]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kernel/time.c
Merge tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kernel / time.c
1 /*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32
33 #include "fsyscall_gtod_data.h"
34
35 static cycle_t itc_get_cycles(struct clocksource *cs);
36
37 struct fsyscall_gtod_data_t fsyscall_gtod_data;
38
39 struct itc_jitter_data_t itc_jitter_data;
40
41 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
42
43 #ifdef CONFIG_IA64_DEBUG_IRQ
44
45 unsigned long last_cli_ip;
46 EXPORT_SYMBOL(last_cli_ip);
47
48 #endif
49
50 #ifdef CONFIG_PARAVIRT
51 /* We need to define a real function for sched_clock, to override the
52 weak default version */
53 unsigned long long sched_clock(void)
54 {
55 return paravirt_sched_clock();
56 }
57 #endif
58
59 #ifdef CONFIG_PARAVIRT
60 static void
61 paravirt_clocksource_resume(struct clocksource *cs)
62 {
63 if (pv_time_ops.clocksource_resume)
64 pv_time_ops.clocksource_resume();
65 }
66 #endif
67
68 static struct clocksource clocksource_itc = {
69 .name = "itc",
70 .rating = 350,
71 .read = itc_get_cycles,
72 .mask = CLOCKSOURCE_MASK(64),
73 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
74 #ifdef CONFIG_PARAVIRT
75 .resume = paravirt_clocksource_resume,
76 #endif
77 };
78 static struct clocksource *itc_clocksource;
79
80 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
81
82 #include <linux/kernel_stat.h>
83
84 extern cputime_t cycle_to_cputime(u64 cyc);
85
86 static void vtime_account_user(struct task_struct *tsk)
87 {
88 cputime_t delta_utime;
89 struct thread_info *ti = task_thread_info(tsk);
90
91 if (ti->ac_utime) {
92 delta_utime = cycle_to_cputime(ti->ac_utime);
93 account_user_time(tsk, delta_utime, delta_utime);
94 ti->ac_utime = 0;
95 }
96 }
97
98 /*
99 * Called from the context switch with interrupts disabled, to charge all
100 * accumulated times to the current process, and to prepare accounting on
101 * the next process.
102 */
103 void vtime_task_switch(struct task_struct *prev)
104 {
105 struct thread_info *pi = task_thread_info(prev);
106 struct thread_info *ni = task_thread_info(current);
107
108 if (idle_task(smp_processor_id()) != prev)
109 vtime_account_system(prev);
110 else
111 vtime_account_idle(prev);
112
113 vtime_account_user(prev);
114
115 pi->ac_stamp = ni->ac_stamp;
116 ni->ac_stime = ni->ac_utime = 0;
117 }
118
119 /*
120 * Account time for a transition between system, hard irq or soft irq state.
121 * Note that this function is called with interrupts enabled.
122 */
123 static cputime_t vtime_delta(struct task_struct *tsk)
124 {
125 struct thread_info *ti = task_thread_info(tsk);
126 cputime_t delta_stime;
127 __u64 now;
128
129 now = ia64_get_itc();
130
131 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
132 ti->ac_stime = 0;
133 ti->ac_stamp = now;
134
135 return delta_stime;
136 }
137
138 void vtime_account_system(struct task_struct *tsk)
139 {
140 cputime_t delta = vtime_delta(tsk);
141
142 account_system_time(tsk, 0, delta, delta);
143 }
144
145 void vtime_account_idle(struct task_struct *tsk)
146 {
147 account_idle_time(vtime_delta(tsk));
148 }
149
150 /*
151 * Called from the timer interrupt handler to charge accumulated user time
152 * to the current process. Must be called with interrupts disabled.
153 */
154 void account_process_tick(struct task_struct *p, int user_tick)
155 {
156 vtime_account_user(p);
157 }
158
159 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
160
161 static irqreturn_t
162 timer_interrupt (int irq, void *dev_id)
163 {
164 unsigned long new_itm;
165
166 if (cpu_is_offline(smp_processor_id())) {
167 return IRQ_HANDLED;
168 }
169
170 platform_timer_interrupt(irq, dev_id);
171
172 new_itm = local_cpu_data->itm_next;
173
174 if (!time_after(ia64_get_itc(), new_itm))
175 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
176 ia64_get_itc(), new_itm);
177
178 profile_tick(CPU_PROFILING);
179
180 if (paravirt_do_steal_accounting(&new_itm))
181 goto skip_process_time_accounting;
182
183 while (1) {
184 update_process_times(user_mode(get_irq_regs()));
185
186 new_itm += local_cpu_data->itm_delta;
187
188 if (smp_processor_id() == time_keeper_id)
189 xtime_update(1);
190
191 local_cpu_data->itm_next = new_itm;
192
193 if (time_after(new_itm, ia64_get_itc()))
194 break;
195
196 /*
197 * Allow IPIs to interrupt the timer loop.
198 */
199 local_irq_enable();
200 local_irq_disable();
201 }
202
203 skip_process_time_accounting:
204
205 do {
206 /*
207 * If we're too close to the next clock tick for
208 * comfort, we increase the safety margin by
209 * intentionally dropping the next tick(s). We do NOT
210 * update itm.next because that would force us to call
211 * xtime_update() which in turn would let our clock run
212 * too fast (with the potentially devastating effect
213 * of losing monotony of time).
214 */
215 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
216 new_itm += local_cpu_data->itm_delta;
217 ia64_set_itm(new_itm);
218 /* double check, in case we got hit by a (slow) PMI: */
219 } while (time_after_eq(ia64_get_itc(), new_itm));
220 return IRQ_HANDLED;
221 }
222
223 /*
224 * Encapsulate access to the itm structure for SMP.
225 */
226 void
227 ia64_cpu_local_tick (void)
228 {
229 int cpu = smp_processor_id();
230 unsigned long shift = 0, delta;
231
232 /* arrange for the cycle counter to generate a timer interrupt: */
233 ia64_set_itv(IA64_TIMER_VECTOR);
234
235 delta = local_cpu_data->itm_delta;
236 /*
237 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
238 * same time:
239 */
240 if (cpu) {
241 unsigned long hi = 1UL << ia64_fls(cpu);
242 shift = (2*(cpu - hi) + 1) * delta/hi/2;
243 }
244 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
245 ia64_set_itm(local_cpu_data->itm_next);
246 }
247
248 static int nojitter;
249
250 static int __init nojitter_setup(char *str)
251 {
252 nojitter = 1;
253 printk("Jitter checking for ITC timers disabled\n");
254 return 1;
255 }
256
257 __setup("nojitter", nojitter_setup);
258
259
260 void __devinit
261 ia64_init_itm (void)
262 {
263 unsigned long platform_base_freq, itc_freq;
264 struct pal_freq_ratio itc_ratio, proc_ratio;
265 long status, platform_base_drift, itc_drift;
266
267 /*
268 * According to SAL v2.6, we need to use a SAL call to determine the platform base
269 * frequency and then a PAL call to determine the frequency ratio between the ITC
270 * and the base frequency.
271 */
272 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
273 &platform_base_freq, &platform_base_drift);
274 if (status != 0) {
275 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
276 } else {
277 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
278 if (status != 0)
279 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
280 }
281 if (status != 0) {
282 /* invent "random" values */
283 printk(KERN_ERR
284 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
285 platform_base_freq = 100000000;
286 platform_base_drift = -1; /* no drift info */
287 itc_ratio.num = 3;
288 itc_ratio.den = 1;
289 }
290 if (platform_base_freq < 40000000) {
291 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
292 platform_base_freq);
293 platform_base_freq = 75000000;
294 platform_base_drift = -1;
295 }
296 if (!proc_ratio.den)
297 proc_ratio.den = 1; /* avoid division by zero */
298 if (!itc_ratio.den)
299 itc_ratio.den = 1; /* avoid division by zero */
300
301 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
302
303 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
304 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
305 "ITC freq=%lu.%03luMHz", smp_processor_id(),
306 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
307 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
308
309 if (platform_base_drift != -1) {
310 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
311 printk("+/-%ldppm\n", itc_drift);
312 } else {
313 itc_drift = -1;
314 printk("\n");
315 }
316
317 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
318 local_cpu_data->itc_freq = itc_freq;
319 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
320 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
321 + itc_freq/2)/itc_freq;
322
323 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
324 #ifdef CONFIG_SMP
325 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
326 * Jitter compensation requires a cmpxchg which may limit
327 * the scalability of the syscalls for retrieving time.
328 * The ITC synchronization is usually successful to within a few
329 * ITC ticks but this is not a sure thing. If you need to improve
330 * timer performance in SMP situations then boot the kernel with the
331 * "nojitter" option. However, doing so may result in time fluctuating (maybe
332 * even going backward) if the ITC offsets between the individual CPUs
333 * are too large.
334 */
335 if (!nojitter)
336 itc_jitter_data.itc_jitter = 1;
337 #endif
338 } else
339 /*
340 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
341 * ITC values may fluctuate significantly between processors.
342 * Clock should not be used for hrtimers. Mark itc as only
343 * useful for boot and testing.
344 *
345 * Note that jitter compensation is off! There is no point of
346 * synchronizing ITCs since they may be large differentials
347 * that change over time.
348 *
349 * The only way to fix this would be to repeatedly sync the
350 * ITCs. Until that time we have to avoid ITC.
351 */
352 clocksource_itc.rating = 50;
353
354 paravirt_init_missing_ticks_accounting(smp_processor_id());
355
356 /* avoid softlock up message when cpu is unplug and plugged again. */
357 touch_softlockup_watchdog();
358
359 /* Setup the CPU local timer tick */
360 ia64_cpu_local_tick();
361
362 if (!itc_clocksource) {
363 clocksource_register_hz(&clocksource_itc,
364 local_cpu_data->itc_freq);
365 itc_clocksource = &clocksource_itc;
366 }
367 }
368
369 static cycle_t itc_get_cycles(struct clocksource *cs)
370 {
371 unsigned long lcycle, now, ret;
372
373 if (!itc_jitter_data.itc_jitter)
374 return get_cycles();
375
376 lcycle = itc_jitter_data.itc_lastcycle;
377 now = get_cycles();
378 if (lcycle && time_after(lcycle, now))
379 return lcycle;
380
381 /*
382 * Keep track of the last timer value returned.
383 * In an SMP environment, you could lose out in contention of
384 * cmpxchg. If so, your cmpxchg returns new value which the
385 * winner of contention updated to. Use the new value instead.
386 */
387 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
388 if (unlikely(ret != lcycle))
389 return ret;
390
391 return now;
392 }
393
394
395 static struct irqaction timer_irqaction = {
396 .handler = timer_interrupt,
397 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
398 .name = "timer"
399 };
400
401 static struct platform_device rtc_efi_dev = {
402 .name = "rtc-efi",
403 .id = -1,
404 };
405
406 static int __init rtc_init(void)
407 {
408 if (platform_device_register(&rtc_efi_dev) < 0)
409 printk(KERN_ERR "unable to register rtc device...\n");
410
411 /* not necessarily an error */
412 return 0;
413 }
414 module_init(rtc_init);
415
416 void read_persistent_clock(struct timespec *ts)
417 {
418 efi_gettimeofday(ts);
419 }
420
421 void __init
422 time_init (void)
423 {
424 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
425 ia64_init_itm();
426 }
427
428 /*
429 * Generic udelay assumes that if preemption is allowed and the thread
430 * migrates to another CPU, that the ITC values are synchronized across
431 * all CPUs.
432 */
433 static void
434 ia64_itc_udelay (unsigned long usecs)
435 {
436 unsigned long start = ia64_get_itc();
437 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
438
439 while (time_before(ia64_get_itc(), end))
440 cpu_relax();
441 }
442
443 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
444
445 void
446 udelay (unsigned long usecs)
447 {
448 (*ia64_udelay)(usecs);
449 }
450 EXPORT_SYMBOL(udelay);
451
452 /* IA64 doesn't cache the timezone */
453 void update_vsyscall_tz(void)
454 {
455 }
456
457 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
458 struct clocksource *c, u32 mult)
459 {
460 write_seqcount_begin(&fsyscall_gtod_data.seq);
461
462 /* copy fsyscall clock data */
463 fsyscall_gtod_data.clk_mask = c->mask;
464 fsyscall_gtod_data.clk_mult = mult;
465 fsyscall_gtod_data.clk_shift = c->shift;
466 fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
467 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
468
469 /* copy kernel time structures */
470 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
471 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
472 fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
473 + wall->tv_sec;
474 fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
475 + wall->tv_nsec;
476
477 /* normalize */
478 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
479 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
480 fsyscall_gtod_data.monotonic_time.tv_sec++;
481 }
482
483 write_seqcount_end(&fsyscall_gtod_data.seq);
484 }
485