]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/kvm/kvm-ia64.c
ASoC: tas2552: Use table based DAPM setup
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM support On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61
62 static long vp_env_info;
63
64 static struct kvm_vmm_info *kvm_vmm_info;
65
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69 { NULL }
70 };
71
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75 if (vcpu->kvm->arch.is_sn2)
76 return rtc_time();
77 else
78 #endif
79 return ia64_getreg(_IA64_REG_AR_ITC);
80 }
81
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84 int l;
85
86 for (l = 0; l < (len + 32); l += 32)
87 ia64_fc((void *)(start + l));
88
89 ia64_sync_i();
90 ia64_srlz_i();
91 }
92
93 static void kvm_flush_tlb_all(void)
94 {
95 unsigned long i, j, count0, count1, stride0, stride1, addr;
96 long flags;
97
98 addr = local_cpu_data->ptce_base;
99 count0 = local_cpu_data->ptce_count[0];
100 count1 = local_cpu_data->ptce_count[1];
101 stride0 = local_cpu_data->ptce_stride[0];
102 stride1 = local_cpu_data->ptce_stride[1];
103
104 local_irq_save(flags);
105 for (i = 0; i < count0; ++i) {
106 for (j = 0; j < count1; ++j) {
107 ia64_ptce(addr);
108 addr += stride1;
109 }
110 addr += stride0;
111 }
112 local_irq_restore(flags);
113 ia64_srlz_i(); /* srlz.i implies srlz.d */
114 }
115
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118 struct ia64_pal_retval iprv;
119
120 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121 (u64)opt_handler);
122
123 return iprv.status;
124 }
125
126 static DEFINE_SPINLOCK(vp_lock);
127
128 int kvm_arch_hardware_enable(void)
129 {
130 long status;
131 long tmp_base;
132 unsigned long pte;
133 unsigned long saved_psr;
134 int slot;
135
136 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137 local_irq_save(saved_psr);
138 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139 local_irq_restore(saved_psr);
140 if (slot < 0)
141 return -EINVAL;
142
143 spin_lock(&vp_lock);
144 status = ia64_pal_vp_init_env(kvm_vsa_base ?
145 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147 if (status != 0) {
148 spin_unlock(&vp_lock);
149 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150 return -EINVAL;
151 }
152
153 if (!kvm_vsa_base) {
154 kvm_vsa_base = tmp_base;
155 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156 }
157 spin_unlock(&vp_lock);
158 ia64_ptr_entry(0x3, slot);
159
160 return 0;
161 }
162
163 void kvm_arch_hardware_disable(void)
164 {
165
166 long status;
167 int slot;
168 unsigned long pte;
169 unsigned long saved_psr;
170 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171
172 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173 PAGE_KERNEL));
174
175 local_irq_save(saved_psr);
176 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177 local_irq_restore(saved_psr);
178 if (slot < 0)
179 return;
180
181 status = ia64_pal_vp_exit_env(host_iva);
182 if (status)
183 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184 status);
185 ia64_ptr_entry(0x3, slot);
186 }
187
188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190 *(int *)rtn = 0;
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195
196 int r;
197
198 switch (ext) {
199 case KVM_CAP_IRQCHIP:
200 case KVM_CAP_MP_STATE:
201 case KVM_CAP_IRQ_INJECT_STATUS:
202 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
203 r = 1;
204 break;
205 case KVM_CAP_COALESCED_MMIO:
206 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
207 break;
208 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
209 case KVM_CAP_IOMMU:
210 r = iommu_present(&pci_bus_type);
211 break;
212 #endif
213 default:
214 r = 0;
215 }
216 return r;
217
218 }
219
220 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
221 {
222 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
223 kvm_run->hw.hardware_exit_reason = 1;
224 return 0;
225 }
226
227 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
228 {
229 struct kvm_mmio_req *p;
230 struct kvm_io_device *mmio_dev;
231 int r;
232
233 p = kvm_get_vcpu_ioreq(vcpu);
234
235 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
236 goto mmio;
237 vcpu->mmio_needed = 1;
238 vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
239 vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
240 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
241
242 if (vcpu->mmio_is_write)
243 memcpy(vcpu->arch.mmio_data, &p->data, p->size);
244 memcpy(kvm_run->mmio.data, &p->data, p->size);
245 kvm_run->exit_reason = KVM_EXIT_MMIO;
246 return 0;
247 mmio:
248 if (p->dir)
249 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250 p->size, &p->data);
251 else
252 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
253 p->size, &p->data);
254 if (r)
255 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
256 p->state = STATE_IORESP_READY;
257
258 return 1;
259 }
260
261 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
262 {
263 struct exit_ctl_data *p;
264
265 p = kvm_get_exit_data(vcpu);
266
267 if (p->exit_reason == EXIT_REASON_PAL_CALL)
268 return kvm_pal_emul(vcpu, kvm_run);
269 else {
270 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
271 kvm_run->hw.hardware_exit_reason = 2;
272 return 0;
273 }
274 }
275
276 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
277 {
278 struct exit_ctl_data *p;
279
280 p = kvm_get_exit_data(vcpu);
281
282 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
283 kvm_sal_emul(vcpu);
284 return 1;
285 } else {
286 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
287 kvm_run->hw.hardware_exit_reason = 3;
288 return 0;
289 }
290
291 }
292
293 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
294 {
295 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
296
297 if (!test_and_set_bit(vector, &vpd->irr[0])) {
298 vcpu->arch.irq_new_pending = 1;
299 kvm_vcpu_kick(vcpu);
300 return 1;
301 }
302 return 0;
303 }
304
305 /*
306 * offset: address offset to IPI space.
307 * value: deliver value.
308 */
309 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
310 uint64_t vector)
311 {
312 switch (dm) {
313 case SAPIC_FIXED:
314 break;
315 case SAPIC_NMI:
316 vector = 2;
317 break;
318 case SAPIC_EXTINT:
319 vector = 0;
320 break;
321 case SAPIC_INIT:
322 case SAPIC_PMI:
323 default:
324 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
325 return;
326 }
327 __apic_accept_irq(vcpu, vector);
328 }
329
330 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
331 unsigned long eid)
332 {
333 union ia64_lid lid;
334 int i;
335 struct kvm_vcpu *vcpu;
336
337 kvm_for_each_vcpu(i, vcpu, kvm) {
338 lid.val = VCPU_LID(vcpu);
339 if (lid.id == id && lid.eid == eid)
340 return vcpu;
341 }
342
343 return NULL;
344 }
345
346 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
347 {
348 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
349 struct kvm_vcpu *target_vcpu;
350 struct kvm_pt_regs *regs;
351 union ia64_ipi_a addr = p->u.ipi_data.addr;
352 union ia64_ipi_d data = p->u.ipi_data.data;
353
354 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
355 if (!target_vcpu)
356 return handle_vm_error(vcpu, kvm_run);
357
358 if (!target_vcpu->arch.launched) {
359 regs = vcpu_regs(target_vcpu);
360
361 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
362 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
363
364 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
365 if (waitqueue_active(&target_vcpu->wq))
366 wake_up_interruptible(&target_vcpu->wq);
367 } else {
368 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
369 if (target_vcpu != vcpu)
370 kvm_vcpu_kick(target_vcpu);
371 }
372
373 return 1;
374 }
375
376 struct call_data {
377 struct kvm_ptc_g ptc_g_data;
378 struct kvm_vcpu *vcpu;
379 };
380
381 static void vcpu_global_purge(void *info)
382 {
383 struct call_data *p = (struct call_data *)info;
384 struct kvm_vcpu *vcpu = p->vcpu;
385
386 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
387 return;
388
389 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
390 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
391 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
392 p->ptc_g_data;
393 } else {
394 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
395 vcpu->arch.ptc_g_count = 0;
396 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
397 }
398 }
399
400 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
401 {
402 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
403 struct kvm *kvm = vcpu->kvm;
404 struct call_data call_data;
405 int i;
406 struct kvm_vcpu *vcpui;
407
408 call_data.ptc_g_data = p->u.ptc_g_data;
409
410 kvm_for_each_vcpu(i, vcpui, kvm) {
411 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
412 vcpu == vcpui)
413 continue;
414
415 if (waitqueue_active(&vcpui->wq))
416 wake_up_interruptible(&vcpui->wq);
417
418 if (vcpui->cpu != -1) {
419 call_data.vcpu = vcpui;
420 smp_call_function_single(vcpui->cpu,
421 vcpu_global_purge, &call_data, 1);
422 } else
423 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
424
425 }
426 return 1;
427 }
428
429 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
430 {
431 return 1;
432 }
433
434 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
435 {
436 unsigned long pte, rtc_phys_addr, map_addr;
437 int slot;
438
439 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
440 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
441 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
442 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
443 vcpu->arch.sn_rtc_tr_slot = slot;
444 if (slot < 0) {
445 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
446 slot = 0;
447 }
448 return slot;
449 }
450
451 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
452 {
453
454 ktime_t kt;
455 long itc_diff;
456 unsigned long vcpu_now_itc;
457 unsigned long expires;
458 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
459 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
460 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
461
462 if (irqchip_in_kernel(vcpu->kvm)) {
463
464 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
465
466 if (time_after(vcpu_now_itc, vpd->itm)) {
467 vcpu->arch.timer_check = 1;
468 return 1;
469 }
470 itc_diff = vpd->itm - vcpu_now_itc;
471 if (itc_diff < 0)
472 itc_diff = -itc_diff;
473
474 expires = div64_u64(itc_diff, cyc_per_usec);
475 kt = ktime_set(0, 1000 * expires);
476
477 vcpu->arch.ht_active = 1;
478 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
479
480 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
481 kvm_vcpu_block(vcpu);
482 hrtimer_cancel(p_ht);
483 vcpu->arch.ht_active = 0;
484
485 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
486 kvm_cpu_has_pending_timer(vcpu))
487 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
488 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
489
490 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
491 return -EINTR;
492 return 1;
493 } else {
494 printk(KERN_ERR"kvm: Unsupported userspace halt!");
495 return 0;
496 }
497 }
498
499 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
500 struct kvm_run *kvm_run)
501 {
502 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
503 return 0;
504 }
505
506 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
507 struct kvm_run *kvm_run)
508 {
509 return 1;
510 }
511
512 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
513 struct kvm_run *kvm_run)
514 {
515 printk("VMM: %s", vcpu->arch.log_buf);
516 return 1;
517 }
518
519 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
520 struct kvm_run *kvm_run) = {
521 [EXIT_REASON_VM_PANIC] = handle_vm_error,
522 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
523 [EXIT_REASON_PAL_CALL] = handle_pal_call,
524 [EXIT_REASON_SAL_CALL] = handle_sal_call,
525 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
526 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
527 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
528 [EXIT_REASON_IPI] = handle_ipi,
529 [EXIT_REASON_PTC_G] = handle_global_purge,
530 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
531
532 };
533
534 static const int kvm_vti_max_exit_handlers =
535 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
536
537 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
538 {
539 struct exit_ctl_data *p_exit_data;
540
541 p_exit_data = kvm_get_exit_data(vcpu);
542 return p_exit_data->exit_reason;
543 }
544
545 /*
546 * The guest has exited. See if we can fix it or if we need userspace
547 * assistance.
548 */
549 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
550 {
551 u32 exit_reason = kvm_get_exit_reason(vcpu);
552 vcpu->arch.last_exit = exit_reason;
553
554 if (exit_reason < kvm_vti_max_exit_handlers
555 && kvm_vti_exit_handlers[exit_reason])
556 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
557 else {
558 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
559 kvm_run->hw.hardware_exit_reason = exit_reason;
560 }
561 return 0;
562 }
563
564 static inline void vti_set_rr6(unsigned long rr6)
565 {
566 ia64_set_rr(RR6, rr6);
567 ia64_srlz_i();
568 }
569
570 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
571 {
572 unsigned long pte;
573 struct kvm *kvm = vcpu->kvm;
574 int r;
575
576 /*Insert a pair of tr to map vmm*/
577 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
578 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
579 if (r < 0)
580 goto out;
581 vcpu->arch.vmm_tr_slot = r;
582 /*Insert a pairt of tr to map data of vm*/
583 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
584 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
585 pte, KVM_VM_DATA_SHIFT);
586 if (r < 0)
587 goto out;
588 vcpu->arch.vm_tr_slot = r;
589
590 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
591 if (kvm->arch.is_sn2) {
592 r = kvm_sn2_setup_mappings(vcpu);
593 if (r < 0)
594 goto out;
595 }
596 #endif
597
598 r = 0;
599 out:
600 return r;
601 }
602
603 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
604 {
605 struct kvm *kvm = vcpu->kvm;
606 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
607 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
608 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
609 if (kvm->arch.is_sn2)
610 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
611 #endif
612 }
613
614 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
615 {
616 unsigned long psr;
617 int r;
618 int cpu = smp_processor_id();
619
620 if (vcpu->arch.last_run_cpu != cpu ||
621 per_cpu(last_vcpu, cpu) != vcpu) {
622 per_cpu(last_vcpu, cpu) = vcpu;
623 vcpu->arch.last_run_cpu = cpu;
624 kvm_flush_tlb_all();
625 }
626
627 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
628 vti_set_rr6(vcpu->arch.vmm_rr);
629 local_irq_save(psr);
630 r = kvm_insert_vmm_mapping(vcpu);
631 local_irq_restore(psr);
632 return r;
633 }
634
635 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
636 {
637 kvm_purge_vmm_mapping(vcpu);
638 vti_set_rr6(vcpu->arch.host_rr6);
639 }
640
641 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
642 {
643 union context *host_ctx, *guest_ctx;
644 int r, idx;
645
646 idx = srcu_read_lock(&vcpu->kvm->srcu);
647
648 again:
649 if (signal_pending(current)) {
650 r = -EINTR;
651 kvm_run->exit_reason = KVM_EXIT_INTR;
652 goto out;
653 }
654
655 preempt_disable();
656 local_irq_disable();
657
658 /*Get host and guest context with guest address space.*/
659 host_ctx = kvm_get_host_context(vcpu);
660 guest_ctx = kvm_get_guest_context(vcpu);
661
662 clear_bit(KVM_REQ_KICK, &vcpu->requests);
663
664 r = kvm_vcpu_pre_transition(vcpu);
665 if (r < 0)
666 goto vcpu_run_fail;
667
668 srcu_read_unlock(&vcpu->kvm->srcu, idx);
669 vcpu->mode = IN_GUEST_MODE;
670 kvm_guest_enter();
671
672 /*
673 * Transition to the guest
674 */
675 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
676
677 kvm_vcpu_post_transition(vcpu);
678
679 vcpu->arch.launched = 1;
680 set_bit(KVM_REQ_KICK, &vcpu->requests);
681 local_irq_enable();
682
683 /*
684 * We must have an instruction between local_irq_enable() and
685 * kvm_guest_exit(), so the timer interrupt isn't delayed by
686 * the interrupt shadow. The stat.exits increment will do nicely.
687 * But we need to prevent reordering, hence this barrier():
688 */
689 barrier();
690 kvm_guest_exit();
691 vcpu->mode = OUTSIDE_GUEST_MODE;
692 preempt_enable();
693
694 idx = srcu_read_lock(&vcpu->kvm->srcu);
695
696 r = kvm_handle_exit(kvm_run, vcpu);
697
698 if (r > 0) {
699 if (!need_resched())
700 goto again;
701 }
702
703 out:
704 srcu_read_unlock(&vcpu->kvm->srcu, idx);
705 if (r > 0) {
706 cond_resched();
707 idx = srcu_read_lock(&vcpu->kvm->srcu);
708 goto again;
709 }
710
711 return r;
712
713 vcpu_run_fail:
714 local_irq_enable();
715 preempt_enable();
716 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
717 goto out;
718 }
719
720 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
721 {
722 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
723
724 if (!vcpu->mmio_is_write)
725 memcpy(&p->data, vcpu->arch.mmio_data, 8);
726 p->state = STATE_IORESP_READY;
727 }
728
729 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
730 {
731 int r;
732 sigset_t sigsaved;
733
734 if (vcpu->sigset_active)
735 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
736
737 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
738 kvm_vcpu_block(vcpu);
739 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
740 r = -EAGAIN;
741 goto out;
742 }
743
744 if (vcpu->mmio_needed) {
745 memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
746 kvm_set_mmio_data(vcpu);
747 vcpu->mmio_read_completed = 1;
748 vcpu->mmio_needed = 0;
749 }
750 r = __vcpu_run(vcpu, kvm_run);
751 out:
752 if (vcpu->sigset_active)
753 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
754
755 return r;
756 }
757
758 struct kvm *kvm_arch_alloc_vm(void)
759 {
760
761 struct kvm *kvm;
762 uint64_t vm_base;
763
764 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
765
766 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
767
768 if (!vm_base)
769 return NULL;
770
771 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
772 kvm = (struct kvm *)(vm_base +
773 offsetof(struct kvm_vm_data, kvm_vm_struct));
774 kvm->arch.vm_base = vm_base;
775 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
776
777 return kvm;
778 }
779
780 struct kvm_ia64_io_range {
781 unsigned long start;
782 unsigned long size;
783 unsigned long type;
784 };
785
786 static const struct kvm_ia64_io_range io_ranges[] = {
787 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
788 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
789 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
790 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
791 {PIB_START, PIB_SIZE, GPFN_PIB},
792 };
793
794 static void kvm_build_io_pmt(struct kvm *kvm)
795 {
796 unsigned long i, j;
797
798 /* Mark I/O ranges */
799 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
800 i++) {
801 for (j = io_ranges[i].start;
802 j < io_ranges[i].start + io_ranges[i].size;
803 j += PAGE_SIZE)
804 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
805 io_ranges[i].type, 0);
806 }
807
808 }
809
810 /*Use unused rids to virtualize guest rid.*/
811 #define GUEST_PHYSICAL_RR0 0x1739
812 #define GUEST_PHYSICAL_RR4 0x2739
813 #define VMM_INIT_RR 0x1660
814
815 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
816 {
817 BUG_ON(!kvm);
818
819 if (type)
820 return -EINVAL;
821
822 kvm->arch.is_sn2 = ia64_platform_is("sn2");
823
824 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
825 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
826 kvm->arch.vmm_init_rr = VMM_INIT_RR;
827
828 /*
829 *Fill P2M entries for MMIO/IO ranges
830 */
831 kvm_build_io_pmt(kvm);
832
833 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
834
835 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
836 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
837
838 return 0;
839 }
840
841 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
842 struct kvm_irqchip *chip)
843 {
844 int r;
845
846 r = 0;
847 switch (chip->chip_id) {
848 case KVM_IRQCHIP_IOAPIC:
849 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
850 break;
851 default:
852 r = -EINVAL;
853 break;
854 }
855 return r;
856 }
857
858 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
859 {
860 int r;
861
862 r = 0;
863 switch (chip->chip_id) {
864 case KVM_IRQCHIP_IOAPIC:
865 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
866 break;
867 default:
868 r = -EINVAL;
869 break;
870 }
871 return r;
872 }
873
874 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
875
876 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
877 {
878 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
879 int i;
880
881 for (i = 0; i < 16; i++) {
882 vpd->vgr[i] = regs->vpd.vgr[i];
883 vpd->vbgr[i] = regs->vpd.vbgr[i];
884 }
885 for (i = 0; i < 128; i++)
886 vpd->vcr[i] = regs->vpd.vcr[i];
887 vpd->vhpi = regs->vpd.vhpi;
888 vpd->vnat = regs->vpd.vnat;
889 vpd->vbnat = regs->vpd.vbnat;
890 vpd->vpsr = regs->vpd.vpsr;
891
892 vpd->vpr = regs->vpd.vpr;
893
894 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
895
896 RESTORE_REGS(mp_state);
897 RESTORE_REGS(vmm_rr);
898 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
899 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
900 RESTORE_REGS(itr_regions);
901 RESTORE_REGS(dtr_regions);
902 RESTORE_REGS(tc_regions);
903 RESTORE_REGS(irq_check);
904 RESTORE_REGS(itc_check);
905 RESTORE_REGS(timer_check);
906 RESTORE_REGS(timer_pending);
907 RESTORE_REGS(last_itc);
908 for (i = 0; i < 8; i++) {
909 vcpu->arch.vrr[i] = regs->vrr[i];
910 vcpu->arch.ibr[i] = regs->ibr[i];
911 vcpu->arch.dbr[i] = regs->dbr[i];
912 }
913 for (i = 0; i < 4; i++)
914 vcpu->arch.insvc[i] = regs->insvc[i];
915 RESTORE_REGS(xtp);
916 RESTORE_REGS(metaphysical_rr0);
917 RESTORE_REGS(metaphysical_rr4);
918 RESTORE_REGS(metaphysical_saved_rr0);
919 RESTORE_REGS(metaphysical_saved_rr4);
920 RESTORE_REGS(fp_psr);
921 RESTORE_REGS(saved_gp);
922
923 vcpu->arch.irq_new_pending = 1;
924 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
925 set_bit(KVM_REQ_RESUME, &vcpu->requests);
926
927 return 0;
928 }
929
930 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
931 bool line_status)
932 {
933 if (!irqchip_in_kernel(kvm))
934 return -ENXIO;
935
936 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
937 irq_event->irq, irq_event->level,
938 line_status);
939 return 0;
940 }
941
942 long kvm_arch_vm_ioctl(struct file *filp,
943 unsigned int ioctl, unsigned long arg)
944 {
945 struct kvm *kvm = filp->private_data;
946 void __user *argp = (void __user *)arg;
947 int r = -ENOTTY;
948
949 switch (ioctl) {
950 case KVM_CREATE_IRQCHIP:
951 r = -EFAULT;
952 r = kvm_ioapic_init(kvm);
953 if (r)
954 goto out;
955 r = kvm_setup_default_irq_routing(kvm);
956 if (r) {
957 mutex_lock(&kvm->slots_lock);
958 kvm_ioapic_destroy(kvm);
959 mutex_unlock(&kvm->slots_lock);
960 goto out;
961 }
962 break;
963 case KVM_GET_IRQCHIP: {
964 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
965 struct kvm_irqchip chip;
966
967 r = -EFAULT;
968 if (copy_from_user(&chip, argp, sizeof chip))
969 goto out;
970 r = -ENXIO;
971 if (!irqchip_in_kernel(kvm))
972 goto out;
973 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
974 if (r)
975 goto out;
976 r = -EFAULT;
977 if (copy_to_user(argp, &chip, sizeof chip))
978 goto out;
979 r = 0;
980 break;
981 }
982 case KVM_SET_IRQCHIP: {
983 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
984 struct kvm_irqchip chip;
985
986 r = -EFAULT;
987 if (copy_from_user(&chip, argp, sizeof chip))
988 goto out;
989 r = -ENXIO;
990 if (!irqchip_in_kernel(kvm))
991 goto out;
992 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
993 if (r)
994 goto out;
995 r = 0;
996 break;
997 }
998 default:
999 ;
1000 }
1001 out:
1002 return r;
1003 }
1004
1005 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1006 struct kvm_sregs *sregs)
1007 {
1008 return -EINVAL;
1009 }
1010
1011 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1012 struct kvm_sregs *sregs)
1013 {
1014 return -EINVAL;
1015
1016 }
1017 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1018 struct kvm_translation *tr)
1019 {
1020
1021 return -EINVAL;
1022 }
1023
1024 static int kvm_alloc_vmm_area(void)
1025 {
1026 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1027 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1028 get_order(KVM_VMM_SIZE));
1029 if (!kvm_vmm_base)
1030 return -ENOMEM;
1031
1032 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1033 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1034
1035 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1036 kvm_vmm_base, kvm_vm_buffer);
1037 }
1038
1039 return 0;
1040 }
1041
1042 static void kvm_free_vmm_area(void)
1043 {
1044 if (kvm_vmm_base) {
1045 /*Zero this area before free to avoid bits leak!!*/
1046 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1047 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1048 kvm_vmm_base = 0;
1049 kvm_vm_buffer = 0;
1050 kvm_vsa_base = 0;
1051 }
1052 }
1053
1054 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1055 {
1056 int i;
1057 union cpuid3_t cpuid3;
1058 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1059
1060 if (IS_ERR(vpd))
1061 return PTR_ERR(vpd);
1062
1063 /* CPUID init */
1064 for (i = 0; i < 5; i++)
1065 vpd->vcpuid[i] = ia64_get_cpuid(i);
1066
1067 /* Limit the CPUID number to 5 */
1068 cpuid3.value = vpd->vcpuid[3];
1069 cpuid3.number = 4; /* 5 - 1 */
1070 vpd->vcpuid[3] = cpuid3.value;
1071
1072 /*Set vac and vdc fields*/
1073 vpd->vac.a_from_int_cr = 1;
1074 vpd->vac.a_to_int_cr = 1;
1075 vpd->vac.a_from_psr = 1;
1076 vpd->vac.a_from_cpuid = 1;
1077 vpd->vac.a_cover = 1;
1078 vpd->vac.a_bsw = 1;
1079 vpd->vac.a_int = 1;
1080 vpd->vdc.d_vmsw = 1;
1081
1082 /*Set virtual buffer*/
1083 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1084
1085 return 0;
1086 }
1087
1088 static int vti_create_vp(struct kvm_vcpu *vcpu)
1089 {
1090 long ret;
1091 struct vpd *vpd = vcpu->arch.vpd;
1092 unsigned long vmm_ivt;
1093
1094 vmm_ivt = kvm_vmm_info->vmm_ivt;
1095
1096 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1097
1098 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1099
1100 if (ret) {
1101 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1102 return -EINVAL;
1103 }
1104 return 0;
1105 }
1106
1107 static void init_ptce_info(struct kvm_vcpu *vcpu)
1108 {
1109 ia64_ptce_info_t ptce = {0};
1110
1111 ia64_get_ptce(&ptce);
1112 vcpu->arch.ptce_base = ptce.base;
1113 vcpu->arch.ptce_count[0] = ptce.count[0];
1114 vcpu->arch.ptce_count[1] = ptce.count[1];
1115 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1116 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1117 }
1118
1119 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1120 {
1121 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1122
1123 if (hrtimer_cancel(p_ht))
1124 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1125 }
1126
1127 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1128 {
1129 struct kvm_vcpu *vcpu;
1130 wait_queue_head_t *q;
1131
1132 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1133 q = &vcpu->wq;
1134
1135 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1136 goto out;
1137
1138 if (waitqueue_active(q))
1139 wake_up_interruptible(q);
1140
1141 out:
1142 vcpu->arch.timer_fired = 1;
1143 vcpu->arch.timer_check = 1;
1144 return HRTIMER_NORESTART;
1145 }
1146
1147 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1148
1149 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1150 {
1151 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1152 }
1153
1154 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1155 {
1156 struct kvm_vcpu *v;
1157 int r;
1158 int i;
1159 long itc_offset;
1160 struct kvm *kvm = vcpu->kvm;
1161 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1162
1163 union context *p_ctx = &vcpu->arch.guest;
1164 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1165
1166 /*Init vcpu context for first run.*/
1167 if (IS_ERR(vmm_vcpu))
1168 return PTR_ERR(vmm_vcpu);
1169
1170 if (kvm_vcpu_is_bsp(vcpu)) {
1171 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1172
1173 /*Set entry address for first run.*/
1174 regs->cr_iip = PALE_RESET_ENTRY;
1175
1176 /*Initialize itc offset for vcpus*/
1177 itc_offset = 0UL - kvm_get_itc(vcpu);
1178 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1179 v = (struct kvm_vcpu *)((char *)vcpu +
1180 sizeof(struct kvm_vcpu_data) * i);
1181 v->arch.itc_offset = itc_offset;
1182 v->arch.last_itc = 0;
1183 }
1184 } else
1185 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1186
1187 r = -ENOMEM;
1188 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1189 if (!vcpu->arch.apic)
1190 goto out;
1191 vcpu->arch.apic->vcpu = vcpu;
1192
1193 p_ctx->gr[1] = 0;
1194 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1195 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1196 p_ctx->psr = 0x1008522000UL;
1197 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1198 p_ctx->caller_unat = 0;
1199 p_ctx->pr = 0x0;
1200 p_ctx->ar[36] = 0x0; /*unat*/
1201 p_ctx->ar[19] = 0x0; /*rnat*/
1202 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1203 ((sizeof(struct kvm_vcpu)+15) & ~15);
1204 p_ctx->ar[64] = 0x0; /*pfs*/
1205 p_ctx->cr[0] = 0x7e04UL;
1206 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1207 p_ctx->cr[8] = 0x3c;
1208
1209 /*Initialize region register*/
1210 p_ctx->rr[0] = 0x30;
1211 p_ctx->rr[1] = 0x30;
1212 p_ctx->rr[2] = 0x30;
1213 p_ctx->rr[3] = 0x30;
1214 p_ctx->rr[4] = 0x30;
1215 p_ctx->rr[5] = 0x30;
1216 p_ctx->rr[7] = 0x30;
1217
1218 /*Initialize branch register 0*/
1219 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1220
1221 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1222 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1223 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1224
1225 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1226 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1227
1228 vcpu->arch.last_run_cpu = -1;
1229 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1230 vcpu->arch.vsa_base = kvm_vsa_base;
1231 vcpu->arch.__gp = kvm_vmm_gp;
1232 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1233 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1234 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1235 init_ptce_info(vcpu);
1236
1237 r = 0;
1238 out:
1239 return r;
1240 }
1241
1242 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1243 {
1244 unsigned long psr;
1245 int r;
1246
1247 local_irq_save(psr);
1248 r = kvm_insert_vmm_mapping(vcpu);
1249 local_irq_restore(psr);
1250 if (r)
1251 goto fail;
1252 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1253 if (r)
1254 goto fail;
1255
1256 r = vti_init_vpd(vcpu);
1257 if (r) {
1258 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1259 goto uninit;
1260 }
1261
1262 r = vti_create_vp(vcpu);
1263 if (r)
1264 goto uninit;
1265
1266 kvm_purge_vmm_mapping(vcpu);
1267
1268 return 0;
1269 uninit:
1270 kvm_vcpu_uninit(vcpu);
1271 fail:
1272 return r;
1273 }
1274
1275 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1276 unsigned int id)
1277 {
1278 struct kvm_vcpu *vcpu;
1279 unsigned long vm_base = kvm->arch.vm_base;
1280 int r;
1281 int cpu;
1282
1283 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1284
1285 r = -EINVAL;
1286 if (id >= KVM_MAX_VCPUS) {
1287 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1288 KVM_MAX_VCPUS);
1289 goto fail;
1290 }
1291
1292 r = -ENOMEM;
1293 if (!vm_base) {
1294 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1295 goto fail;
1296 }
1297 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1298 vcpu_data[id].vcpu_struct));
1299 vcpu->kvm = kvm;
1300
1301 cpu = get_cpu();
1302 r = vti_vcpu_setup(vcpu, id);
1303 put_cpu();
1304
1305 if (r) {
1306 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1307 goto fail;
1308 }
1309
1310 return vcpu;
1311 fail:
1312 return ERR_PTR(r);
1313 }
1314
1315 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1316 {
1317 return 0;
1318 }
1319
1320 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1321 {
1322 return 0;
1323 }
1324
1325 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1326 {
1327 return -EINVAL;
1328 }
1329
1330 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1331 {
1332 return -EINVAL;
1333 }
1334
1335 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1336 struct kvm_guest_debug *dbg)
1337 {
1338 return -EINVAL;
1339 }
1340
1341 void kvm_arch_free_vm(struct kvm *kvm)
1342 {
1343 unsigned long vm_base = kvm->arch.vm_base;
1344
1345 if (vm_base) {
1346 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1347 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1348 }
1349
1350 }
1351
1352 static void kvm_release_vm_pages(struct kvm *kvm)
1353 {
1354 struct kvm_memslots *slots;
1355 struct kvm_memory_slot *memslot;
1356 int j;
1357
1358 slots = kvm_memslots(kvm);
1359 kvm_for_each_memslot(memslot, slots) {
1360 for (j = 0; j < memslot->npages; j++) {
1361 if (memslot->rmap[j])
1362 put_page((struct page *)memslot->rmap[j]);
1363 }
1364 }
1365 }
1366
1367 void kvm_arch_destroy_vm(struct kvm *kvm)
1368 {
1369 kvm_iommu_unmap_guest(kvm);
1370 kvm_free_all_assigned_devices(kvm);
1371 kfree(kvm->arch.vioapic);
1372 kvm_release_vm_pages(kvm);
1373 }
1374
1375 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1376 {
1377 if (cpu != vcpu->cpu) {
1378 vcpu->cpu = cpu;
1379 if (vcpu->arch.ht_active)
1380 kvm_migrate_hlt_timer(vcpu);
1381 }
1382 }
1383
1384 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1385
1386 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1387 {
1388 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1389 int i;
1390
1391 vcpu_load(vcpu);
1392
1393 for (i = 0; i < 16; i++) {
1394 regs->vpd.vgr[i] = vpd->vgr[i];
1395 regs->vpd.vbgr[i] = vpd->vbgr[i];
1396 }
1397 for (i = 0; i < 128; i++)
1398 regs->vpd.vcr[i] = vpd->vcr[i];
1399 regs->vpd.vhpi = vpd->vhpi;
1400 regs->vpd.vnat = vpd->vnat;
1401 regs->vpd.vbnat = vpd->vbnat;
1402 regs->vpd.vpsr = vpd->vpsr;
1403 regs->vpd.vpr = vpd->vpr;
1404
1405 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1406
1407 SAVE_REGS(mp_state);
1408 SAVE_REGS(vmm_rr);
1409 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1410 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1411 SAVE_REGS(itr_regions);
1412 SAVE_REGS(dtr_regions);
1413 SAVE_REGS(tc_regions);
1414 SAVE_REGS(irq_check);
1415 SAVE_REGS(itc_check);
1416 SAVE_REGS(timer_check);
1417 SAVE_REGS(timer_pending);
1418 SAVE_REGS(last_itc);
1419 for (i = 0; i < 8; i++) {
1420 regs->vrr[i] = vcpu->arch.vrr[i];
1421 regs->ibr[i] = vcpu->arch.ibr[i];
1422 regs->dbr[i] = vcpu->arch.dbr[i];
1423 }
1424 for (i = 0; i < 4; i++)
1425 regs->insvc[i] = vcpu->arch.insvc[i];
1426 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1427 SAVE_REGS(xtp);
1428 SAVE_REGS(metaphysical_rr0);
1429 SAVE_REGS(metaphysical_rr4);
1430 SAVE_REGS(metaphysical_saved_rr0);
1431 SAVE_REGS(metaphysical_saved_rr4);
1432 SAVE_REGS(fp_psr);
1433 SAVE_REGS(saved_gp);
1434
1435 vcpu_put(vcpu);
1436 return 0;
1437 }
1438
1439 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1440 struct kvm_ia64_vcpu_stack *stack)
1441 {
1442 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1443 return 0;
1444 }
1445
1446 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1447 struct kvm_ia64_vcpu_stack *stack)
1448 {
1449 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1450 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1451
1452 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1453 return 0;
1454 }
1455
1456 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1457 {
1458
1459 hrtimer_cancel(&vcpu->arch.hlt_timer);
1460 kfree(vcpu->arch.apic);
1461 }
1462
1463 long kvm_arch_vcpu_ioctl(struct file *filp,
1464 unsigned int ioctl, unsigned long arg)
1465 {
1466 struct kvm_vcpu *vcpu = filp->private_data;
1467 void __user *argp = (void __user *)arg;
1468 struct kvm_ia64_vcpu_stack *stack = NULL;
1469 long r;
1470
1471 switch (ioctl) {
1472 case KVM_IA64_VCPU_GET_STACK: {
1473 struct kvm_ia64_vcpu_stack __user *user_stack;
1474 void __user *first_p = argp;
1475
1476 r = -EFAULT;
1477 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1478 goto out;
1479
1480 if (!access_ok(VERIFY_WRITE, user_stack,
1481 sizeof(struct kvm_ia64_vcpu_stack))) {
1482 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1483 "Illegal user destination address for stack\n");
1484 goto out;
1485 }
1486 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1487 if (!stack) {
1488 r = -ENOMEM;
1489 goto out;
1490 }
1491
1492 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1493 if (r)
1494 goto out;
1495
1496 if (copy_to_user(user_stack, stack,
1497 sizeof(struct kvm_ia64_vcpu_stack))) {
1498 r = -EFAULT;
1499 goto out;
1500 }
1501
1502 break;
1503 }
1504 case KVM_IA64_VCPU_SET_STACK: {
1505 struct kvm_ia64_vcpu_stack __user *user_stack;
1506 void __user *first_p = argp;
1507
1508 r = -EFAULT;
1509 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1510 goto out;
1511
1512 if (!access_ok(VERIFY_READ, user_stack,
1513 sizeof(struct kvm_ia64_vcpu_stack))) {
1514 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1515 "Illegal user address for stack\n");
1516 goto out;
1517 }
1518 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1519 if (!stack) {
1520 r = -ENOMEM;
1521 goto out;
1522 }
1523 if (copy_from_user(stack, user_stack,
1524 sizeof(struct kvm_ia64_vcpu_stack)))
1525 goto out;
1526
1527 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1528 break;
1529 }
1530
1531 default:
1532 r = -EINVAL;
1533 }
1534
1535 out:
1536 kfree(stack);
1537 return r;
1538 }
1539
1540 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1541 {
1542 return VM_FAULT_SIGBUS;
1543 }
1544
1545 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1546 unsigned long npages)
1547 {
1548 return 0;
1549 }
1550
1551 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1552 struct kvm_memory_slot *memslot,
1553 struct kvm_userspace_memory_region *mem,
1554 enum kvm_mr_change change)
1555 {
1556 unsigned long i;
1557 unsigned long pfn;
1558 int npages = memslot->npages;
1559 unsigned long base_gfn = memslot->base_gfn;
1560
1561 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1562 return -ENOMEM;
1563
1564 for (i = 0; i < npages; i++) {
1565 pfn = gfn_to_pfn(kvm, base_gfn + i);
1566 if (!kvm_is_mmio_pfn(pfn)) {
1567 kvm_set_pmt_entry(kvm, base_gfn + i,
1568 pfn << PAGE_SHIFT,
1569 _PAGE_AR_RWX | _PAGE_MA_WB);
1570 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1571 } else {
1572 kvm_set_pmt_entry(kvm, base_gfn + i,
1573 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1574 _PAGE_MA_UC);
1575 memslot->rmap[i] = 0;
1576 }
1577 }
1578
1579 return 0;
1580 }
1581
1582 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1583 {
1584 kvm_flush_remote_tlbs(kvm);
1585 }
1586
1587 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1588 struct kvm_memory_slot *slot)
1589 {
1590 kvm_arch_flush_shadow_all();
1591 }
1592
1593 long kvm_arch_dev_ioctl(struct file *filp,
1594 unsigned int ioctl, unsigned long arg)
1595 {
1596 return -EINVAL;
1597 }
1598
1599 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1600 {
1601 kvm_vcpu_uninit(vcpu);
1602 }
1603
1604 static int vti_cpu_has_kvm_support(void)
1605 {
1606 long avail = 1, status = 1, control = 1;
1607 long ret;
1608
1609 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1610 if (ret)
1611 goto out;
1612
1613 if (!(avail & PAL_PROC_VM_BIT))
1614 goto out;
1615
1616 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1617
1618 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1619 if (ret)
1620 goto out;
1621 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1622
1623 if (!(vp_env_info & VP_OPCODE)) {
1624 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1625 "vm_env_info:0x%lx\n", vp_env_info);
1626 }
1627
1628 return 1;
1629 out:
1630 return 0;
1631 }
1632
1633
1634 /*
1635 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1636 * SN2 RTC, replacing the ITC based default verion.
1637 */
1638 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1639 struct module *module)
1640 {
1641 unsigned long new_ar, new_ar_sn2;
1642 unsigned long module_base;
1643
1644 if (!ia64_platform_is("sn2"))
1645 return;
1646
1647 module_base = (unsigned long)module->module_core;
1648
1649 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1650 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1651
1652 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1653 "as source\n");
1654
1655 /*
1656 * Copy the SN2 version of mov_ar into place. They are both
1657 * the same size, so 6 bundles is sufficient (6 * 0x10).
1658 */
1659 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1660 }
1661
1662 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1663 struct module *module)
1664 {
1665 unsigned long module_base;
1666 unsigned long vmm_size;
1667
1668 unsigned long vmm_offset, func_offset, fdesc_offset;
1669 struct fdesc *p_fdesc;
1670
1671 BUG_ON(!module);
1672
1673 if (!kvm_vmm_base) {
1674 printk("kvm: kvm area hasn't been initialized yet!!\n");
1675 return -EFAULT;
1676 }
1677
1678 /*Calculate new position of relocated vmm module.*/
1679 module_base = (unsigned long)module->module_core;
1680 vmm_size = module->core_size;
1681 if (unlikely(vmm_size > KVM_VMM_SIZE))
1682 return -EFAULT;
1683
1684 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1685 kvm_patch_vmm(vmm_info, module);
1686 kvm_flush_icache(kvm_vmm_base, vmm_size);
1687
1688 /*Recalculate kvm_vmm_info based on new VMM*/
1689 vmm_offset = vmm_info->vmm_ivt - module_base;
1690 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1691 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1692 kvm_vmm_info->vmm_ivt);
1693
1694 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1695 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1696 fdesc_offset);
1697 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1698 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1699 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1700 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1701
1702 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1703 KVM_VMM_BASE+func_offset);
1704
1705 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1706 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1707 fdesc_offset);
1708 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1709 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1710 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1711 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1712
1713 kvm_vmm_gp = p_fdesc->gp;
1714
1715 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1716 kvm_vmm_info->vmm_entry);
1717 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1718 KVM_VMM_BASE + func_offset);
1719
1720 return 0;
1721 }
1722
1723 int kvm_arch_init(void *opaque)
1724 {
1725 int r;
1726 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1727
1728 if (!vti_cpu_has_kvm_support()) {
1729 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1730 r = -EOPNOTSUPP;
1731 goto out;
1732 }
1733
1734 if (kvm_vmm_info) {
1735 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1736 r = -EEXIST;
1737 goto out;
1738 }
1739
1740 r = -ENOMEM;
1741 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1742 if (!kvm_vmm_info)
1743 goto out;
1744
1745 if (kvm_alloc_vmm_area())
1746 goto out_free0;
1747
1748 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1749 if (r)
1750 goto out_free1;
1751
1752 return 0;
1753
1754 out_free1:
1755 kvm_free_vmm_area();
1756 out_free0:
1757 kfree(kvm_vmm_info);
1758 out:
1759 return r;
1760 }
1761
1762 void kvm_arch_exit(void)
1763 {
1764 kvm_free_vmm_area();
1765 kfree(kvm_vmm_info);
1766 kvm_vmm_info = NULL;
1767 }
1768
1769 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1770 struct kvm_memory_slot *memslot)
1771 {
1772 int i;
1773 long base;
1774 unsigned long n;
1775 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1776 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1777
1778 n = kvm_dirty_bitmap_bytes(memslot);
1779 base = memslot->base_gfn / BITS_PER_LONG;
1780
1781 spin_lock(&kvm->arch.dirty_log_lock);
1782 for (i = 0; i < n/sizeof(long); ++i) {
1783 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1784 dirty_bitmap[base + i] = 0;
1785 }
1786 spin_unlock(&kvm->arch.dirty_log_lock);
1787 }
1788
1789 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1790 struct kvm_dirty_log *log)
1791 {
1792 int r;
1793 unsigned long n;
1794 struct kvm_memory_slot *memslot;
1795 int is_dirty = 0;
1796
1797 mutex_lock(&kvm->slots_lock);
1798
1799 r = -EINVAL;
1800 if (log->slot >= KVM_USER_MEM_SLOTS)
1801 goto out;
1802
1803 memslot = id_to_memslot(kvm->memslots, log->slot);
1804 r = -ENOENT;
1805 if (!memslot->dirty_bitmap)
1806 goto out;
1807
1808 kvm_ia64_sync_dirty_log(kvm, memslot);
1809 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1810 if (r)
1811 goto out;
1812
1813 /* If nothing is dirty, don't bother messing with page tables. */
1814 if (is_dirty) {
1815 kvm_flush_remote_tlbs(kvm);
1816 n = kvm_dirty_bitmap_bytes(memslot);
1817 memset(memslot->dirty_bitmap, 0, n);
1818 }
1819 r = 0;
1820 out:
1821 mutex_unlock(&kvm->slots_lock);
1822 return r;
1823 }
1824
1825 int kvm_arch_hardware_setup(void)
1826 {
1827 return 0;
1828 }
1829
1830 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1831 {
1832 return __apic_accept_irq(vcpu, irq->vector);
1833 }
1834
1835 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1836 {
1837 return apic->vcpu->vcpu_id == dest;
1838 }
1839
1840 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1841 {
1842 return 0;
1843 }
1844
1845 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1846 {
1847 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1848 }
1849
1850 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1851 int short_hand, int dest, int dest_mode)
1852 {
1853 struct kvm_lapic *target = vcpu->arch.apic;
1854 return (dest_mode == 0) ?
1855 kvm_apic_match_physical_addr(target, dest) :
1856 kvm_apic_match_logical_addr(target, dest);
1857 }
1858
1859 static int find_highest_bits(int *dat)
1860 {
1861 u32 bits, bitnum;
1862 int i;
1863
1864 /* loop for all 256 bits */
1865 for (i = 7; i >= 0 ; i--) {
1866 bits = dat[i];
1867 if (bits) {
1868 bitnum = fls(bits);
1869 return i * 32 + bitnum - 1;
1870 }
1871 }
1872
1873 return -1;
1874 }
1875
1876 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1877 {
1878 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1879
1880 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1881 return NMI_VECTOR;
1882 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1883 return ExtINT_VECTOR;
1884
1885 return find_highest_bits((int *)&vpd->irr[0]);
1886 }
1887
1888 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1889 {
1890 return vcpu->arch.timer_fired;
1891 }
1892
1893 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1894 {
1895 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1896 (kvm_highest_pending_irq(vcpu) != -1);
1897 }
1898
1899 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1900 {
1901 return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1902 }
1903
1904 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1905 struct kvm_mp_state *mp_state)
1906 {
1907 mp_state->mp_state = vcpu->arch.mp_state;
1908 return 0;
1909 }
1910
1911 static int vcpu_reset(struct kvm_vcpu *vcpu)
1912 {
1913 int r;
1914 long psr;
1915 local_irq_save(psr);
1916 r = kvm_insert_vmm_mapping(vcpu);
1917 local_irq_restore(psr);
1918 if (r)
1919 goto fail;
1920
1921 vcpu->arch.launched = 0;
1922 kvm_arch_vcpu_uninit(vcpu);
1923 r = kvm_arch_vcpu_init(vcpu);
1924 if (r)
1925 goto fail;
1926
1927 kvm_purge_vmm_mapping(vcpu);
1928 r = 0;
1929 fail:
1930 return r;
1931 }
1932
1933 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1934 struct kvm_mp_state *mp_state)
1935 {
1936 int r = 0;
1937
1938 vcpu->arch.mp_state = mp_state->mp_state;
1939 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1940 r = vcpu_reset(vcpu);
1941 return r;
1942 }