max; ++j) {
187 if (rsvd_region[j].start > rsvd_region[j+1].start) {
188 struct rsvd_region tmp;
189 tmp = rsvd_region[j];
190 rsvd_region[j] = rsvd_region[j + 1];
191 rsvd_region[j + 1] = tmp;
192 }
193 }
194 }
195 }
196
197 /*
198 * Request address space for all standard resources
199 */
200 static int __init register_memory(void)
201 {
202 code_resource.start = ia64_tpa(_text);
203 code_resource.end = ia64_tpa(_etext) - 1;
204 data_resource.start = ia64_tpa(_etext);
205 data_resource.end = ia64_tpa(_end) - 1;
206 efi_initialize_iomem_resources(&code_resource, &data_resource);
207
208 return 0;
209 }
210
211 __initcall(register_memory);
212
213 /**
214 * reserve_memory - setup reserved memory areas
215 *
216 * Setup the reserved memory areas set aside for the boot parameters,
217 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
218 * see include/asm-ia64/meminit.h if you need to define more.
219 */
220 void __init
221 reserve_memory (void)
222 {
223 int n = 0;
224
225 /*
226 * none of the entries in this table overlap
227 */
228 rsvd_region[n].start = (unsigned long) ia64_boot_param;
229 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
230 n++;
231
232 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
233 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
234 n++;
235
236 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
237 rsvd_region[n].end = (rsvd_region[n].start
238 + strlen(__va(ia64_boot_param->command_line)) + 1);
239 n++;
240
241 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
242 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
243 n++;
244
245 #ifdef CONFIG_BLK_DEV_INITRD
246 if (ia64_boot_param->initrd_start) {
247 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
248 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
249 n++;
250 }
251 #endif
252
253 efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
254 n++;
255
256 /* end of memory marker */
257 rsvd_region[n].start = ~0UL;
258 rsvd_region[n].end = ~0UL;
259 n++;
260
261 num_rsvd_regions = n;
262 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
263
264 sort_regions(rsvd_region, num_rsvd_regions);
265 }
266
267 /**
268 * find_initrd - get initrd parameters from the boot parameter structure
269 *
270 * Grab the initrd start and end from the boot parameter struct given us by
271 * the boot loader.
272 */
273 void __init
274 find_initrd (void)
275 {
276 #ifdef CONFIG_BLK_DEV_INITRD
277 if (ia64_boot_param->initrd_start) {
278 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
279 initrd_end = initrd_start+ia64_boot_param->initrd_size;
280
281 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
282 initrd_start, ia64_boot_param->initrd_size);
283 }
284 #endif
285 }
286
287 static void __init
288 io_port_init (void)
289 {
290 unsigned long phys_iobase;
291
292 /*
293 * Set `iobase' based on the EFI memory map or, failing that, the
294 * value firmware left in ar.k0.
295 *
296 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
297 * the port's virtual address, so ia32_load_state() loads it with a
298 * user virtual address. But in ia64 mode, glibc uses the
299 * *physical* address in ar.k0 to mmap the appropriate area from
300 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
301 * cases, user-mode can only use the legacy 0-64K I/O port space.
302 *
303 * ar.k0 is not involved in kernel I/O port accesses, which can use
304 * any of the I/O port spaces and are done via MMIO using the
305 * virtual mmio_base from the appropriate io_space[].
306 */
307 phys_iobase = efi_get_iobase();
308 if (!phys_iobase) {
309 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
310 printk(KERN_INFO "No I/O port range found in EFI memory map, "
311 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
312 }
313 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
314 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
315
316 /* setup legacy IO port space */
317 io_space[0].mmio_base = ia64_iobase;
318 io_space[0].sparse = 1;
319 num_io_spaces = 1;
320 }
321
322 /**
323 * early_console_setup - setup debugging console
324 *
325 * Consoles started here require little enough setup that we can start using
326 * them very early in the boot process, either right after the machine
327 * vector initialization, or even before if the drivers can detect their hw.
328 *
329 * Returns non-zero if a console couldn't be setup.
330 */
331 static inline int __init
332 early_console_setup (char *cmdline)
333 {
334 int earlycons = 0;
335
336 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
337 {
338 extern int sn_serial_console_early_setup(void);
339 if (!sn_serial_console_early_setup())
340 earlycons++;
341 }
342 #endif
343 #ifdef CONFIG_EFI_PCDP
344 if (!efi_setup_pcdp_console(cmdline))
345 earlycons++;
346 #endif
347 #ifdef CONFIG_SERIAL_8250_CONSOLE
348 if (!early_serial_console_init(cmdline))
349 earlycons++;
350 #endif
351
352 return (earlycons) ? 0 : -1;
353 }
354
355 static inline void
356 mark_bsp_online (void)
357 {
358 #ifdef CONFIG_SMP
359 /* If we register an early console, allow CPU 0 to printk */
360 cpu_set(smp_processor_id(), cpu_online_map);
361 #endif
362 }
363
364 #ifdef CONFIG_SMP
365 static void __init
366 check_for_logical_procs (void)
367 {
368 pal_logical_to_physical_t info;
369 s64 status;
370
371 status = ia64_pal_logical_to_phys(0, &info);
372 if (status == -1) {
373 printk(KERN_INFO "No logical to physical processor mapping "
374 "available\n");
375 return;
376 }
377 if (status) {
378 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
379 status);
380 return;
381 }
382 /*
383 * Total number of siblings that BSP has. Though not all of them
384 * may have booted successfully. The correct number of siblings
385 * booted is in info.overview_num_log.
386 */
387 smp_num_siblings = info.overview_tpc;
388 smp_num_cpucores = info.overview_cpp;
389 }
390 #endif
391
392 static __initdata int nomca;
393 static __init int setup_nomca(char *s)
394 {
395 nomca = 1;
396 return 0;
397 }
398 early_param("nomca", setup_nomca);
399
400 void __init
401 setup_arch (char **cmdline_p)
402 {
403 unw_init();
404
405 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
406
407 *cmdline_p = __va(ia64_boot_param->command_line);
408 strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
409
410 efi_init();
411 io_port_init();
412
413 parse_early_param();
414
415 #ifdef CONFIG_IA64_GENERIC
416 machvec_init(NULL);
417 #endif
418
419 if (early_console_setup(*cmdline_p) == 0)
420 mark_bsp_online();
421
422 #ifdef CONFIG_ACPI
423 /* Initialize the ACPI boot-time table parser */
424 acpi_table_init();
425 # ifdef CONFIG_ACPI_NUMA
426 acpi_numa_init();
427 # endif
428 #else
429 # ifdef CONFIG_SMP
430 smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
431 # endif
432 #endif /* CONFIG_APCI_BOOT */
433
434 find_memory();
435
436 /* process SAL system table: */
437 ia64_sal_init(__va(efi.sal_systab));
438
439 ia64_setup_printk_clock();
440
441 #ifdef CONFIG_SMP
442 cpu_physical_id(0) = hard_smp_processor_id();
443
444 cpu_set(0, cpu_sibling_map[0]);
445 cpu_set(0, cpu_core_map[0]);
446
447 check_for_logical_procs();
448 if (smp_num_cpucores > 1)
449 printk(KERN_INFO
450 "cpu package is Multi-Core capable: number of cores=%d\n",
451 smp_num_cpucores);
452 if (smp_num_siblings > 1)
453 printk(KERN_INFO
454 "cpu package is Multi-Threading capable: number of siblings=%d\n",
455 smp_num_siblings);
456 #endif
457
458 cpu_init(); /* initialize the bootstrap CPU */
459 mmu_context_init(); /* initialize context_id bitmap */
460
461 #ifdef CONFIG_ACPI
462 acpi_boot_init();
463 #endif
464
465 #ifdef CONFIG_VT
466 if (!conswitchp) {
467 # if defined(CONFIG_DUMMY_CONSOLE)
468 conswitchp = &dummy_con;
469 # endif
470 # if defined(CONFIG_VGA_CONSOLE)
471 /*
472 * Non-legacy systems may route legacy VGA MMIO range to system
473 * memory. vga_con probes the MMIO hole, so memory looks like
474 * a VGA device to it. The EFI memory map can tell us if it's
475 * memory so we can avoid this problem.
476 */
477 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
478 conswitchp = &vga_con;
479 # endif
480 }
481 #endif
482
483 /* enable IA-64 Machine Check Abort Handling unless disabled */
484 if (!nomca)
485 ia64_mca_init();
486
487 platform_setup(cmdline_p);
488 paging_init();
489 }
490
491 /*
492 * Display cpu info for all cpu's.
493 */
494 static int
495 show_cpuinfo (struct seq_file *m, void *v)
496 {
497 #ifdef CONFIG_SMP
498 # define lpj c->loops_per_jiffy
499 # define cpunum c->cpu
500 #else
501 # define lpj loops_per_jiffy
502 # define cpunum 0
503 #endif
504 static struct {
505 unsigned long mask;
506 const char *feature_name;
507 } feature_bits[] = {
508 { 1UL << 0, "branchlong" },
509 { 1UL << 1, "spontaneous deferral"},
510 { 1UL << 2, "16-byte atomic ops" }
511 };
512 char family[32], features[128], *cp, sep;
513 struct cpuinfo_ia64 *c = v;
514 unsigned long mask;
515 unsigned long proc_freq;
516 int i;
517
518 mask = c->features;
519
520 switch (c->family) {
521 case 0x07: memcpy(family, "Itanium", 8); break;
522 case 0x1f: memcpy(family, "Itanium 2", 10); break;
523 default: sprintf(family, "%u", c->family); break;
524 }
525
526 /* build the feature string: */
527 memcpy(features, " standard", 10);
528 cp = features;
529 sep = 0;
530 for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
531 if (mask & feature_bits[i].mask) {
532 if (sep)
533 *cp++ = sep;
534 sep = ',';
535 *cp++ = ' ';
536 strcpy(cp, feature_bits[i].feature_name);
537 cp += strlen(feature_bits[i].feature_name);
538 mask &= ~feature_bits[i].mask;
539 }
540 }
541 if (mask) {
542 /* print unknown features as a hex value: */
543 if (sep)
544 *cp++ = sep;
545 sprintf(cp, " 0x%lx", mask);
546 }
547
548 proc_freq = cpufreq_quick_get(cpunum);
549 if (!proc_freq)
550 proc_freq = c->proc_freq / 1000;
551
552 seq_printf(m,
553 "processor : %d\n"
554 "vendor : %s\n"
555 "arch : IA-64\n"
556 "family : %s\n"
557 "model : %u\n"
558 "revision : %u\n"
559 "archrev : %u\n"
560 "features :%s\n" /* don't change this---it _is_ right! */
561 "cpu number : %lu\n"
562 "cpu regs : %u\n"
563 "cpu MHz : %lu.%06lu\n"
564 "itc MHz : %lu.%06lu\n"
565 "BogoMIPS : %lu.%02lu\n",
566 cpunum, c->vendor, family, c->model, c->revision, c->archrev,
567 features, c->ppn, c->number,
568 proc_freq / 1000, proc_freq % 1000,
569 c->itc_freq / 1000000, c->itc_freq % 1000000,
570 lpj*HZ/500000, (lpj*HZ/5000) % 100);
571 #ifdef CONFIG_SMP
572 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
573 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
574 seq_printf(m,
575 "physical id: %u\n"
576 "core id : %u\n"
577 "thread id : %u\n",
578 c->socket_id, c->core_id, c->thread_id);
579 #endif
580 seq_printf(m,"\n");
581
582 return 0;
583 }
584
585 static void *
586 c_start (struct seq_file *m, loff_t *pos)
587 {
588 #ifdef CONFIG_SMP
589 while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
590 ++*pos;
591 #endif
592 return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
593 }
594
595 static void *
596 c_next (struct seq_file *m, void *v, loff_t *pos)
597 {
598 ++*pos;
599 return c_start(m, pos);
600 }
601
602 static void
603 c_stop (struct seq_file *m, void *v)
604 {
605 }
606
607 struct seq_operations cpuinfo_op = {
608 .start = c_start,
609 .next = c_next,
610 .stop = c_stop,
611 .show = show_cpuinfo
612 };
613
614 static void __cpuinit
615 identify_cpu (struct cpuinfo_ia64 *c)
616 {
617 union {
618 unsigned long bits[5];
619 struct {
620 /* id 0 & 1: */
621 char vendor[16];
622
623 /* id 2 */
624 u64 ppn; /* processor serial number */
625
626 /* id 3: */
627 unsigned number : 8;
628 unsigned revision : 8;
629 unsigned model : 8;
630 unsigned family : 8;
631 unsigned archrev : 8;
632 unsigned reserved : 24;
633
634 /* id 4: */
635 u64 features;
636 } field;
637 } cpuid;
638 pal_vm_info_1_u_t vm1;
639 pal_vm_info_2_u_t vm2;
640 pal_status_t status;
641 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
642 int i;
643
644 for (i = 0; i < 5; ++i)
645 cpuid.bits[i] = ia64_get_cpuid(i);
646
647 memcpy(c->vendor, cpuid.field.vendor, 16);
648 #ifdef CONFIG_SMP
649 c->cpu = smp_processor_id();
650
651 /* below default values will be overwritten by identify_siblings()
652 * for Multi-Threading/Multi-Core capable cpu's
653 */
654 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
655 c->socket_id = -1;
656
657 identify_siblings(c);
658 #endif
659 c->ppn = cpuid.field.ppn;
660 c->number = cpuid.field.number;
661 c->revision = cpuid.field.revision;
662 c->model = cpuid.field.model;
663 c->family = cpuid.field.family;
664 c->archrev = cpuid.field.archrev;
665 c->features = cpuid.field.features;
666
667 status = ia64_pal_vm_summary(&vm1, &vm2);
668 if (status == PAL_STATUS_SUCCESS) {
669 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
670 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
671 }
672 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
673 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
674 }
675
676 void
677 setup_per_cpu_areas (void)
678 {
679 /* start_kernel() requires this... */
680 #ifdef CONFIG_ACPI_HOTPLUG_CPU
681 prefill_possible_map();
682 #endif
683 }
684
685 /*
686 * Calculate the max. cache line size.
687 *
688 * In addition, the minimum of the i-cache stride sizes is calculated for
689 * "flush_icache_range()".
690 */
691 static void __cpuinit
692 get_max_cacheline_size (void)
693 {
694 unsigned long line_size, max = 1;
695 unsigned int cache_size = 0;
696 u64 l, levels, unique_caches;
697 pal_cache_config_info_t cci;
698 s64 status;
699
700 status = ia64_pal_cache_summary(&levels, &unique_caches);
701 if (status != 0) {
702 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
703 __FUNCTION__, status);
704 max = SMP_CACHE_BYTES;
705 /* Safest setup for "flush_icache_range()" */
706 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
707 goto out;
708 }
709
710 for (l = 0; l < levels; ++l) {
711 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
712 &cci);
713 if (status != 0) {
714 printk(KERN_ERR
715 "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
716 __FUNCTION__, l, status);
717 max = SMP_CACHE_BYTES;
718 /* The safest setup for "flush_icache_range()" */
719 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
720 cci.pcci_unified = 1;
721 }
722 line_size = 1 << cci.pcci_line_size;
723 if (line_size > max)
724 max = line_size;
725 if (cache_size < cci.pcci_cache_size)
726 cache_size = cci.pcci_cache_size;
727 if (!cci.pcci_unified) {
728 status = ia64_pal_cache_config_info(l,
729 /* cache_type (instruction)= */ 1,
730 &cci);
731 if (status != 0) {
732 printk(KERN_ERR
733 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
734 __FUNCTION__, l, status);
735 /* The safest setup for "flush_icache_range()" */
736 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
737 }
738 }
739 if (cci.pcci_stride < ia64_i_cache_stride_shift)
740 ia64_i_cache_stride_shift = cci.pcci_stride;
741 }
742 out:
743 #ifdef CONFIG_SMP
744 max_cache_size = max(max_cache_size, cache_size);
745 #endif
746 if (max > ia64_max_cacheline_size)
747 ia64_max_cacheline_size = max;
748 }
749
750 /*
751 * cpu_init() initializes state that is per-CPU. This function acts
752 * as a 'CPU state barrier', nothing should get across.
753 */
754 void __cpuinit
755 cpu_init (void)
756 {
757 extern void __cpuinit ia64_mmu_init (void *);
758 unsigned long num_phys_stacked;
759 pal_vm_info_2_u_t vmi;
760 unsigned int max_ctx;
761 struct cpuinfo_ia64 *cpu_info;
762 void *cpu_data;
763
764 cpu_data = per_cpu_init();
765
766 /*
767 * We set ar.k3 so that assembly code in MCA handler can compute
768 * physical addresses of per cpu variables with a simple:
769 * phys = ar.k3 + &per_cpu_var
770 */
771 ia64_set_kr(IA64_KR_PER_CPU_DATA,
772 ia64_tpa(cpu_data) - (long) __per_cpu_start);
773
774 get_max_cacheline_size();
775
776 /*
777 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
778 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
779 * depends on the data returned by identify_cpu(). We break the dependency by
780 * accessing cpu_data() through the canonical per-CPU address.
781 */
782 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
783 identify_cpu(cpu_info);
784
785 #ifdef CONFIG_MCKINLEY
786 {
787 # define FEATURE_SET 16
788 struct ia64_pal_retval iprv;
789
790 if (cpu_info->family == 0x1f) {
791 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
792 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
793 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
794 (iprv.v1 | 0x80), FEATURE_SET, 0);
795 }
796 }
797 #endif
798
799 /* Clear the stack memory reserved for pt_regs: */
800 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
801
802 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
803
804 /*
805 * Initialize the page-table base register to a global
806 * directory with all zeroes. This ensure that we can handle
807 * TLB-misses to user address-space even before we created the
808 * first user address-space. This may happen, e.g., due to
809 * aggressive use of lfetch.fault.
810 */
811 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
812
813 /*
814 * Initialize default control register to defer speculative faults except
815 * for those arising from TLB misses, which are not deferred. The
816 * kernel MUST NOT depend on a particular setting of these bits (in other words,
817 * the kernel must have recovery code for all speculative accesses). Turn on
818 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
819 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
820 * be fine).
821 */
822 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
823 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
824 atomic_inc(&init_mm.mm_count);
825 current->active_mm = &init_mm;
826 if (current->mm)
827 BUG();
828
829 ia64_mmu_init(ia64_imva(cpu_data));
830 ia64_mca_cpu_init(ia64_imva(cpu_data));
831
832 #ifdef CONFIG_IA32_SUPPORT
833 ia32_cpu_init();
834 #endif
835
836 /* Clear ITC to eliminiate sched_clock() overflows in human time. */
837 ia64_set_itc(0);
838
839 /* disable all local interrupt sources: */
840 ia64_set_itv(1 << 16);
841 ia64_set_lrr0(1 << 16);
842 ia64_set_lrr1(1 << 16);
843 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
844 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
845
846 /* clear TPR & XTP to enable all interrupt classes: */
847 ia64_setreg(_IA64_REG_CR_TPR, 0);
848 #ifdef CONFIG_SMP
849 normal_xtp();
850 #endif
851
852 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
853 if (ia64_pal_vm_summary(NULL, &vmi) == 0)
854 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
855 else {
856 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
857 max_ctx = (1U << 15) - 1; /* use architected minimum */
858 }
859 while (max_ctx < ia64_ctx.max_ctx) {
860 unsigned int old = ia64_ctx.max_ctx;
861 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
862 break;
863 }
864
865 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
866 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
867 "stacked regs\n");
868 num_phys_stacked = 96;
869 }
870 /* size of physical stacked register partition plus 8 bytes: */
871 __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
872 platform_cpu_init();
873 pm_idle = default_idle;
874 }
875
876 /*
877 * On SMP systems, when the scheduler does migration-cost autodetection,
878 * it needs a way to flush as much of the CPU's caches as possible.
879 */
880 void sched_cacheflush(void)
881 {
882 ia64_sal_cache_flush(3);
883 }
884
885 void __init
886 check_bugs (void)
887 {
888 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
889 (unsigned long) __end___mckinley_e9_bundles);
890 }
891
892 static int __init run_dmi_scan(void)
893 {
894 dmi_scan_machine();
895 return 0;
896 }
897 core_initcall(run_dmi_scan);