]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/ia64/kernel/time.c
[IA64] VIRT_CPU_ACCOUNTING (accurate cpu time accounting)
[mirror_ubuntu-focal-kernel.git] / arch / ia64 / kernel / time.c
1 /*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
28 #include <asm/sal.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
31
32 #include "fsyscall_gtod_data.h"
33
34 static cycle_t itc_get_cycles(void);
35
36 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
37 .lock = SEQLOCK_UNLOCKED,
38 };
39
40 struct itc_jitter_data_t itc_jitter_data;
41
42 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
43
44 #ifdef CONFIG_IA64_DEBUG_IRQ
45
46 unsigned long last_cli_ip;
47 EXPORT_SYMBOL(last_cli_ip);
48
49 #endif
50
51 static struct clocksource clocksource_itc = {
52 .name = "itc",
53 .rating = 350,
54 .read = itc_get_cycles,
55 .mask = CLOCKSOURCE_MASK(64),
56 .mult = 0, /*to be calculated*/
57 .shift = 16,
58 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
59 };
60 static struct clocksource *itc_clocksource;
61
62 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
63
64 #include <linux/kernel_stat.h>
65
66 extern cputime_t cycle_to_cputime(u64 cyc);
67
68 /*
69 * Called from the context switch with interrupts disabled, to charge all
70 * accumulated times to the current process, and to prepare accounting on
71 * the next process.
72 */
73 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
74 {
75 struct thread_info *pi = task_thread_info(prev);
76 struct thread_info *ni = task_thread_info(next);
77 cputime_t delta_stime, delta_utime;
78 __u64 now;
79
80 now = ia64_get_itc();
81
82 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
83 account_system_time(prev, 0, delta_stime);
84 account_system_time_scaled(prev, delta_stime);
85
86 if (pi->ac_utime) {
87 delta_utime = cycle_to_cputime(pi->ac_utime);
88 account_user_time(prev, delta_utime);
89 account_user_time_scaled(prev, delta_utime);
90 }
91
92 pi->ac_stamp = ni->ac_stamp = now;
93 ni->ac_stime = ni->ac_utime = 0;
94 }
95
96 /*
97 * Account time for a transition between system, hard irq or soft irq state.
98 * Note that this function is called with interrupts enabled.
99 */
100 void account_system_vtime(struct task_struct *tsk)
101 {
102 struct thread_info *ti = task_thread_info(tsk);
103 unsigned long flags;
104 cputime_t delta_stime;
105 __u64 now;
106
107 local_irq_save(flags);
108
109 now = ia64_get_itc();
110
111 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
112 account_system_time(tsk, 0, delta_stime);
113 account_system_time_scaled(tsk, delta_stime);
114 ti->ac_stime = 0;
115
116 ti->ac_stamp = now;
117
118 local_irq_restore(flags);
119 }
120
121 /*
122 * Called from the timer interrupt handler to charge accumulated user time
123 * to the current process. Must be called with interrupts disabled.
124 */
125 void account_process_tick(struct task_struct *p, int user_tick)
126 {
127 struct thread_info *ti = task_thread_info(p);
128 cputime_t delta_utime;
129
130 if (ti->ac_utime) {
131 delta_utime = cycle_to_cputime(ti->ac_utime);
132 account_user_time(p, delta_utime);
133 account_user_time_scaled(p, delta_utime);
134 ti->ac_utime = 0;
135 }
136 }
137
138 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
139
140 static irqreturn_t
141 timer_interrupt (int irq, void *dev_id)
142 {
143 unsigned long new_itm;
144
145 if (unlikely(cpu_is_offline(smp_processor_id()))) {
146 return IRQ_HANDLED;
147 }
148
149 platform_timer_interrupt(irq, dev_id);
150
151 new_itm = local_cpu_data->itm_next;
152
153 if (!time_after(ia64_get_itc(), new_itm))
154 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
155 ia64_get_itc(), new_itm);
156
157 profile_tick(CPU_PROFILING);
158
159 while (1) {
160 update_process_times(user_mode(get_irq_regs()));
161
162 new_itm += local_cpu_data->itm_delta;
163
164 if (smp_processor_id() == time_keeper_id) {
165 /*
166 * Here we are in the timer irq handler. We have irqs locally
167 * disabled, but we don't know if the timer_bh is running on
168 * another CPU. We need to avoid to SMP race by acquiring the
169 * xtime_lock.
170 */
171 write_seqlock(&xtime_lock);
172 do_timer(1);
173 local_cpu_data->itm_next = new_itm;
174 write_sequnlock(&xtime_lock);
175 } else
176 local_cpu_data->itm_next = new_itm;
177
178 if (time_after(new_itm, ia64_get_itc()))
179 break;
180
181 /*
182 * Allow IPIs to interrupt the timer loop.
183 */
184 local_irq_enable();
185 local_irq_disable();
186 }
187
188 do {
189 /*
190 * If we're too close to the next clock tick for
191 * comfort, we increase the safety margin by
192 * intentionally dropping the next tick(s). We do NOT
193 * update itm.next because that would force us to call
194 * do_timer() which in turn would let our clock run
195 * too fast (with the potentially devastating effect
196 * of losing monotony of time).
197 */
198 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
199 new_itm += local_cpu_data->itm_delta;
200 ia64_set_itm(new_itm);
201 /* double check, in case we got hit by a (slow) PMI: */
202 } while (time_after_eq(ia64_get_itc(), new_itm));
203 return IRQ_HANDLED;
204 }
205
206 /*
207 * Encapsulate access to the itm structure for SMP.
208 */
209 void
210 ia64_cpu_local_tick (void)
211 {
212 int cpu = smp_processor_id();
213 unsigned long shift = 0, delta;
214
215 /* arrange for the cycle counter to generate a timer interrupt: */
216 ia64_set_itv(IA64_TIMER_VECTOR);
217
218 delta = local_cpu_data->itm_delta;
219 /*
220 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
221 * same time:
222 */
223 if (cpu) {
224 unsigned long hi = 1UL << ia64_fls(cpu);
225 shift = (2*(cpu - hi) + 1) * delta/hi/2;
226 }
227 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
228 ia64_set_itm(local_cpu_data->itm_next);
229 }
230
231 static int nojitter;
232
233 static int __init nojitter_setup(char *str)
234 {
235 nojitter = 1;
236 printk("Jitter checking for ITC timers disabled\n");
237 return 1;
238 }
239
240 __setup("nojitter", nojitter_setup);
241
242
243 void __devinit
244 ia64_init_itm (void)
245 {
246 unsigned long platform_base_freq, itc_freq;
247 struct pal_freq_ratio itc_ratio, proc_ratio;
248 long status, platform_base_drift, itc_drift;
249
250 /*
251 * According to SAL v2.6, we need to use a SAL call to determine the platform base
252 * frequency and then a PAL call to determine the frequency ratio between the ITC
253 * and the base frequency.
254 */
255 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
256 &platform_base_freq, &platform_base_drift);
257 if (status != 0) {
258 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
259 } else {
260 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
261 if (status != 0)
262 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
263 }
264 if (status != 0) {
265 /* invent "random" values */
266 printk(KERN_ERR
267 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
268 platform_base_freq = 100000000;
269 platform_base_drift = -1; /* no drift info */
270 itc_ratio.num = 3;
271 itc_ratio.den = 1;
272 }
273 if (platform_base_freq < 40000000) {
274 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
275 platform_base_freq);
276 platform_base_freq = 75000000;
277 platform_base_drift = -1;
278 }
279 if (!proc_ratio.den)
280 proc_ratio.den = 1; /* avoid division by zero */
281 if (!itc_ratio.den)
282 itc_ratio.den = 1; /* avoid division by zero */
283
284 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
285
286 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
287 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
288 "ITC freq=%lu.%03luMHz", smp_processor_id(),
289 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
290 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
291
292 if (platform_base_drift != -1) {
293 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
294 printk("+/-%ldppm\n", itc_drift);
295 } else {
296 itc_drift = -1;
297 printk("\n");
298 }
299
300 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
301 local_cpu_data->itc_freq = itc_freq;
302 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
303 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
304 + itc_freq/2)/itc_freq;
305
306 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
307 #ifdef CONFIG_SMP
308 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
309 * Jitter compensation requires a cmpxchg which may limit
310 * the scalability of the syscalls for retrieving time.
311 * The ITC synchronization is usually successful to within a few
312 * ITC ticks but this is not a sure thing. If you need to improve
313 * timer performance in SMP situations then boot the kernel with the
314 * "nojitter" option. However, doing so may result in time fluctuating (maybe
315 * even going backward) if the ITC offsets between the individual CPUs
316 * are too large.
317 */
318 if (!nojitter)
319 itc_jitter_data.itc_jitter = 1;
320 #endif
321 } else
322 /*
323 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
324 * ITC values may fluctuate significantly between processors.
325 * Clock should not be used for hrtimers. Mark itc as only
326 * useful for boot and testing.
327 *
328 * Note that jitter compensation is off! There is no point of
329 * synchronizing ITCs since they may be large differentials
330 * that change over time.
331 *
332 * The only way to fix this would be to repeatedly sync the
333 * ITCs. Until that time we have to avoid ITC.
334 */
335 clocksource_itc.rating = 50;
336
337 /* Setup the CPU local timer tick */
338 ia64_cpu_local_tick();
339
340 if (!itc_clocksource) {
341 /* Sort out mult/shift values: */
342 clocksource_itc.mult =
343 clocksource_hz2mult(local_cpu_data->itc_freq,
344 clocksource_itc.shift);
345 clocksource_register(&clocksource_itc);
346 itc_clocksource = &clocksource_itc;
347 }
348 }
349
350 static cycle_t itc_get_cycles(void)
351 {
352 u64 lcycle, now, ret;
353
354 if (!itc_jitter_data.itc_jitter)
355 return get_cycles();
356
357 lcycle = itc_jitter_data.itc_lastcycle;
358 now = get_cycles();
359 if (lcycle && time_after(lcycle, now))
360 return lcycle;
361
362 /*
363 * Keep track of the last timer value returned.
364 * In an SMP environment, you could lose out in contention of
365 * cmpxchg. If so, your cmpxchg returns new value which the
366 * winner of contention updated to. Use the new value instead.
367 */
368 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
369 if (unlikely(ret != lcycle))
370 return ret;
371
372 return now;
373 }
374
375
376 static struct irqaction timer_irqaction = {
377 .handler = timer_interrupt,
378 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
379 .name = "timer"
380 };
381
382 void __devinit ia64_disable_timer(void)
383 {
384 ia64_set_itv(1 << 16);
385 }
386
387 void __init
388 time_init (void)
389 {
390 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
391 efi_gettimeofday(&xtime);
392 ia64_init_itm();
393
394 /*
395 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
396 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
397 */
398 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
399 }
400
401 /*
402 * Generic udelay assumes that if preemption is allowed and the thread
403 * migrates to another CPU, that the ITC values are synchronized across
404 * all CPUs.
405 */
406 static void
407 ia64_itc_udelay (unsigned long usecs)
408 {
409 unsigned long start = ia64_get_itc();
410 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
411
412 while (time_before(ia64_get_itc(), end))
413 cpu_relax();
414 }
415
416 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
417
418 void
419 udelay (unsigned long usecs)
420 {
421 (*ia64_udelay)(usecs);
422 }
423 EXPORT_SYMBOL(udelay);
424
425 /* IA64 doesn't cache the timezone */
426 void update_vsyscall_tz(void)
427 {
428 }
429
430 void update_vsyscall(struct timespec *wall, struct clocksource *c)
431 {
432 unsigned long flags;
433
434 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
435
436 /* copy fsyscall clock data */
437 fsyscall_gtod_data.clk_mask = c->mask;
438 fsyscall_gtod_data.clk_mult = c->mult;
439 fsyscall_gtod_data.clk_shift = c->shift;
440 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
441 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
442
443 /* copy kernel time structures */
444 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
445 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
446 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
447 + wall->tv_sec;
448 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
449 + wall->tv_nsec;
450
451 /* normalize */
452 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
453 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
454 fsyscall_gtod_data.monotonic_time.tv_sec++;
455 }
456
457 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
458 }
459