]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/ia64/mm/init.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
[mirror_ubuntu-jammy-kernel.git] / arch / ia64 / mm / init.c
1 /*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/config.h>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/bootmem.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
42 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44
45 extern void ia64_tlb_init (void);
46
47 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48
49 #ifdef CONFIG_VIRTUAL_MEM_MAP
50 unsigned long vmalloc_end = VMALLOC_END_INIT;
51 EXPORT_SYMBOL(vmalloc_end);
52 struct page *vmem_map;
53 EXPORT_SYMBOL(vmem_map);
54 #endif
55
56 struct page *zero_page_memmap_ptr; /* map entry for zero page */
57 EXPORT_SYMBOL(zero_page_memmap_ptr);
58
59 #define MIN_PGT_PAGES 25UL
60 #define MAX_PGT_FREES_PER_PASS 16L
61 #define PGT_FRACTION_OF_NODE_MEM 16
62
63 static inline long
64 max_pgt_pages(void)
65 {
66 u64 node_free_pages, max_pgt_pages;
67
68 #ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70 #else
71 node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72 #endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
76 }
77
78 static inline long
79 min_pages_to_free(void)
80 {
81 long pages_to_free;
82
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
86 }
87
88 void
89 check_pgt_cache(void)
90 {
91 long pages_to_free;
92
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
95
96 preempt_disable();
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
100 }
101 preempt_enable();
102 preempt_disable();
103 }
104 preempt_enable();
105 }
106
107 void
108 lazy_mmu_prot_update (pte_t pte)
109 {
110 unsigned long addr;
111 struct page *page;
112 unsigned long order;
113
114 if (!pte_exec(pte))
115 return; /* not an executable page... */
116
117 page = pte_page(pte);
118 addr = (unsigned long) page_address(page);
119
120 if (test_bit(PG_arch_1, &page->flags))
121 return; /* i-cache is already coherent with d-cache */
122
123 if (PageCompound(page)) {
124 order = (unsigned long) (page[1].lru.prev);
125 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
126 }
127 else
128 flush_icache_range(addr, addr + PAGE_SIZE);
129 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
130 }
131
132 inline void
133 ia64_set_rbs_bot (void)
134 {
135 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
136
137 if (stack_size > MAX_USER_STACK_SIZE)
138 stack_size = MAX_USER_STACK_SIZE;
139 current->thread.rbs_bot = STACK_TOP - stack_size;
140 }
141
142 /*
143 * This performs some platform-dependent address space initialization.
144 * On IA-64, we want to setup the VM area for the register backing
145 * store (which grows upwards) and install the gateway page which is
146 * used for signal trampolines, etc.
147 */
148 void
149 ia64_init_addr_space (void)
150 {
151 struct vm_area_struct *vma;
152
153 ia64_set_rbs_bot();
154
155 /*
156 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
157 * the problem. When the process attempts to write to the register backing store
158 * for the first time, it will get a SEGFAULT in this case.
159 */
160 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
161 if (vma) {
162 memset(vma, 0, sizeof(*vma));
163 vma->vm_mm = current->mm;
164 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
165 vma->vm_end = vma->vm_start + PAGE_SIZE;
166 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
167 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
168 down_write(&current->mm->mmap_sem);
169 if (insert_vm_struct(current->mm, vma)) {
170 up_write(&current->mm->mmap_sem);
171 kmem_cache_free(vm_area_cachep, vma);
172 return;
173 }
174 up_write(&current->mm->mmap_sem);
175 }
176
177 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
178 if (!(current->personality & MMAP_PAGE_ZERO)) {
179 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
180 if (vma) {
181 memset(vma, 0, sizeof(*vma));
182 vma->vm_mm = current->mm;
183 vma->vm_end = PAGE_SIZE;
184 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
185 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
186 down_write(&current->mm->mmap_sem);
187 if (insert_vm_struct(current->mm, vma)) {
188 up_write(&current->mm->mmap_sem);
189 kmem_cache_free(vm_area_cachep, vma);
190 return;
191 }
192 up_write(&current->mm->mmap_sem);
193 }
194 }
195 }
196
197 void
198 free_initmem (void)
199 {
200 unsigned long addr, eaddr;
201
202 addr = (unsigned long) ia64_imva(__init_begin);
203 eaddr = (unsigned long) ia64_imva(__init_end);
204 while (addr < eaddr) {
205 ClearPageReserved(virt_to_page(addr));
206 init_page_count(virt_to_page(addr));
207 free_page(addr);
208 ++totalram_pages;
209 addr += PAGE_SIZE;
210 }
211 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
212 (__init_end - __init_begin) >> 10);
213 }
214
215 void __init
216 free_initrd_mem (unsigned long start, unsigned long end)
217 {
218 struct page *page;
219 /*
220 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
221 * Thus EFI and the kernel may have different page sizes. It is
222 * therefore possible to have the initrd share the same page as
223 * the end of the kernel (given current setup).
224 *
225 * To avoid freeing/using the wrong page (kernel sized) we:
226 * - align up the beginning of initrd
227 * - align down the end of initrd
228 *
229 * | |
230 * |=============| a000
231 * | |
232 * | |
233 * | | 9000
234 * |/////////////|
235 * |/////////////|
236 * |=============| 8000
237 * |///INITRD////|
238 * |/////////////|
239 * |/////////////| 7000
240 * | |
241 * |KKKKKKKKKKKKK|
242 * |=============| 6000
243 * |KKKKKKKKKKKKK|
244 * |KKKKKKKKKKKKK|
245 * K=kernel using 8KB pages
246 *
247 * In this example, we must free page 8000 ONLY. So we must align up
248 * initrd_start and keep initrd_end as is.
249 */
250 start = PAGE_ALIGN(start);
251 end = end & PAGE_MASK;
252
253 if (start < end)
254 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
255
256 for (; start < end; start += PAGE_SIZE) {
257 if (!virt_addr_valid(start))
258 continue;
259 page = virt_to_page(start);
260 ClearPageReserved(page);
261 init_page_count(page);
262 free_page(start);
263 ++totalram_pages;
264 }
265 }
266
267 /*
268 * This installs a clean page in the kernel's page table.
269 */
270 static struct page * __init
271 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
272 {
273 pgd_t *pgd;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *pte;
277
278 if (!PageReserved(page))
279 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
280 page_address(page));
281
282 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
283
284 {
285 pud = pud_alloc(&init_mm, pgd, address);
286 if (!pud)
287 goto out;
288 pmd = pmd_alloc(&init_mm, pud, address);
289 if (!pmd)
290 goto out;
291 pte = pte_alloc_kernel(pmd, address);
292 if (!pte)
293 goto out;
294 if (!pte_none(*pte))
295 goto out;
296 set_pte(pte, mk_pte(page, pgprot));
297 }
298 out:
299 /* no need for flush_tlb */
300 return page;
301 }
302
303 static void __init
304 setup_gate (void)
305 {
306 struct page *page;
307
308 /*
309 * Map the gate page twice: once read-only to export the ELF
310 * headers etc. and once execute-only page to enable
311 * privilege-promotion via "epc":
312 */
313 page = virt_to_page(ia64_imva(__start_gate_section));
314 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
315 #ifdef HAVE_BUGGY_SEGREL
316 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
317 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
318 #else
319 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
320 /* Fill in the holes (if any) with read-only zero pages: */
321 {
322 unsigned long addr;
323
324 for (addr = GATE_ADDR + PAGE_SIZE;
325 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
326 addr += PAGE_SIZE)
327 {
328 put_kernel_page(ZERO_PAGE(0), addr,
329 PAGE_READONLY);
330 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
331 PAGE_READONLY);
332 }
333 }
334 #endif
335 ia64_patch_gate();
336 }
337
338 void __devinit
339 ia64_mmu_init (void *my_cpu_data)
340 {
341 unsigned long psr, pta, impl_va_bits;
342 extern void __devinit tlb_init (void);
343
344 #ifdef CONFIG_DISABLE_VHPT
345 # define VHPT_ENABLE_BIT 0
346 #else
347 # define VHPT_ENABLE_BIT 1
348 #endif
349
350 /* Pin mapping for percpu area into TLB */
351 psr = ia64_clear_ic();
352 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
353 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
354 PERCPU_PAGE_SHIFT);
355
356 ia64_set_psr(psr);
357 ia64_srlz_i();
358
359 /*
360 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
361 * address space. The IA-64 architecture guarantees that at least 50 bits of
362 * virtual address space are implemented but if we pick a large enough page size
363 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
364 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
365 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
366 * problem in practice. Alternatively, we could truncate the top of the mapped
367 * address space to not permit mappings that would overlap with the VMLPT.
368 * --davidm 00/12/06
369 */
370 # define pte_bits 3
371 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
372 /*
373 * The virtual page table has to cover the entire implemented address space within
374 * a region even though not all of this space may be mappable. The reason for
375 * this is that the Access bit and Dirty bit fault handlers perform
376 * non-speculative accesses to the virtual page table, so the address range of the
377 * virtual page table itself needs to be covered by virtual page table.
378 */
379 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
380 # define POW2(n) (1ULL << (n))
381
382 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
383
384 if (impl_va_bits < 51 || impl_va_bits > 61)
385 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
386 /*
387 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
388 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
389 * the test makes sure that our mapped space doesn't overlap the
390 * unimplemented hole in the middle of the region.
391 */
392 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
393 (mapped_space_bits > impl_va_bits - 1))
394 panic("Cannot build a big enough virtual-linear page table"
395 " to cover mapped address space.\n"
396 " Try using a smaller page size.\n");
397
398
399 /* place the VMLPT at the end of each page-table mapped region: */
400 pta = POW2(61) - POW2(vmlpt_bits);
401
402 /*
403 * Set the (virtually mapped linear) page table address. Bit
404 * 8 selects between the short and long format, bits 2-7 the
405 * size of the table, and bit 0 whether the VHPT walker is
406 * enabled.
407 */
408 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
409
410 ia64_tlb_init();
411
412 #ifdef CONFIG_HUGETLB_PAGE
413 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
414 ia64_srlz_d();
415 #endif
416 }
417
418 #ifdef CONFIG_VIRTUAL_MEM_MAP
419
420 int __init
421 create_mem_map_page_table (u64 start, u64 end, void *arg)
422 {
423 unsigned long address, start_page, end_page;
424 struct page *map_start, *map_end;
425 int node;
426 pgd_t *pgd;
427 pud_t *pud;
428 pmd_t *pmd;
429 pte_t *pte;
430
431 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
432 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
433
434 start_page = (unsigned long) map_start & PAGE_MASK;
435 end_page = PAGE_ALIGN((unsigned long) map_end);
436 node = paddr_to_nid(__pa(start));
437
438 for (address = start_page; address < end_page; address += PAGE_SIZE) {
439 pgd = pgd_offset_k(address);
440 if (pgd_none(*pgd))
441 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
442 pud = pud_offset(pgd, address);
443
444 if (pud_none(*pud))
445 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
446 pmd = pmd_offset(pud, address);
447
448 if (pmd_none(*pmd))
449 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
450 pte = pte_offset_kernel(pmd, address);
451
452 if (pte_none(*pte))
453 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
454 PAGE_KERNEL));
455 }
456 return 0;
457 }
458
459 struct memmap_init_callback_data {
460 struct page *start;
461 struct page *end;
462 int nid;
463 unsigned long zone;
464 };
465
466 static int
467 virtual_memmap_init (u64 start, u64 end, void *arg)
468 {
469 struct memmap_init_callback_data *args;
470 struct page *map_start, *map_end;
471
472 args = (struct memmap_init_callback_data *) arg;
473 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
474 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
475
476 if (map_start < args->start)
477 map_start = args->start;
478 if (map_end > args->end)
479 map_end = args->end;
480
481 /*
482 * We have to initialize "out of bounds" struct page elements that fit completely
483 * on the same pages that were allocated for the "in bounds" elements because they
484 * may be referenced later (and found to be "reserved").
485 */
486 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
487 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
488 / sizeof(struct page));
489
490 if (map_start < map_end)
491 memmap_init_zone((unsigned long)(map_end - map_start),
492 args->nid, args->zone, page_to_pfn(map_start));
493 return 0;
494 }
495
496 void
497 memmap_init (unsigned long size, int nid, unsigned long zone,
498 unsigned long start_pfn)
499 {
500 if (!vmem_map)
501 memmap_init_zone(size, nid, zone, start_pfn);
502 else {
503 struct page *start;
504 struct memmap_init_callback_data args;
505
506 start = pfn_to_page(start_pfn);
507 args.start = start;
508 args.end = start + size;
509 args.nid = nid;
510 args.zone = zone;
511
512 efi_memmap_walk(virtual_memmap_init, &args);
513 }
514 }
515
516 int
517 ia64_pfn_valid (unsigned long pfn)
518 {
519 char byte;
520 struct page *pg = pfn_to_page(pfn);
521
522 return (__get_user(byte, (char __user *) pg) == 0)
523 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
524 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
525 }
526 EXPORT_SYMBOL(ia64_pfn_valid);
527
528 int __init
529 find_largest_hole (u64 start, u64 end, void *arg)
530 {
531 u64 *max_gap = arg;
532
533 static u64 last_end = PAGE_OFFSET;
534
535 /* NOTE: this algorithm assumes efi memmap table is ordered */
536
537 if (*max_gap < (start - last_end))
538 *max_gap = start - last_end;
539 last_end = end;
540 return 0;
541 }
542 #endif /* CONFIG_VIRTUAL_MEM_MAP */
543
544 static int __init
545 count_reserved_pages (u64 start, u64 end, void *arg)
546 {
547 unsigned long num_reserved = 0;
548 unsigned long *count = arg;
549
550 for (; start < end; start += PAGE_SIZE)
551 if (PageReserved(virt_to_page(start)))
552 ++num_reserved;
553 *count += num_reserved;
554 return 0;
555 }
556
557 /*
558 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
559 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
560 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
561 * useful for performance testing, but conceivably could also come in handy for debugging
562 * purposes.
563 */
564
565 static int nolwsys __initdata;
566
567 static int __init
568 nolwsys_setup (char *s)
569 {
570 nolwsys = 1;
571 return 1;
572 }
573
574 __setup("nolwsys", nolwsys_setup);
575
576 void __init
577 mem_init (void)
578 {
579 long reserved_pages, codesize, datasize, initsize;
580 pg_data_t *pgdat;
581 int i;
582 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
583
584 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
585 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
586 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
587
588 #ifdef CONFIG_PCI
589 /*
590 * This needs to be called _after_ the command line has been parsed but _before_
591 * any drivers that may need the PCI DMA interface are initialized or bootmem has
592 * been freed.
593 */
594 platform_dma_init();
595 #endif
596
597 #ifdef CONFIG_FLATMEM
598 if (!mem_map)
599 BUG();
600 max_mapnr = max_low_pfn;
601 #endif
602
603 high_memory = __va(max_low_pfn * PAGE_SIZE);
604
605 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
606 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
607 kclist_add(&kcore_kernel, _stext, _end - _stext);
608
609 for_each_online_pgdat(pgdat)
610 if (pgdat->bdata->node_bootmem_map)
611 totalram_pages += free_all_bootmem_node(pgdat);
612
613 reserved_pages = 0;
614 efi_memmap_walk(count_reserved_pages, &reserved_pages);
615
616 codesize = (unsigned long) _etext - (unsigned long) _stext;
617 datasize = (unsigned long) _edata - (unsigned long) _etext;
618 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
619
620 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
621 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
622 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
623 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
624
625
626 /*
627 * For fsyscall entrpoints with no light-weight handler, use the ordinary
628 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
629 * code can tell them apart.
630 */
631 for (i = 0; i < NR_syscalls; ++i) {
632 extern unsigned long fsyscall_table[NR_syscalls];
633 extern unsigned long sys_call_table[NR_syscalls];
634
635 if (!fsyscall_table[i] || nolwsys)
636 fsyscall_table[i] = sys_call_table[i] | 1;
637 }
638 setup_gate();
639
640 #ifdef CONFIG_IA32_SUPPORT
641 ia32_mem_init();
642 #endif
643 }
644
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 void online_page(struct page *page)
647 {
648 ClearPageReserved(page);
649 init_page_count(page);
650 __free_page(page);
651 totalram_pages++;
652 num_physpages++;
653 }
654
655 int arch_add_memory(int nid, u64 start, u64 size)
656 {
657 pg_data_t *pgdat;
658 struct zone *zone;
659 unsigned long start_pfn = start >> PAGE_SHIFT;
660 unsigned long nr_pages = size >> PAGE_SHIFT;
661 int ret;
662
663 pgdat = NODE_DATA(nid);
664
665 zone = pgdat->node_zones + ZONE_NORMAL;
666 ret = __add_pages(zone, start_pfn, nr_pages);
667
668 if (ret)
669 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
670 __FUNCTION__, ret);
671
672 return ret;
673 }
674
675 int remove_memory(u64 start, u64 size)
676 {
677 return -EINVAL;
678 }
679 EXPORT_SYMBOL_GPL(remove_memory);
680 #endif