]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kvm/kvm-ia64.c
4a983147f6eb2302b2e936a0bc58b66838994158
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68 { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74 if (vcpu->kvm->arch.is_sn2)
75 return rtc_time();
76 else
77 #endif
78 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83 int l;
84
85 for (l = 0; l < (len + 32); l += 32)
86 ia64_fc((void *)(start + l));
87
88 ia64_sync_i();
89 ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94 unsigned long i, j, count0, count1, stride0, stride1, addr;
95 long flags;
96
97 addr = local_cpu_data->ptce_base;
98 count0 = local_cpu_data->ptce_count[0];
99 count1 = local_cpu_data->ptce_count[1];
100 stride0 = local_cpu_data->ptce_stride[0];
101 stride1 = local_cpu_data->ptce_stride[1];
102
103 local_irq_save(flags);
104 for (i = 0; i < count0; ++i) {
105 for (j = 0; j < count1; ++j) {
106 ia64_ptce(addr);
107 addr += stride1;
108 }
109 addr += stride0;
110 }
111 local_irq_restore(flags);
112 ia64_srlz_i(); /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117 struct ia64_pal_retval iprv;
118
119 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120 (u64)opt_handler);
121
122 return iprv.status;
123 }
124
125 static DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129 long status;
130 long tmp_base;
131 unsigned long pte;
132 unsigned long saved_psr;
133 int slot;
134
135 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136 local_irq_save(saved_psr);
137 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138 local_irq_restore(saved_psr);
139 if (slot < 0)
140 return;
141
142 spin_lock(&vp_lock);
143 status = ia64_pal_vp_init_env(kvm_vsa_base ?
144 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146 if (status != 0) {
147 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148 return ;
149 }
150
151 if (!kvm_vsa_base) {
152 kvm_vsa_base = tmp_base;
153 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154 }
155 spin_unlock(&vp_lock);
156 ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162 long status;
163 int slot;
164 unsigned long pte;
165 unsigned long saved_psr;
166 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169 PAGE_KERNEL));
170
171 local_irq_save(saved_psr);
172 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173 local_irq_restore(saved_psr);
174 if (slot < 0)
175 return;
176
177 status = ia64_pal_vp_exit_env(host_iva);
178 if (status)
179 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180 status);
181 ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186 *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192 int r;
193
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 case KVM_CAP_MP_STATE:
197 case KVM_CAP_IRQ_INJECT_STATUS:
198 r = 1;
199 break;
200 case KVM_CAP_COALESCED_MMIO:
201 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202 break;
203 case KVM_CAP_IOMMU:
204 r = iommu_found();
205 break;
206 default:
207 r = 0;
208 }
209 return r;
210
211 }
212
213 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
214 {
215 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
216 kvm_run->hw.hardware_exit_reason = 1;
217 return 0;
218 }
219
220 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
221 {
222 struct kvm_mmio_req *p;
223 struct kvm_io_device *mmio_dev;
224 int r;
225
226 p = kvm_get_vcpu_ioreq(vcpu);
227
228 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
229 goto mmio;
230 vcpu->mmio_needed = 1;
231 vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
232 vcpu->mmio_size = kvm_run->mmio.len = p->size;
233 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
234
235 if (vcpu->mmio_is_write)
236 memcpy(vcpu->mmio_data, &p->data, p->size);
237 memcpy(kvm_run->mmio.data, &p->data, p->size);
238 kvm_run->exit_reason = KVM_EXIT_MMIO;
239 return 0;
240 mmio:
241 if (p->dir)
242 r = kvm_io_bus_read(&vcpu->kvm->mmio_bus, p->addr,
243 p->size, &p->data);
244 else
245 r = kvm_io_bus_write(&vcpu->kvm->mmio_bus, p->addr,
246 p->size, &p->data);
247 if (r)
248 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249 p->state = STATE_IORESP_READY;
250
251 return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256 struct exit_ctl_data *p;
257
258 p = kvm_get_exit_data(vcpu);
259
260 if (p->exit_reason == EXIT_REASON_PAL_CALL)
261 return kvm_pal_emul(vcpu, kvm_run);
262 else {
263 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264 kvm_run->hw.hardware_exit_reason = 2;
265 return 0;
266 }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271 struct exit_ctl_data *p;
272
273 p = kvm_get_exit_data(vcpu);
274
275 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276 kvm_sal_emul(vcpu);
277 return 1;
278 } else {
279 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280 kvm_run->hw.hardware_exit_reason = 3;
281 return 0;
282 }
283
284 }
285
286 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
287 {
288 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
289
290 if (!test_and_set_bit(vector, &vpd->irr[0])) {
291 vcpu->arch.irq_new_pending = 1;
292 kvm_vcpu_kick(vcpu);
293 return 1;
294 }
295 return 0;
296 }
297
298 /*
299 * offset: address offset to IPI space.
300 * value: deliver value.
301 */
302 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
303 uint64_t vector)
304 {
305 switch (dm) {
306 case SAPIC_FIXED:
307 break;
308 case SAPIC_NMI:
309 vector = 2;
310 break;
311 case SAPIC_EXTINT:
312 vector = 0;
313 break;
314 case SAPIC_INIT:
315 case SAPIC_PMI:
316 default:
317 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
318 return;
319 }
320 __apic_accept_irq(vcpu, vector);
321 }
322
323 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
324 unsigned long eid)
325 {
326 union ia64_lid lid;
327 int i;
328 struct kvm_vcpu *vcpu;
329
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 lid.val = VCPU_LID(vcpu);
332 if (lid.id == id && lid.eid == eid)
333 return vcpu;
334 }
335
336 return NULL;
337 }
338
339 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
340 {
341 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
342 struct kvm_vcpu *target_vcpu;
343 struct kvm_pt_regs *regs;
344 union ia64_ipi_a addr = p->u.ipi_data.addr;
345 union ia64_ipi_d data = p->u.ipi_data.data;
346
347 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
348 if (!target_vcpu)
349 return handle_vm_error(vcpu, kvm_run);
350
351 if (!target_vcpu->arch.launched) {
352 regs = vcpu_regs(target_vcpu);
353
354 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
355 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
356
357 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
358 if (waitqueue_active(&target_vcpu->wq))
359 wake_up_interruptible(&target_vcpu->wq);
360 } else {
361 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
362 if (target_vcpu != vcpu)
363 kvm_vcpu_kick(target_vcpu);
364 }
365
366 return 1;
367 }
368
369 struct call_data {
370 struct kvm_ptc_g ptc_g_data;
371 struct kvm_vcpu *vcpu;
372 };
373
374 static void vcpu_global_purge(void *info)
375 {
376 struct call_data *p = (struct call_data *)info;
377 struct kvm_vcpu *vcpu = p->vcpu;
378
379 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
380 return;
381
382 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
383 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
384 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
385 p->ptc_g_data;
386 } else {
387 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
388 vcpu->arch.ptc_g_count = 0;
389 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
390 }
391 }
392
393 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
394 {
395 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
396 struct kvm *kvm = vcpu->kvm;
397 struct call_data call_data;
398 int i;
399 struct kvm_vcpu *vcpui;
400
401 call_data.ptc_g_data = p->u.ptc_g_data;
402
403 kvm_for_each_vcpu(i, vcpui, kvm) {
404 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
405 vcpu == vcpui)
406 continue;
407
408 if (waitqueue_active(&vcpui->wq))
409 wake_up_interruptible(&vcpui->wq);
410
411 if (vcpui->cpu != -1) {
412 call_data.vcpu = vcpui;
413 smp_call_function_single(vcpui->cpu,
414 vcpu_global_purge, &call_data, 1);
415 } else
416 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
417
418 }
419 return 1;
420 }
421
422 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
423 {
424 return 1;
425 }
426
427 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
428 {
429 unsigned long pte, rtc_phys_addr, map_addr;
430 int slot;
431
432 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
433 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
434 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
435 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
436 vcpu->arch.sn_rtc_tr_slot = slot;
437 if (slot < 0) {
438 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
439 slot = 0;
440 }
441 return slot;
442 }
443
444 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
445 {
446
447 ktime_t kt;
448 long itc_diff;
449 unsigned long vcpu_now_itc;
450 unsigned long expires;
451 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
452 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
453 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
454
455 if (irqchip_in_kernel(vcpu->kvm)) {
456
457 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
458
459 if (time_after(vcpu_now_itc, vpd->itm)) {
460 vcpu->arch.timer_check = 1;
461 return 1;
462 }
463 itc_diff = vpd->itm - vcpu_now_itc;
464 if (itc_diff < 0)
465 itc_diff = -itc_diff;
466
467 expires = div64_u64(itc_diff, cyc_per_usec);
468 kt = ktime_set(0, 1000 * expires);
469
470 vcpu->arch.ht_active = 1;
471 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
472
473 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
474 kvm_vcpu_block(vcpu);
475 hrtimer_cancel(p_ht);
476 vcpu->arch.ht_active = 0;
477
478 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
479 kvm_cpu_has_pending_timer(vcpu))
480 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
481 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
482
483 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
484 return -EINTR;
485 return 1;
486 } else {
487 printk(KERN_ERR"kvm: Unsupported userspace halt!");
488 return 0;
489 }
490 }
491
492 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
493 struct kvm_run *kvm_run)
494 {
495 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
496 return 0;
497 }
498
499 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
500 struct kvm_run *kvm_run)
501 {
502 return 1;
503 }
504
505 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
506 struct kvm_run *kvm_run)
507 {
508 printk("VMM: %s", vcpu->arch.log_buf);
509 return 1;
510 }
511
512 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
513 struct kvm_run *kvm_run) = {
514 [EXIT_REASON_VM_PANIC] = handle_vm_error,
515 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
516 [EXIT_REASON_PAL_CALL] = handle_pal_call,
517 [EXIT_REASON_SAL_CALL] = handle_sal_call,
518 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
519 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
520 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
521 [EXIT_REASON_IPI] = handle_ipi,
522 [EXIT_REASON_PTC_G] = handle_global_purge,
523 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
524
525 };
526
527 static const int kvm_vti_max_exit_handlers =
528 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
529
530 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
531 {
532 struct exit_ctl_data *p_exit_data;
533
534 p_exit_data = kvm_get_exit_data(vcpu);
535 return p_exit_data->exit_reason;
536 }
537
538 /*
539 * The guest has exited. See if we can fix it or if we need userspace
540 * assistance.
541 */
542 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
543 {
544 u32 exit_reason = kvm_get_exit_reason(vcpu);
545 vcpu->arch.last_exit = exit_reason;
546
547 if (exit_reason < kvm_vti_max_exit_handlers
548 && kvm_vti_exit_handlers[exit_reason])
549 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
550 else {
551 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
552 kvm_run->hw.hardware_exit_reason = exit_reason;
553 }
554 return 0;
555 }
556
557 static inline void vti_set_rr6(unsigned long rr6)
558 {
559 ia64_set_rr(RR6, rr6);
560 ia64_srlz_i();
561 }
562
563 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
564 {
565 unsigned long pte;
566 struct kvm *kvm = vcpu->kvm;
567 int r;
568
569 /*Insert a pair of tr to map vmm*/
570 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
571 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
572 if (r < 0)
573 goto out;
574 vcpu->arch.vmm_tr_slot = r;
575 /*Insert a pairt of tr to map data of vm*/
576 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
577 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
578 pte, KVM_VM_DATA_SHIFT);
579 if (r < 0)
580 goto out;
581 vcpu->arch.vm_tr_slot = r;
582
583 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
584 if (kvm->arch.is_sn2) {
585 r = kvm_sn2_setup_mappings(vcpu);
586 if (r < 0)
587 goto out;
588 }
589 #endif
590
591 r = 0;
592 out:
593 return r;
594 }
595
596 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
597 {
598 struct kvm *kvm = vcpu->kvm;
599 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
600 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
601 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
602 if (kvm->arch.is_sn2)
603 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
604 #endif
605 }
606
607 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
608 {
609 unsigned long psr;
610 int r;
611 int cpu = smp_processor_id();
612
613 if (vcpu->arch.last_run_cpu != cpu ||
614 per_cpu(last_vcpu, cpu) != vcpu) {
615 per_cpu(last_vcpu, cpu) = vcpu;
616 vcpu->arch.last_run_cpu = cpu;
617 kvm_flush_tlb_all();
618 }
619
620 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
621 vti_set_rr6(vcpu->arch.vmm_rr);
622 local_irq_save(psr);
623 r = kvm_insert_vmm_mapping(vcpu);
624 local_irq_restore(psr);
625 return r;
626 }
627
628 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
629 {
630 kvm_purge_vmm_mapping(vcpu);
631 vti_set_rr6(vcpu->arch.host_rr6);
632 }
633
634 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
635 {
636 union context *host_ctx, *guest_ctx;
637 int r;
638
639 /*
640 * down_read() may sleep and return with interrupts enabled
641 */
642 down_read(&vcpu->kvm->slots_lock);
643
644 again:
645 if (signal_pending(current)) {
646 r = -EINTR;
647 kvm_run->exit_reason = KVM_EXIT_INTR;
648 goto out;
649 }
650
651 preempt_disable();
652 local_irq_disable();
653
654 /*Get host and guest context with guest address space.*/
655 host_ctx = kvm_get_host_context(vcpu);
656 guest_ctx = kvm_get_guest_context(vcpu);
657
658 clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660 r = kvm_vcpu_pre_transition(vcpu);
661 if (r < 0)
662 goto vcpu_run_fail;
663
664 up_read(&vcpu->kvm->slots_lock);
665 kvm_guest_enter();
666
667 /*
668 * Transition to the guest
669 */
670 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
671
672 kvm_vcpu_post_transition(vcpu);
673
674 vcpu->arch.launched = 1;
675 set_bit(KVM_REQ_KICK, &vcpu->requests);
676 local_irq_enable();
677
678 /*
679 * We must have an instruction between local_irq_enable() and
680 * kvm_guest_exit(), so the timer interrupt isn't delayed by
681 * the interrupt shadow. The stat.exits increment will do nicely.
682 * But we need to prevent reordering, hence this barrier():
683 */
684 barrier();
685 kvm_guest_exit();
686 preempt_enable();
687
688 down_read(&vcpu->kvm->slots_lock);
689
690 r = kvm_handle_exit(kvm_run, vcpu);
691
692 if (r > 0) {
693 if (!need_resched())
694 goto again;
695 }
696
697 out:
698 up_read(&vcpu->kvm->slots_lock);
699 if (r > 0) {
700 kvm_resched(vcpu);
701 down_read(&vcpu->kvm->slots_lock);
702 goto again;
703 }
704
705 return r;
706
707 vcpu_run_fail:
708 local_irq_enable();
709 preempt_enable();
710 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
711 goto out;
712 }
713
714 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
715 {
716 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
717
718 if (!vcpu->mmio_is_write)
719 memcpy(&p->data, vcpu->mmio_data, 8);
720 p->state = STATE_IORESP_READY;
721 }
722
723 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
724 {
725 int r;
726 sigset_t sigsaved;
727
728 vcpu_load(vcpu);
729
730 if (vcpu->sigset_active)
731 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
732
733 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
734 kvm_vcpu_block(vcpu);
735 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
736 r = -EAGAIN;
737 goto out;
738 }
739
740 if (vcpu->mmio_needed) {
741 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
742 kvm_set_mmio_data(vcpu);
743 vcpu->mmio_read_completed = 1;
744 vcpu->mmio_needed = 0;
745 }
746 r = __vcpu_run(vcpu, kvm_run);
747 out:
748 if (vcpu->sigset_active)
749 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
750
751 vcpu_put(vcpu);
752 return r;
753 }
754
755 static struct kvm *kvm_alloc_kvm(void)
756 {
757
758 struct kvm *kvm;
759 uint64_t vm_base;
760
761 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762
763 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
764
765 if (!vm_base)
766 return ERR_PTR(-ENOMEM);
767
768 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769 kvm = (struct kvm *)(vm_base +
770 offsetof(struct kvm_vm_data, kvm_vm_struct));
771 kvm->arch.vm_base = vm_base;
772 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773
774 return kvm;
775 }
776
777 struct kvm_io_range {
778 unsigned long start;
779 unsigned long size;
780 unsigned long type;
781 };
782
783 static const struct kvm_io_range io_ranges[] = {
784 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788 {PIB_START, PIB_SIZE, GPFN_PIB},
789 };
790
791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793 unsigned long i, j;
794
795 /* Mark I/O ranges */
796 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797 i++) {
798 for (j = io_ranges[i].start;
799 j < io_ranges[i].start + io_ranges[i].size;
800 j += PAGE_SIZE)
801 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802 io_ranges[i].type, 0);
803 }
804
805 }
806
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0 0x1739
809 #define GUEST_PHYSICAL_RR4 0x2739
810 #define VMM_INIT_RR 0x1660
811
812 static void kvm_init_vm(struct kvm *kvm)
813 {
814 BUG_ON(!kvm);
815
816 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
817 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
818 kvm->arch.vmm_init_rr = VMM_INIT_RR;
819
820 /*
821 *Fill P2M entries for MMIO/IO ranges
822 */
823 kvm_build_io_pmt(kvm);
824
825 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
826
827 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
828 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
829 }
830
831 struct kvm *kvm_arch_create_vm(void)
832 {
833 struct kvm *kvm = kvm_alloc_kvm();
834
835 if (IS_ERR(kvm))
836 return ERR_PTR(-ENOMEM);
837
838 kvm->arch.is_sn2 = ia64_platform_is("sn2");
839
840 kvm_init_vm(kvm);
841
842 return kvm;
843
844 }
845
846 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
847 struct kvm_irqchip *chip)
848 {
849 int r;
850
851 r = 0;
852 switch (chip->chip_id) {
853 case KVM_IRQCHIP_IOAPIC:
854 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
855 break;
856 default:
857 r = -EINVAL;
858 break;
859 }
860 return r;
861 }
862
863 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
864 {
865 int r;
866
867 r = 0;
868 switch (chip->chip_id) {
869 case KVM_IRQCHIP_IOAPIC:
870 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
871 break;
872 default:
873 r = -EINVAL;
874 break;
875 }
876 return r;
877 }
878
879 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
880
881 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
882 {
883 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
884 int i;
885
886 vcpu_load(vcpu);
887
888 for (i = 0; i < 16; i++) {
889 vpd->vgr[i] = regs->vpd.vgr[i];
890 vpd->vbgr[i] = regs->vpd.vbgr[i];
891 }
892 for (i = 0; i < 128; i++)
893 vpd->vcr[i] = regs->vpd.vcr[i];
894 vpd->vhpi = regs->vpd.vhpi;
895 vpd->vnat = regs->vpd.vnat;
896 vpd->vbnat = regs->vpd.vbnat;
897 vpd->vpsr = regs->vpd.vpsr;
898
899 vpd->vpr = regs->vpd.vpr;
900
901 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
902
903 RESTORE_REGS(mp_state);
904 RESTORE_REGS(vmm_rr);
905 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
906 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
907 RESTORE_REGS(itr_regions);
908 RESTORE_REGS(dtr_regions);
909 RESTORE_REGS(tc_regions);
910 RESTORE_REGS(irq_check);
911 RESTORE_REGS(itc_check);
912 RESTORE_REGS(timer_check);
913 RESTORE_REGS(timer_pending);
914 RESTORE_REGS(last_itc);
915 for (i = 0; i < 8; i++) {
916 vcpu->arch.vrr[i] = regs->vrr[i];
917 vcpu->arch.ibr[i] = regs->ibr[i];
918 vcpu->arch.dbr[i] = regs->dbr[i];
919 }
920 for (i = 0; i < 4; i++)
921 vcpu->arch.insvc[i] = regs->insvc[i];
922 RESTORE_REGS(xtp);
923 RESTORE_REGS(metaphysical_rr0);
924 RESTORE_REGS(metaphysical_rr4);
925 RESTORE_REGS(metaphysical_saved_rr0);
926 RESTORE_REGS(metaphysical_saved_rr4);
927 RESTORE_REGS(fp_psr);
928 RESTORE_REGS(saved_gp);
929
930 vcpu->arch.irq_new_pending = 1;
931 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
932 set_bit(KVM_REQ_RESUME, &vcpu->requests);
933
934 vcpu_put(vcpu);
935
936 return 0;
937 }
938
939 long kvm_arch_vm_ioctl(struct file *filp,
940 unsigned int ioctl, unsigned long arg)
941 {
942 struct kvm *kvm = filp->private_data;
943 void __user *argp = (void __user *)arg;
944 int r = -EINVAL;
945
946 switch (ioctl) {
947 case KVM_SET_MEMORY_REGION: {
948 struct kvm_memory_region kvm_mem;
949 struct kvm_userspace_memory_region kvm_userspace_mem;
950
951 r = -EFAULT;
952 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
953 goto out;
954 kvm_userspace_mem.slot = kvm_mem.slot;
955 kvm_userspace_mem.flags = kvm_mem.flags;
956 kvm_userspace_mem.guest_phys_addr =
957 kvm_mem.guest_phys_addr;
958 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
959 r = kvm_vm_ioctl_set_memory_region(kvm,
960 &kvm_userspace_mem, 0);
961 if (r)
962 goto out;
963 break;
964 }
965 case KVM_CREATE_IRQCHIP:
966 r = -EFAULT;
967 r = kvm_ioapic_init(kvm);
968 if (r)
969 goto out;
970 r = kvm_setup_default_irq_routing(kvm);
971 if (r) {
972 kfree(kvm->arch.vioapic);
973 goto out;
974 }
975 break;
976 case KVM_IRQ_LINE_STATUS:
977 case KVM_IRQ_LINE: {
978 struct kvm_irq_level irq_event;
979
980 r = -EFAULT;
981 if (copy_from_user(&irq_event, argp, sizeof irq_event))
982 goto out;
983 if (irqchip_in_kernel(kvm)) {
984 __s32 status;
985 mutex_lock(&kvm->irq_lock);
986 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
987 irq_event.irq, irq_event.level);
988 mutex_unlock(&kvm->irq_lock);
989 if (ioctl == KVM_IRQ_LINE_STATUS) {
990 irq_event.status = status;
991 if (copy_to_user(argp, &irq_event,
992 sizeof irq_event))
993 goto out;
994 }
995 r = 0;
996 }
997 break;
998 }
999 case KVM_GET_IRQCHIP: {
1000 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1001 struct kvm_irqchip chip;
1002
1003 r = -EFAULT;
1004 if (copy_from_user(&chip, argp, sizeof chip))
1005 goto out;
1006 r = -ENXIO;
1007 if (!irqchip_in_kernel(kvm))
1008 goto out;
1009 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1010 if (r)
1011 goto out;
1012 r = -EFAULT;
1013 if (copy_to_user(argp, &chip, sizeof chip))
1014 goto out;
1015 r = 0;
1016 break;
1017 }
1018 case KVM_SET_IRQCHIP: {
1019 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1020 struct kvm_irqchip chip;
1021
1022 r = -EFAULT;
1023 if (copy_from_user(&chip, argp, sizeof chip))
1024 goto out;
1025 r = -ENXIO;
1026 if (!irqchip_in_kernel(kvm))
1027 goto out;
1028 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1029 if (r)
1030 goto out;
1031 r = 0;
1032 break;
1033 }
1034 default:
1035 ;
1036 }
1037 out:
1038 return r;
1039 }
1040
1041 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1042 struct kvm_sregs *sregs)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1048 struct kvm_sregs *sregs)
1049 {
1050 return -EINVAL;
1051
1052 }
1053 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1054 struct kvm_translation *tr)
1055 {
1056
1057 return -EINVAL;
1058 }
1059
1060 static int kvm_alloc_vmm_area(void)
1061 {
1062 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1063 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1064 get_order(KVM_VMM_SIZE));
1065 if (!kvm_vmm_base)
1066 return -ENOMEM;
1067
1068 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1069 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1070
1071 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1072 kvm_vmm_base, kvm_vm_buffer);
1073 }
1074
1075 return 0;
1076 }
1077
1078 static void kvm_free_vmm_area(void)
1079 {
1080 if (kvm_vmm_base) {
1081 /*Zero this area before free to avoid bits leak!!*/
1082 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1083 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1084 kvm_vmm_base = 0;
1085 kvm_vm_buffer = 0;
1086 kvm_vsa_base = 0;
1087 }
1088 }
1089
1090 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1091 {
1092 int i;
1093 union cpuid3_t cpuid3;
1094 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1095
1096 if (IS_ERR(vpd))
1097 return PTR_ERR(vpd);
1098
1099 /* CPUID init */
1100 for (i = 0; i < 5; i++)
1101 vpd->vcpuid[i] = ia64_get_cpuid(i);
1102
1103 /* Limit the CPUID number to 5 */
1104 cpuid3.value = vpd->vcpuid[3];
1105 cpuid3.number = 4; /* 5 - 1 */
1106 vpd->vcpuid[3] = cpuid3.value;
1107
1108 /*Set vac and vdc fields*/
1109 vpd->vac.a_from_int_cr = 1;
1110 vpd->vac.a_to_int_cr = 1;
1111 vpd->vac.a_from_psr = 1;
1112 vpd->vac.a_from_cpuid = 1;
1113 vpd->vac.a_cover = 1;
1114 vpd->vac.a_bsw = 1;
1115 vpd->vac.a_int = 1;
1116 vpd->vdc.d_vmsw = 1;
1117
1118 /*Set virtual buffer*/
1119 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1120
1121 return 0;
1122 }
1123
1124 static int vti_create_vp(struct kvm_vcpu *vcpu)
1125 {
1126 long ret;
1127 struct vpd *vpd = vcpu->arch.vpd;
1128 unsigned long vmm_ivt;
1129
1130 vmm_ivt = kvm_vmm_info->vmm_ivt;
1131
1132 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1133
1134 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1135
1136 if (ret) {
1137 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1138 return -EINVAL;
1139 }
1140 return 0;
1141 }
1142
1143 static void init_ptce_info(struct kvm_vcpu *vcpu)
1144 {
1145 ia64_ptce_info_t ptce = {0};
1146
1147 ia64_get_ptce(&ptce);
1148 vcpu->arch.ptce_base = ptce.base;
1149 vcpu->arch.ptce_count[0] = ptce.count[0];
1150 vcpu->arch.ptce_count[1] = ptce.count[1];
1151 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1152 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1153 }
1154
1155 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1156 {
1157 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1158
1159 if (hrtimer_cancel(p_ht))
1160 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1161 }
1162
1163 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1164 {
1165 struct kvm_vcpu *vcpu;
1166 wait_queue_head_t *q;
1167
1168 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1169 q = &vcpu->wq;
1170
1171 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1172 goto out;
1173
1174 if (waitqueue_active(q))
1175 wake_up_interruptible(q);
1176
1177 out:
1178 vcpu->arch.timer_fired = 1;
1179 vcpu->arch.timer_check = 1;
1180 return HRTIMER_NORESTART;
1181 }
1182
1183 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1184
1185 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1186 {
1187 struct kvm_vcpu *v;
1188 int r;
1189 int i;
1190 long itc_offset;
1191 struct kvm *kvm = vcpu->kvm;
1192 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1193
1194 union context *p_ctx = &vcpu->arch.guest;
1195 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1196
1197 /*Init vcpu context for first run.*/
1198 if (IS_ERR(vmm_vcpu))
1199 return PTR_ERR(vmm_vcpu);
1200
1201 if (kvm_vcpu_is_bsp(vcpu)) {
1202 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1203
1204 /*Set entry address for first run.*/
1205 regs->cr_iip = PALE_RESET_ENTRY;
1206
1207 /*Initialize itc offset for vcpus*/
1208 itc_offset = 0UL - kvm_get_itc(vcpu);
1209 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1210 v = (struct kvm_vcpu *)((char *)vcpu +
1211 sizeof(struct kvm_vcpu_data) * i);
1212 v->arch.itc_offset = itc_offset;
1213 v->arch.last_itc = 0;
1214 }
1215 } else
1216 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1217
1218 r = -ENOMEM;
1219 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1220 if (!vcpu->arch.apic)
1221 goto out;
1222 vcpu->arch.apic->vcpu = vcpu;
1223
1224 p_ctx->gr[1] = 0;
1225 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1226 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1227 p_ctx->psr = 0x1008522000UL;
1228 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1229 p_ctx->caller_unat = 0;
1230 p_ctx->pr = 0x0;
1231 p_ctx->ar[36] = 0x0; /*unat*/
1232 p_ctx->ar[19] = 0x0; /*rnat*/
1233 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1234 ((sizeof(struct kvm_vcpu)+15) & ~15);
1235 p_ctx->ar[64] = 0x0; /*pfs*/
1236 p_ctx->cr[0] = 0x7e04UL;
1237 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1238 p_ctx->cr[8] = 0x3c;
1239
1240 /*Initilize region register*/
1241 p_ctx->rr[0] = 0x30;
1242 p_ctx->rr[1] = 0x30;
1243 p_ctx->rr[2] = 0x30;
1244 p_ctx->rr[3] = 0x30;
1245 p_ctx->rr[4] = 0x30;
1246 p_ctx->rr[5] = 0x30;
1247 p_ctx->rr[7] = 0x30;
1248
1249 /*Initilize branch register 0*/
1250 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1251
1252 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1253 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1254 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1255
1256 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1257 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1258
1259 vcpu->arch.last_run_cpu = -1;
1260 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1261 vcpu->arch.vsa_base = kvm_vsa_base;
1262 vcpu->arch.__gp = kvm_vmm_gp;
1263 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1264 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1265 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1266 init_ptce_info(vcpu);
1267
1268 r = 0;
1269 out:
1270 return r;
1271 }
1272
1273 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1274 {
1275 unsigned long psr;
1276 int r;
1277
1278 local_irq_save(psr);
1279 r = kvm_insert_vmm_mapping(vcpu);
1280 local_irq_restore(psr);
1281 if (r)
1282 goto fail;
1283 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1284 if (r)
1285 goto fail;
1286
1287 r = vti_init_vpd(vcpu);
1288 if (r) {
1289 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1290 goto uninit;
1291 }
1292
1293 r = vti_create_vp(vcpu);
1294 if (r)
1295 goto uninit;
1296
1297 kvm_purge_vmm_mapping(vcpu);
1298
1299 return 0;
1300 uninit:
1301 kvm_vcpu_uninit(vcpu);
1302 fail:
1303 return r;
1304 }
1305
1306 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1307 unsigned int id)
1308 {
1309 struct kvm_vcpu *vcpu;
1310 unsigned long vm_base = kvm->arch.vm_base;
1311 int r;
1312 int cpu;
1313
1314 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1315
1316 r = -EINVAL;
1317 if (id >= KVM_MAX_VCPUS) {
1318 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1319 KVM_MAX_VCPUS);
1320 goto fail;
1321 }
1322
1323 r = -ENOMEM;
1324 if (!vm_base) {
1325 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1326 goto fail;
1327 }
1328 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1329 vcpu_data[id].vcpu_struct));
1330 vcpu->kvm = kvm;
1331
1332 cpu = get_cpu();
1333 r = vti_vcpu_setup(vcpu, id);
1334 put_cpu();
1335
1336 if (r) {
1337 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1338 goto fail;
1339 }
1340
1341 return vcpu;
1342 fail:
1343 return ERR_PTR(r);
1344 }
1345
1346 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1347 {
1348 return 0;
1349 }
1350
1351 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1352 {
1353 return -EINVAL;
1354 }
1355
1356 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1357 {
1358 return -EINVAL;
1359 }
1360
1361 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1362 struct kvm_guest_debug *dbg)
1363 {
1364 return -EINVAL;
1365 }
1366
1367 static void free_kvm(struct kvm *kvm)
1368 {
1369 unsigned long vm_base = kvm->arch.vm_base;
1370
1371 if (vm_base) {
1372 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1373 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1374 }
1375
1376 }
1377
1378 static void kvm_release_vm_pages(struct kvm *kvm)
1379 {
1380 struct kvm_memory_slot *memslot;
1381 int i, j;
1382 unsigned long base_gfn;
1383
1384 for (i = 0; i < kvm->nmemslots; i++) {
1385 memslot = &kvm->memslots[i];
1386 base_gfn = memslot->base_gfn;
1387
1388 for (j = 0; j < memslot->npages; j++) {
1389 if (memslot->rmap[j])
1390 put_page((struct page *)memslot->rmap[j]);
1391 }
1392 }
1393 }
1394
1395 void kvm_arch_sync_events(struct kvm *kvm)
1396 {
1397 }
1398
1399 void kvm_arch_destroy_vm(struct kvm *kvm)
1400 {
1401 kvm_iommu_unmap_guest(kvm);
1402 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1403 kvm_free_all_assigned_devices(kvm);
1404 #endif
1405 kfree(kvm->arch.vioapic);
1406 kvm_release_vm_pages(kvm);
1407 kvm_free_physmem(kvm);
1408 free_kvm(kvm);
1409 }
1410
1411 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1412 {
1413 }
1414
1415 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1416 {
1417 if (cpu != vcpu->cpu) {
1418 vcpu->cpu = cpu;
1419 if (vcpu->arch.ht_active)
1420 kvm_migrate_hlt_timer(vcpu);
1421 }
1422 }
1423
1424 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1425
1426 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1427 {
1428 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1429 int i;
1430
1431 vcpu_load(vcpu);
1432
1433 for (i = 0; i < 16; i++) {
1434 regs->vpd.vgr[i] = vpd->vgr[i];
1435 regs->vpd.vbgr[i] = vpd->vbgr[i];
1436 }
1437 for (i = 0; i < 128; i++)
1438 regs->vpd.vcr[i] = vpd->vcr[i];
1439 regs->vpd.vhpi = vpd->vhpi;
1440 regs->vpd.vnat = vpd->vnat;
1441 regs->vpd.vbnat = vpd->vbnat;
1442 regs->vpd.vpsr = vpd->vpsr;
1443 regs->vpd.vpr = vpd->vpr;
1444
1445 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1446
1447 SAVE_REGS(mp_state);
1448 SAVE_REGS(vmm_rr);
1449 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1450 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1451 SAVE_REGS(itr_regions);
1452 SAVE_REGS(dtr_regions);
1453 SAVE_REGS(tc_regions);
1454 SAVE_REGS(irq_check);
1455 SAVE_REGS(itc_check);
1456 SAVE_REGS(timer_check);
1457 SAVE_REGS(timer_pending);
1458 SAVE_REGS(last_itc);
1459 for (i = 0; i < 8; i++) {
1460 regs->vrr[i] = vcpu->arch.vrr[i];
1461 regs->ibr[i] = vcpu->arch.ibr[i];
1462 regs->dbr[i] = vcpu->arch.dbr[i];
1463 }
1464 for (i = 0; i < 4; i++)
1465 regs->insvc[i] = vcpu->arch.insvc[i];
1466 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1467 SAVE_REGS(xtp);
1468 SAVE_REGS(metaphysical_rr0);
1469 SAVE_REGS(metaphysical_rr4);
1470 SAVE_REGS(metaphysical_saved_rr0);
1471 SAVE_REGS(metaphysical_saved_rr4);
1472 SAVE_REGS(fp_psr);
1473 SAVE_REGS(saved_gp);
1474
1475 vcpu_put(vcpu);
1476 return 0;
1477 }
1478
1479 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1480 struct kvm_ia64_vcpu_stack *stack)
1481 {
1482 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1483 return 0;
1484 }
1485
1486 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1487 struct kvm_ia64_vcpu_stack *stack)
1488 {
1489 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1490 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1491
1492 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1493 return 0;
1494 }
1495
1496 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1497 {
1498
1499 hrtimer_cancel(&vcpu->arch.hlt_timer);
1500 kfree(vcpu->arch.apic);
1501 }
1502
1503
1504 long kvm_arch_vcpu_ioctl(struct file *filp,
1505 unsigned int ioctl, unsigned long arg)
1506 {
1507 struct kvm_vcpu *vcpu = filp->private_data;
1508 void __user *argp = (void __user *)arg;
1509 struct kvm_ia64_vcpu_stack *stack = NULL;
1510 long r;
1511
1512 switch (ioctl) {
1513 case KVM_IA64_VCPU_GET_STACK: {
1514 struct kvm_ia64_vcpu_stack __user *user_stack;
1515 void __user *first_p = argp;
1516
1517 r = -EFAULT;
1518 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1519 goto out;
1520
1521 if (!access_ok(VERIFY_WRITE, user_stack,
1522 sizeof(struct kvm_ia64_vcpu_stack))) {
1523 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1524 "Illegal user destination address for stack\n");
1525 goto out;
1526 }
1527 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1528 if (!stack) {
1529 r = -ENOMEM;
1530 goto out;
1531 }
1532
1533 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1534 if (r)
1535 goto out;
1536
1537 if (copy_to_user(user_stack, stack,
1538 sizeof(struct kvm_ia64_vcpu_stack)))
1539 goto out;
1540
1541 break;
1542 }
1543 case KVM_IA64_VCPU_SET_STACK: {
1544 struct kvm_ia64_vcpu_stack __user *user_stack;
1545 void __user *first_p = argp;
1546
1547 r = -EFAULT;
1548 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1549 goto out;
1550
1551 if (!access_ok(VERIFY_READ, user_stack,
1552 sizeof(struct kvm_ia64_vcpu_stack))) {
1553 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1554 "Illegal user address for stack\n");
1555 goto out;
1556 }
1557 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1558 if (!stack) {
1559 r = -ENOMEM;
1560 goto out;
1561 }
1562 if (copy_from_user(stack, user_stack,
1563 sizeof(struct kvm_ia64_vcpu_stack)))
1564 goto out;
1565
1566 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1567 break;
1568 }
1569
1570 default:
1571 r = -EINVAL;
1572 }
1573
1574 out:
1575 kfree(stack);
1576 return r;
1577 }
1578
1579 int kvm_arch_set_memory_region(struct kvm *kvm,
1580 struct kvm_userspace_memory_region *mem,
1581 struct kvm_memory_slot old,
1582 int user_alloc)
1583 {
1584 unsigned long i;
1585 unsigned long pfn;
1586 int npages = mem->memory_size >> PAGE_SHIFT;
1587 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1588 unsigned long base_gfn = memslot->base_gfn;
1589
1590 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1591 return -ENOMEM;
1592
1593 for (i = 0; i < npages; i++) {
1594 pfn = gfn_to_pfn(kvm, base_gfn + i);
1595 if (!kvm_is_mmio_pfn(pfn)) {
1596 kvm_set_pmt_entry(kvm, base_gfn + i,
1597 pfn << PAGE_SHIFT,
1598 _PAGE_AR_RWX | _PAGE_MA_WB);
1599 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1600 } else {
1601 kvm_set_pmt_entry(kvm, base_gfn + i,
1602 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1603 _PAGE_MA_UC);
1604 memslot->rmap[i] = 0;
1605 }
1606 }
1607
1608 return 0;
1609 }
1610
1611 void kvm_arch_flush_shadow(struct kvm *kvm)
1612 {
1613 kvm_flush_remote_tlbs(kvm);
1614 }
1615
1616 long kvm_arch_dev_ioctl(struct file *filp,
1617 unsigned int ioctl, unsigned long arg)
1618 {
1619 return -EINVAL;
1620 }
1621
1622 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1623 {
1624 kvm_vcpu_uninit(vcpu);
1625 }
1626
1627 static int vti_cpu_has_kvm_support(void)
1628 {
1629 long avail = 1, status = 1, control = 1;
1630 long ret;
1631
1632 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1633 if (ret)
1634 goto out;
1635
1636 if (!(avail & PAL_PROC_VM_BIT))
1637 goto out;
1638
1639 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1640
1641 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1642 if (ret)
1643 goto out;
1644 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1645
1646 if (!(vp_env_info & VP_OPCODE)) {
1647 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1648 "vm_env_info:0x%lx\n", vp_env_info);
1649 }
1650
1651 return 1;
1652 out:
1653 return 0;
1654 }
1655
1656
1657 /*
1658 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1659 * SN2 RTC, replacing the ITC based default verion.
1660 */
1661 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1662 struct module *module)
1663 {
1664 unsigned long new_ar, new_ar_sn2;
1665 unsigned long module_base;
1666
1667 if (!ia64_platform_is("sn2"))
1668 return;
1669
1670 module_base = (unsigned long)module->module_core;
1671
1672 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1673 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1674
1675 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1676 "as source\n");
1677
1678 /*
1679 * Copy the SN2 version of mov_ar into place. They are both
1680 * the same size, so 6 bundles is sufficient (6 * 0x10).
1681 */
1682 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1683 }
1684
1685 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1686 struct module *module)
1687 {
1688 unsigned long module_base;
1689 unsigned long vmm_size;
1690
1691 unsigned long vmm_offset, func_offset, fdesc_offset;
1692 struct fdesc *p_fdesc;
1693
1694 BUG_ON(!module);
1695
1696 if (!kvm_vmm_base) {
1697 printk("kvm: kvm area hasn't been initilized yet!!\n");
1698 return -EFAULT;
1699 }
1700
1701 /*Calculate new position of relocated vmm module.*/
1702 module_base = (unsigned long)module->module_core;
1703 vmm_size = module->core_size;
1704 if (unlikely(vmm_size > KVM_VMM_SIZE))
1705 return -EFAULT;
1706
1707 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1708 kvm_patch_vmm(vmm_info, module);
1709 kvm_flush_icache(kvm_vmm_base, vmm_size);
1710
1711 /*Recalculate kvm_vmm_info based on new VMM*/
1712 vmm_offset = vmm_info->vmm_ivt - module_base;
1713 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1714 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1715 kvm_vmm_info->vmm_ivt);
1716
1717 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1718 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1719 fdesc_offset);
1720 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1721 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1722 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1723 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1724
1725 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1726 KVM_VMM_BASE+func_offset);
1727
1728 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1729 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1730 fdesc_offset);
1731 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1732 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1733 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1734 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1735
1736 kvm_vmm_gp = p_fdesc->gp;
1737
1738 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1739 kvm_vmm_info->vmm_entry);
1740 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1741 KVM_VMM_BASE + func_offset);
1742
1743 return 0;
1744 }
1745
1746 int kvm_arch_init(void *opaque)
1747 {
1748 int r;
1749 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1750
1751 if (!vti_cpu_has_kvm_support()) {
1752 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1753 r = -EOPNOTSUPP;
1754 goto out;
1755 }
1756
1757 if (kvm_vmm_info) {
1758 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1759 r = -EEXIST;
1760 goto out;
1761 }
1762
1763 r = -ENOMEM;
1764 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1765 if (!kvm_vmm_info)
1766 goto out;
1767
1768 if (kvm_alloc_vmm_area())
1769 goto out_free0;
1770
1771 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1772 if (r)
1773 goto out_free1;
1774
1775 return 0;
1776
1777 out_free1:
1778 kvm_free_vmm_area();
1779 out_free0:
1780 kfree(kvm_vmm_info);
1781 out:
1782 return r;
1783 }
1784
1785 void kvm_arch_exit(void)
1786 {
1787 kvm_free_vmm_area();
1788 kfree(kvm_vmm_info);
1789 kvm_vmm_info = NULL;
1790 }
1791
1792 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1793 struct kvm_dirty_log *log)
1794 {
1795 struct kvm_memory_slot *memslot;
1796 int r, i;
1797 long n, base;
1798 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1799 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1800
1801 r = -EINVAL;
1802 if (log->slot >= KVM_MEMORY_SLOTS)
1803 goto out;
1804
1805 memslot = &kvm->memslots[log->slot];
1806 r = -ENOENT;
1807 if (!memslot->dirty_bitmap)
1808 goto out;
1809
1810 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1811 base = memslot->base_gfn / BITS_PER_LONG;
1812
1813 for (i = 0; i < n/sizeof(long); ++i) {
1814 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1815 dirty_bitmap[base + i] = 0;
1816 }
1817 r = 0;
1818 out:
1819 return r;
1820 }
1821
1822 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1823 struct kvm_dirty_log *log)
1824 {
1825 int r;
1826 int n;
1827 struct kvm_memory_slot *memslot;
1828 int is_dirty = 0;
1829
1830 spin_lock(&kvm->arch.dirty_log_lock);
1831
1832 r = kvm_ia64_sync_dirty_log(kvm, log);
1833 if (r)
1834 goto out;
1835
1836 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1837 if (r)
1838 goto out;
1839
1840 /* If nothing is dirty, don't bother messing with page tables. */
1841 if (is_dirty) {
1842 kvm_flush_remote_tlbs(kvm);
1843 memslot = &kvm->memslots[log->slot];
1844 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1845 memset(memslot->dirty_bitmap, 0, n);
1846 }
1847 r = 0;
1848 out:
1849 spin_unlock(&kvm->arch.dirty_log_lock);
1850 return r;
1851 }
1852
1853 int kvm_arch_hardware_setup(void)
1854 {
1855 return 0;
1856 }
1857
1858 void kvm_arch_hardware_unsetup(void)
1859 {
1860 }
1861
1862 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1863 {
1864 int me;
1865 int cpu = vcpu->cpu;
1866
1867 if (waitqueue_active(&vcpu->wq))
1868 wake_up_interruptible(&vcpu->wq);
1869
1870 me = get_cpu();
1871 if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1872 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1873 smp_send_reschedule(cpu);
1874 put_cpu();
1875 }
1876
1877 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1878 {
1879 return __apic_accept_irq(vcpu, irq->vector);
1880 }
1881
1882 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1883 {
1884 return apic->vcpu->vcpu_id == dest;
1885 }
1886
1887 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1888 {
1889 return 0;
1890 }
1891
1892 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1893 {
1894 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1895 }
1896
1897 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1898 int short_hand, int dest, int dest_mode)
1899 {
1900 struct kvm_lapic *target = vcpu->arch.apic;
1901 return (dest_mode == 0) ?
1902 kvm_apic_match_physical_addr(target, dest) :
1903 kvm_apic_match_logical_addr(target, dest);
1904 }
1905
1906 static int find_highest_bits(int *dat)
1907 {
1908 u32 bits, bitnum;
1909 int i;
1910
1911 /* loop for all 256 bits */
1912 for (i = 7; i >= 0 ; i--) {
1913 bits = dat[i];
1914 if (bits) {
1915 bitnum = fls(bits);
1916 return i * 32 + bitnum - 1;
1917 }
1918 }
1919
1920 return -1;
1921 }
1922
1923 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1924 {
1925 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1926
1927 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1928 return NMI_VECTOR;
1929 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1930 return ExtINT_VECTOR;
1931
1932 return find_highest_bits((int *)&vpd->irr[0]);
1933 }
1934
1935 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1936 {
1937 return vcpu->arch.timer_fired;
1938 }
1939
1940 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1941 {
1942 return gfn;
1943 }
1944
1945 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1946 {
1947 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1948 (kvm_highest_pending_irq(vcpu) != -1);
1949 }
1950
1951 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1952 struct kvm_mp_state *mp_state)
1953 {
1954 vcpu_load(vcpu);
1955 mp_state->mp_state = vcpu->arch.mp_state;
1956 vcpu_put(vcpu);
1957 return 0;
1958 }
1959
1960 static int vcpu_reset(struct kvm_vcpu *vcpu)
1961 {
1962 int r;
1963 long psr;
1964 local_irq_save(psr);
1965 r = kvm_insert_vmm_mapping(vcpu);
1966 local_irq_restore(psr);
1967 if (r)
1968 goto fail;
1969
1970 vcpu->arch.launched = 0;
1971 kvm_arch_vcpu_uninit(vcpu);
1972 r = kvm_arch_vcpu_init(vcpu);
1973 if (r)
1974 goto fail;
1975
1976 kvm_purge_vmm_mapping(vcpu);
1977 r = 0;
1978 fail:
1979 return r;
1980 }
1981
1982 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1983 struct kvm_mp_state *mp_state)
1984 {
1985 int r = 0;
1986
1987 vcpu_load(vcpu);
1988 vcpu->arch.mp_state = mp_state->mp_state;
1989 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1990 r = vcpu_reset(vcpu);
1991 vcpu_put(vcpu);
1992 return r;
1993 }