]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/ia64/mm/init.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Initialize MMU support.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-noncoherent.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 extern void ia64_tlb_init (void);
41
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50
51 struct page *zero_page_memmap_ptr; /* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57 unsigned long addr;
58 struct page *page;
59
60 page = pte_page(pte);
61 addr = (unsigned long) page_address(page);
62
63 if (test_bit(PG_arch_1, &page->flags))
64 return; /* i-cache is already coherent with d-cache */
65
66 flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
68 }
69
70 #ifdef CONFIG_SWIOTLB
71 /*
72 * Since DMA is i-cache coherent, any (complete) pages that were written via
73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74 * flush them when they get mapped into an executable vm-area.
75 */
76 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
77 size_t size, enum dma_data_direction dir)
78 {
79 unsigned long pfn = PHYS_PFN(paddr);
80
81 do {
82 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83 } while (++pfn <= PHYS_PFN(paddr + size - 1));
84 }
85 #endif
86
87 inline void
88 ia64_set_rbs_bot (void)
89 {
90 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
91
92 if (stack_size > MAX_USER_STACK_SIZE)
93 stack_size = MAX_USER_STACK_SIZE;
94 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
95 }
96
97 /*
98 * This performs some platform-dependent address space initialization.
99 * On IA-64, we want to setup the VM area for the register backing
100 * store (which grows upwards) and install the gateway page which is
101 * used for signal trampolines, etc.
102 */
103 void
104 ia64_init_addr_space (void)
105 {
106 struct vm_area_struct *vma;
107
108 ia64_set_rbs_bot();
109
110 /*
111 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
112 * the problem. When the process attempts to write to the register backing store
113 * for the first time, it will get a SEGFAULT in this case.
114 */
115 vma = vm_area_alloc(current->mm);
116 if (vma) {
117 vma_set_anonymous(vma);
118 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
119 vma->vm_end = vma->vm_start + PAGE_SIZE;
120 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
121 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
122 down_write(&current->mm->mmap_sem);
123 if (insert_vm_struct(current->mm, vma)) {
124 up_write(&current->mm->mmap_sem);
125 vm_area_free(vma);
126 return;
127 }
128 up_write(&current->mm->mmap_sem);
129 }
130
131 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
132 if (!(current->personality & MMAP_PAGE_ZERO)) {
133 vma = vm_area_alloc(current->mm);
134 if (vma) {
135 vma_set_anonymous(vma);
136 vma->vm_end = PAGE_SIZE;
137 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
138 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
139 VM_DONTEXPAND | VM_DONTDUMP;
140 down_write(&current->mm->mmap_sem);
141 if (insert_vm_struct(current->mm, vma)) {
142 up_write(&current->mm->mmap_sem);
143 vm_area_free(vma);
144 return;
145 }
146 up_write(&current->mm->mmap_sem);
147 }
148 }
149 }
150
151 void
152 free_initmem (void)
153 {
154 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
155 -1, "unused kernel");
156 }
157
158 void __init
159 free_initrd_mem (unsigned long start, unsigned long end)
160 {
161 /*
162 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
163 * Thus EFI and the kernel may have different page sizes. It is
164 * therefore possible to have the initrd share the same page as
165 * the end of the kernel (given current setup).
166 *
167 * To avoid freeing/using the wrong page (kernel sized) we:
168 * - align up the beginning of initrd
169 * - align down the end of initrd
170 *
171 * | |
172 * |=============| a000
173 * | |
174 * | |
175 * | | 9000
176 * |/////////////|
177 * |/////////////|
178 * |=============| 8000
179 * |///INITRD////|
180 * |/////////////|
181 * |/////////////| 7000
182 * | |
183 * |KKKKKKKKKKKKK|
184 * |=============| 6000
185 * |KKKKKKKKKKKKK|
186 * |KKKKKKKKKKKKK|
187 * K=kernel using 8KB pages
188 *
189 * In this example, we must free page 8000 ONLY. So we must align up
190 * initrd_start and keep initrd_end as is.
191 */
192 start = PAGE_ALIGN(start);
193 end = end & PAGE_MASK;
194
195 if (start < end)
196 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
197
198 for (; start < end; start += PAGE_SIZE) {
199 if (!virt_addr_valid(start))
200 continue;
201 free_reserved_page(virt_to_page(start));
202 }
203 }
204
205 /*
206 * This installs a clean page in the kernel's page table.
207 */
208 static struct page * __init
209 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
210 {
211 pgd_t *pgd;
212 pud_t *pud;
213 pmd_t *pmd;
214 pte_t *pte;
215
216 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
217
218 {
219 pud = pud_alloc(&init_mm, pgd, address);
220 if (!pud)
221 goto out;
222 pmd = pmd_alloc(&init_mm, pud, address);
223 if (!pmd)
224 goto out;
225 pte = pte_alloc_kernel(pmd, address);
226 if (!pte)
227 goto out;
228 if (!pte_none(*pte))
229 goto out;
230 set_pte(pte, mk_pte(page, pgprot));
231 }
232 out:
233 /* no need for flush_tlb */
234 return page;
235 }
236
237 static void __init
238 setup_gate (void)
239 {
240 struct page *page;
241
242 /*
243 * Map the gate page twice: once read-only to export the ELF
244 * headers etc. and once execute-only page to enable
245 * privilege-promotion via "epc":
246 */
247 page = virt_to_page(ia64_imva(__start_gate_section));
248 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
249 #ifdef HAVE_BUGGY_SEGREL
250 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
251 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
252 #else
253 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
254 /* Fill in the holes (if any) with read-only zero pages: */
255 {
256 unsigned long addr;
257
258 for (addr = GATE_ADDR + PAGE_SIZE;
259 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
260 addr += PAGE_SIZE)
261 {
262 put_kernel_page(ZERO_PAGE(0), addr,
263 PAGE_READONLY);
264 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
265 PAGE_READONLY);
266 }
267 }
268 #endif
269 ia64_patch_gate();
270 }
271
272 static struct vm_area_struct gate_vma;
273
274 static int __init gate_vma_init(void)
275 {
276 vma_init(&gate_vma, NULL);
277 gate_vma.vm_start = FIXADDR_USER_START;
278 gate_vma.vm_end = FIXADDR_USER_END;
279 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
280 gate_vma.vm_page_prot = __P101;
281
282 return 0;
283 }
284 __initcall(gate_vma_init);
285
286 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
287 {
288 return &gate_vma;
289 }
290
291 int in_gate_area_no_mm(unsigned long addr)
292 {
293 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
294 return 1;
295 return 0;
296 }
297
298 int in_gate_area(struct mm_struct *mm, unsigned long addr)
299 {
300 return in_gate_area_no_mm(addr);
301 }
302
303 void ia64_mmu_init(void *my_cpu_data)
304 {
305 unsigned long pta, impl_va_bits;
306 extern void tlb_init(void);
307
308 #ifdef CONFIG_DISABLE_VHPT
309 # define VHPT_ENABLE_BIT 0
310 #else
311 # define VHPT_ENABLE_BIT 1
312 #endif
313
314 /*
315 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
316 * address space. The IA-64 architecture guarantees that at least 50 bits of
317 * virtual address space are implemented but if we pick a large enough page size
318 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
319 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
320 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
321 * problem in practice. Alternatively, we could truncate the top of the mapped
322 * address space to not permit mappings that would overlap with the VMLPT.
323 * --davidm 00/12/06
324 */
325 # define pte_bits 3
326 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
327 /*
328 * The virtual page table has to cover the entire implemented address space within
329 * a region even though not all of this space may be mappable. The reason for
330 * this is that the Access bit and Dirty bit fault handlers perform
331 * non-speculative accesses to the virtual page table, so the address range of the
332 * virtual page table itself needs to be covered by virtual page table.
333 */
334 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
335 # define POW2(n) (1ULL << (n))
336
337 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
338
339 if (impl_va_bits < 51 || impl_va_bits > 61)
340 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
341 /*
342 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
343 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
344 * the test makes sure that our mapped space doesn't overlap the
345 * unimplemented hole in the middle of the region.
346 */
347 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
348 (mapped_space_bits > impl_va_bits - 1))
349 panic("Cannot build a big enough virtual-linear page table"
350 " to cover mapped address space.\n"
351 " Try using a smaller page size.\n");
352
353
354 /* place the VMLPT at the end of each page-table mapped region: */
355 pta = POW2(61) - POW2(vmlpt_bits);
356
357 /*
358 * Set the (virtually mapped linear) page table address. Bit
359 * 8 selects between the short and long format, bits 2-7 the
360 * size of the table, and bit 0 whether the VHPT walker is
361 * enabled.
362 */
363 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
364
365 ia64_tlb_init();
366
367 #ifdef CONFIG_HUGETLB_PAGE
368 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
369 ia64_srlz_d();
370 #endif
371 }
372
373 #ifdef CONFIG_VIRTUAL_MEM_MAP
374 int vmemmap_find_next_valid_pfn(int node, int i)
375 {
376 unsigned long end_address, hole_next_pfn;
377 unsigned long stop_address;
378 pg_data_t *pgdat = NODE_DATA(node);
379
380 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
381 end_address = PAGE_ALIGN(end_address);
382 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
383
384 do {
385 pgd_t *pgd;
386 pud_t *pud;
387 pmd_t *pmd;
388 pte_t *pte;
389
390 pgd = pgd_offset_k(end_address);
391 if (pgd_none(*pgd)) {
392 end_address += PGDIR_SIZE;
393 continue;
394 }
395
396 pud = pud_offset(pgd, end_address);
397 if (pud_none(*pud)) {
398 end_address += PUD_SIZE;
399 continue;
400 }
401
402 pmd = pmd_offset(pud, end_address);
403 if (pmd_none(*pmd)) {
404 end_address += PMD_SIZE;
405 continue;
406 }
407
408 pte = pte_offset_kernel(pmd, end_address);
409 retry_pte:
410 if (pte_none(*pte)) {
411 end_address += PAGE_SIZE;
412 pte++;
413 if ((end_address < stop_address) &&
414 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
415 goto retry_pte;
416 continue;
417 }
418 /* Found next valid vmem_map page */
419 break;
420 } while (end_address < stop_address);
421
422 end_address = min(end_address, stop_address);
423 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
424 hole_next_pfn = end_address / sizeof(struct page);
425 return hole_next_pfn - pgdat->node_start_pfn;
426 }
427
428 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
429 {
430 unsigned long address, start_page, end_page;
431 struct page *map_start, *map_end;
432 int node;
433 pgd_t *pgd;
434 pud_t *pud;
435 pmd_t *pmd;
436 pte_t *pte;
437
438 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
439 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
440
441 start_page = (unsigned long) map_start & PAGE_MASK;
442 end_page = PAGE_ALIGN((unsigned long) map_end);
443 node = paddr_to_nid(__pa(start));
444
445 for (address = start_page; address < end_page; address += PAGE_SIZE) {
446 pgd = pgd_offset_k(address);
447 if (pgd_none(*pgd))
448 pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
449 pud = pud_offset(pgd, address);
450
451 if (pud_none(*pud))
452 pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
453 pmd = pmd_offset(pud, address);
454
455 if (pmd_none(*pmd))
456 pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
457 pte = pte_offset_kernel(pmd, address);
458
459 if (pte_none(*pte))
460 set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
461 PAGE_KERNEL));
462 }
463 return 0;
464 }
465
466 struct memmap_init_callback_data {
467 struct page *start;
468 struct page *end;
469 int nid;
470 unsigned long zone;
471 };
472
473 static int __meminit
474 virtual_memmap_init(u64 start, u64 end, void *arg)
475 {
476 struct memmap_init_callback_data *args;
477 struct page *map_start, *map_end;
478
479 args = (struct memmap_init_callback_data *) arg;
480 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
481 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
482
483 if (map_start < args->start)
484 map_start = args->start;
485 if (map_end > args->end)
486 map_end = args->end;
487
488 /*
489 * We have to initialize "out of bounds" struct page elements that fit completely
490 * on the same pages that were allocated for the "in bounds" elements because they
491 * may be referenced later (and found to be "reserved").
492 */
493 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
494 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
495 / sizeof(struct page));
496
497 if (map_start < map_end)
498 memmap_init_zone((unsigned long)(map_end - map_start),
499 args->nid, args->zone, page_to_pfn(map_start),
500 MEMMAP_EARLY, NULL);
501 return 0;
502 }
503
504 void __meminit
505 memmap_init (unsigned long size, int nid, unsigned long zone,
506 unsigned long start_pfn)
507 {
508 if (!vmem_map) {
509 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
510 NULL);
511 } else {
512 struct page *start;
513 struct memmap_init_callback_data args;
514
515 start = pfn_to_page(start_pfn);
516 args.start = start;
517 args.end = start + size;
518 args.nid = nid;
519 args.zone = zone;
520
521 efi_memmap_walk(virtual_memmap_init, &args);
522 }
523 }
524
525 int
526 ia64_pfn_valid (unsigned long pfn)
527 {
528 char byte;
529 struct page *pg = pfn_to_page(pfn);
530
531 return (__get_user(byte, (char __user *) pg) == 0)
532 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
533 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
534 }
535 EXPORT_SYMBOL(ia64_pfn_valid);
536
537 int __init find_largest_hole(u64 start, u64 end, void *arg)
538 {
539 u64 *max_gap = arg;
540
541 static u64 last_end = PAGE_OFFSET;
542
543 /* NOTE: this algorithm assumes efi memmap table is ordered */
544
545 if (*max_gap < (start - last_end))
546 *max_gap = start - last_end;
547 last_end = end;
548 return 0;
549 }
550
551 #endif /* CONFIG_VIRTUAL_MEM_MAP */
552
553 int __init register_active_ranges(u64 start, u64 len, int nid)
554 {
555 u64 end = start + len;
556
557 #ifdef CONFIG_KEXEC
558 if (start > crashk_res.start && start < crashk_res.end)
559 start = crashk_res.end;
560 if (end > crashk_res.start && end < crashk_res.end)
561 end = crashk_res.start;
562 #endif
563
564 if (start < end)
565 memblock_add_node(__pa(start), end - start, nid);
566 return 0;
567 }
568
569 int
570 find_max_min_low_pfn (u64 start, u64 end, void *arg)
571 {
572 unsigned long pfn_start, pfn_end;
573 #ifdef CONFIG_FLATMEM
574 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
575 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
576 #else
577 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
578 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
579 #endif
580 min_low_pfn = min(min_low_pfn, pfn_start);
581 max_low_pfn = max(max_low_pfn, pfn_end);
582 return 0;
583 }
584
585 /*
586 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
587 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
588 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
589 * useful for performance testing, but conceivably could also come in handy for debugging
590 * purposes.
591 */
592
593 static int nolwsys __initdata;
594
595 static int __init
596 nolwsys_setup (char *s)
597 {
598 nolwsys = 1;
599 return 1;
600 }
601
602 __setup("nolwsys", nolwsys_setup);
603
604 void __init
605 mem_init (void)
606 {
607 int i;
608
609 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
610 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
611 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
612
613 #ifdef CONFIG_PCI
614 /*
615 * This needs to be called _after_ the command line has been parsed but _before_
616 * any drivers that may need the PCI DMA interface are initialized or bootmem has
617 * been freed.
618 */
619 platform_dma_init();
620 #endif
621
622 #ifdef CONFIG_FLATMEM
623 BUG_ON(!mem_map);
624 #endif
625
626 set_max_mapnr(max_low_pfn);
627 high_memory = __va(max_low_pfn * PAGE_SIZE);
628 memblock_free_all();
629 mem_init_print_info(NULL);
630
631 /*
632 * For fsyscall entrpoints with no light-weight handler, use the ordinary
633 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
634 * code can tell them apart.
635 */
636 for (i = 0; i < NR_syscalls; ++i) {
637 extern unsigned long fsyscall_table[NR_syscalls];
638 extern unsigned long sys_call_table[NR_syscalls];
639
640 if (!fsyscall_table[i] || nolwsys)
641 fsyscall_table[i] = sys_call_table[i] | 1;
642 }
643 setup_gate();
644 }
645
646 #ifdef CONFIG_MEMORY_HOTPLUG
647 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
648 bool want_memblock)
649 {
650 unsigned long start_pfn = start >> PAGE_SHIFT;
651 unsigned long nr_pages = size >> PAGE_SHIFT;
652 int ret;
653
654 ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
655 if (ret)
656 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
657 __func__, ret);
658
659 return ret;
660 }
661
662 #ifdef CONFIG_MEMORY_HOTREMOVE
663 int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap)
664 {
665 unsigned long start_pfn = start >> PAGE_SHIFT;
666 unsigned long nr_pages = size >> PAGE_SHIFT;
667 struct zone *zone;
668 int ret;
669
670 zone = page_zone(pfn_to_page(start_pfn));
671 ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
672 if (ret)
673 pr_warn("%s: Problem encountered in __remove_pages() as"
674 " ret=%d\n", __func__, ret);
675
676 return ret;
677 }
678 #endif
679 #endif