]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ia64/pci/pci.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-zesty-kernel.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/pci-acpi.h>
19 #include <linux/init.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25
26 #include <asm/machvec.h>
27 #include <asm/page.h>
28 #include <asm/io.h>
29 #include <asm/sal.h>
30 #include <asm/smp.h>
31 #include <asm/irq.h>
32 #include <asm/hw_irq.h>
33
34 /*
35 * Low-level SAL-based PCI configuration access functions. Note that SAL
36 * calls are already serialized (via sal_lock), so we don't need another
37 * synchronization mechanism here.
38 */
39
40 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
41 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42
43 /* SAL 3.2 adds support for extended config space. */
44
45 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
46 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47
48 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
49 int reg, int len, u32 *value)
50 {
51 u64 addr, data = 0;
52 int mode, result;
53
54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 return -EINVAL;
56
57 if ((seg | reg) <= 255) {
58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 mode = 0;
60 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 mode = 1;
63 } else {
64 return -EINVAL;
65 }
66
67 result = ia64_sal_pci_config_read(addr, mode, len, &data);
68 if (result != 0)
69 return -EINVAL;
70
71 *value = (u32) data;
72 return 0;
73 }
74
75 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
76 int reg, int len, u32 value)
77 {
78 u64 addr;
79 int mode, result;
80
81 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
82 return -EINVAL;
83
84 if ((seg | reg) <= 255) {
85 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
86 mode = 0;
87 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
88 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
89 mode = 1;
90 } else {
91 return -EINVAL;
92 }
93 result = ia64_sal_pci_config_write(addr, mode, len, value);
94 if (result != 0)
95 return -EINVAL;
96 return 0;
97 }
98
99 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
100 int size, u32 *value)
101 {
102 return raw_pci_read(pci_domain_nr(bus), bus->number,
103 devfn, where, size, value);
104 }
105
106 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
107 int size, u32 value)
108 {
109 return raw_pci_write(pci_domain_nr(bus), bus->number,
110 devfn, where, size, value);
111 }
112
113 struct pci_ops pci_root_ops = {
114 .read = pci_read,
115 .write = pci_write,
116 };
117
118 /* Called by ACPI when it finds a new root bus. */
119
120 static struct pci_controller *alloc_pci_controller(int seg)
121 {
122 struct pci_controller *controller;
123
124 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125 if (!controller)
126 return NULL;
127
128 controller->segment = seg;
129 return controller;
130 }
131
132 struct pci_root_info {
133 struct acpi_device *bridge;
134 struct pci_controller *controller;
135 struct list_head resources;
136 struct resource *res;
137 resource_size_t *res_offset;
138 unsigned int res_num;
139 struct list_head io_resources;
140 char *name;
141 };
142
143 static unsigned int
144 new_space (u64 phys_base, int sparse)
145 {
146 u64 mmio_base;
147 int i;
148
149 if (phys_base == 0)
150 return 0; /* legacy I/O port space */
151
152 mmio_base = (u64) ioremap(phys_base, 0);
153 for (i = 0; i < num_io_spaces; i++)
154 if (io_space[i].mmio_base == mmio_base &&
155 io_space[i].sparse == sparse)
156 return i;
157
158 if (num_io_spaces == MAX_IO_SPACES) {
159 pr_err("PCI: Too many IO port spaces "
160 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
161 return ~0;
162 }
163
164 i = num_io_spaces++;
165 io_space[i].mmio_base = mmio_base;
166 io_space[i].sparse = sparse;
167
168 return i;
169 }
170
171 static u64 add_io_space(struct pci_root_info *info,
172 struct acpi_resource_address64 *addr)
173 {
174 struct iospace_resource *iospace;
175 struct resource *resource;
176 char *name;
177 unsigned long base, min, max, base_port;
178 unsigned int sparse = 0, space_nr, len;
179
180 len = strlen(info->name) + 32;
181 iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
182 if (!iospace) {
183 dev_err(&info->bridge->dev,
184 "PCI: No memory for %s I/O port space\n",
185 info->name);
186 goto out;
187 }
188
189 name = (char *)(iospace + 1);
190
191 min = addr->address.minimum;
192 max = min + addr->address.address_length - 1;
193 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
194 sparse = 1;
195
196 space_nr = new_space(addr->address.translation_offset, sparse);
197 if (space_nr == ~0)
198 goto free_resource;
199
200 base = __pa(io_space[space_nr].mmio_base);
201 base_port = IO_SPACE_BASE(space_nr);
202 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
203 base_port + min, base_port + max);
204
205 /*
206 * The SDM guarantees the legacy 0-64K space is sparse, but if the
207 * mapping is done by the processor (not the bridge), ACPI may not
208 * mark it as sparse.
209 */
210 if (space_nr == 0)
211 sparse = 1;
212
213 resource = &iospace->res;
214 resource->name = name;
215 resource->flags = IORESOURCE_MEM;
216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218 if (insert_resource(&iomem_resource, resource)) {
219 dev_err(&info->bridge->dev,
220 "can't allocate host bridge io space resource %pR\n",
221 resource);
222 goto free_resource;
223 }
224
225 list_add_tail(&iospace->list, &info->io_resources);
226 return base_port;
227
228 free_resource:
229 kfree(iospace);
230 out:
231 return ~0;
232 }
233
234 static acpi_status resource_to_window(struct acpi_resource *resource,
235 struct acpi_resource_address64 *addr)
236 {
237 acpi_status status;
238
239 /*
240 * We're only interested in _CRS descriptors that are
241 * - address space descriptors for memory or I/O space
242 * - non-zero size
243 */
244 status = acpi_resource_to_address64(resource, addr);
245 if (ACPI_SUCCESS(status) &&
246 (addr->resource_type == ACPI_MEMORY_RANGE ||
247 addr->resource_type == ACPI_IO_RANGE) &&
248 addr->address.address_length)
249 return AE_OK;
250
251 return AE_ERROR;
252 }
253
254 static acpi_status count_window(struct acpi_resource *resource, void *data)
255 {
256 unsigned int *windows = (unsigned int *) data;
257 struct acpi_resource_address64 addr;
258 acpi_status status;
259
260 status = resource_to_window(resource, &addr);
261 if (ACPI_SUCCESS(status))
262 (*windows)++;
263
264 return AE_OK;
265 }
266
267 static acpi_status add_window(struct acpi_resource *res, void *data)
268 {
269 struct pci_root_info *info = data;
270 struct resource *resource;
271 struct acpi_resource_address64 addr;
272 acpi_status status;
273 unsigned long flags, offset = 0;
274 struct resource *root;
275
276 /* Return AE_OK for non-window resources to keep scanning for more */
277 status = resource_to_window(res, &addr);
278 if (!ACPI_SUCCESS(status))
279 return AE_OK;
280
281 if (addr.resource_type == ACPI_MEMORY_RANGE) {
282 flags = IORESOURCE_MEM;
283 root = &iomem_resource;
284 offset = addr.address.translation_offset;
285 } else if (addr.resource_type == ACPI_IO_RANGE) {
286 flags = IORESOURCE_IO;
287 root = &ioport_resource;
288 offset = add_io_space(info, &addr);
289 if (offset == ~0)
290 return AE_OK;
291 } else
292 return AE_OK;
293
294 resource = &info->res[info->res_num];
295 resource->name = info->name;
296 resource->flags = flags;
297 resource->start = addr.address.minimum + offset;
298 resource->end = resource->start + addr.address.address_length - 1;
299 info->res_offset[info->res_num] = offset;
300
301 if (insert_resource(root, resource)) {
302 dev_err(&info->bridge->dev,
303 "can't allocate host bridge window %pR\n",
304 resource);
305 } else {
306 if (offset)
307 dev_info(&info->bridge->dev, "host bridge window %pR "
308 "(PCI address [%#llx-%#llx])\n",
309 resource,
310 resource->start - offset,
311 resource->end - offset);
312 else
313 dev_info(&info->bridge->dev,
314 "host bridge window %pR\n", resource);
315 }
316 /* HP's firmware has a hack to work around a Windows bug.
317 * Ignore these tiny memory ranges */
318 if (!((resource->flags & IORESOURCE_MEM) &&
319 (resource->end - resource->start < 16)))
320 pci_add_resource_offset(&info->resources, resource,
321 info->res_offset[info->res_num]);
322
323 info->res_num++;
324 return AE_OK;
325 }
326
327 static void free_pci_root_info_res(struct pci_root_info *info)
328 {
329 struct iospace_resource *iospace, *tmp;
330
331 list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
332 kfree(iospace);
333
334 kfree(info->name);
335 kfree(info->res);
336 info->res = NULL;
337 kfree(info->res_offset);
338 info->res_offset = NULL;
339 info->res_num = 0;
340 kfree(info->controller);
341 info->controller = NULL;
342 }
343
344 static void __release_pci_root_info(struct pci_root_info *info)
345 {
346 int i;
347 struct resource *res;
348 struct iospace_resource *iospace;
349
350 list_for_each_entry(iospace, &info->io_resources, list)
351 release_resource(&iospace->res);
352
353 for (i = 0; i < info->res_num; i++) {
354 res = &info->res[i];
355
356 if (!res->parent)
357 continue;
358
359 if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
360 continue;
361
362 release_resource(res);
363 }
364
365 free_pci_root_info_res(info);
366 kfree(info);
367 }
368
369 static void release_pci_root_info(struct pci_host_bridge *bridge)
370 {
371 struct pci_root_info *info = bridge->release_data;
372
373 __release_pci_root_info(info);
374 }
375
376 static int
377 probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
378 int busnum, int domain)
379 {
380 char *name;
381
382 name = kmalloc(16, GFP_KERNEL);
383 if (!name)
384 return -ENOMEM;
385
386 sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
387 info->bridge = device;
388 info->name = name;
389
390 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
391 &info->res_num);
392 if (info->res_num) {
393 info->res =
394 kzalloc_node(sizeof(*info->res) * info->res_num,
395 GFP_KERNEL, info->controller->node);
396 if (!info->res) {
397 kfree(name);
398 return -ENOMEM;
399 }
400
401 info->res_offset =
402 kzalloc_node(sizeof(*info->res_offset) * info->res_num,
403 GFP_KERNEL, info->controller->node);
404 if (!info->res_offset) {
405 kfree(name);
406 kfree(info->res);
407 info->res = NULL;
408 return -ENOMEM;
409 }
410
411 info->res_num = 0;
412 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
413 add_window, info);
414 } else
415 kfree(name);
416
417 return 0;
418 }
419
420 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
421 {
422 struct acpi_device *device = root->device;
423 int domain = root->segment;
424 int bus = root->secondary.start;
425 struct pci_controller *controller;
426 struct pci_root_info *info = NULL;
427 int busnum = root->secondary.start;
428 struct pci_bus *pbus;
429 int ret;
430
431 controller = alloc_pci_controller(domain);
432 if (!controller)
433 return NULL;
434
435 controller->companion = device;
436 controller->node = acpi_get_node(device->handle);
437
438 info = kzalloc(sizeof(*info), GFP_KERNEL);
439 if (!info) {
440 dev_err(&device->dev,
441 "pci_bus %04x:%02x: ignored (out of memory)\n",
442 domain, busnum);
443 kfree(controller);
444 return NULL;
445 }
446
447 info->controller = controller;
448 INIT_LIST_HEAD(&info->io_resources);
449 INIT_LIST_HEAD(&info->resources);
450
451 ret = probe_pci_root_info(info, device, busnum, domain);
452 if (ret) {
453 kfree(info->controller);
454 kfree(info);
455 return NULL;
456 }
457 /* insert busn resource at first */
458 pci_add_resource(&info->resources, &root->secondary);
459 /*
460 * See arch/x86/pci/acpi.c.
461 * The desired pci bus might already be scanned in a quirk. We
462 * should handle the case here, but it appears that IA64 hasn't
463 * such quirk. So we just ignore the case now.
464 */
465 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
466 &info->resources);
467 if (!pbus) {
468 pci_free_resource_list(&info->resources);
469 __release_pci_root_info(info);
470 return NULL;
471 }
472
473 pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
474 release_pci_root_info, info);
475 pci_scan_child_bus(pbus);
476 return pbus;
477 }
478
479 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
480 {
481 /*
482 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
483 * here, pci_create_root_bus() has been called by someone else and
484 * sysdata is likely to be different from what we expect. Let it go in
485 * that case.
486 */
487 if (!bridge->dev.parent) {
488 struct pci_controller *controller = bridge->bus->sysdata;
489 ACPI_COMPANION_SET(&bridge->dev, controller->companion);
490 }
491 return 0;
492 }
493
494 void pcibios_fixup_device_resources(struct pci_dev *dev)
495 {
496 int idx;
497
498 if (!dev->bus)
499 return;
500
501 for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
502 struct resource *r = &dev->resource[idx];
503
504 if (!r->flags || r->parent || !r->start)
505 continue;
506
507 pci_claim_resource(dev, idx);
508 }
509 }
510 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
511
512 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
513 {
514 int idx;
515
516 if (!dev->bus)
517 return;
518
519 for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
520 struct resource *r = &dev->resource[idx];
521
522 if (!r->flags || r->parent || !r->start)
523 continue;
524
525 pci_claim_bridge_resource(dev, idx);
526 }
527 }
528
529 /*
530 * Called after each bus is probed, but before its children are examined.
531 */
532 void pcibios_fixup_bus(struct pci_bus *b)
533 {
534 struct pci_dev *dev;
535
536 if (b->self)
537 pcibios_fixup_bridge_resources(b->self);
538
539 list_for_each_entry(dev, &b->devices, bus_list)
540 pcibios_fixup_device_resources(dev);
541 platform_pci_fixup_bus(b);
542 }
543
544 void pcibios_add_bus(struct pci_bus *bus)
545 {
546 acpi_pci_add_bus(bus);
547 }
548
549 void pcibios_remove_bus(struct pci_bus *bus)
550 {
551 acpi_pci_remove_bus(bus);
552 }
553
554 void pcibios_set_master (struct pci_dev *dev)
555 {
556 /* No special bus mastering setup handling */
557 }
558
559 int
560 pcibios_enable_device (struct pci_dev *dev, int mask)
561 {
562 int ret;
563
564 ret = pci_enable_resources(dev, mask);
565 if (ret < 0)
566 return ret;
567
568 if (!dev->msi_enabled)
569 return acpi_pci_irq_enable(dev);
570 return 0;
571 }
572
573 void
574 pcibios_disable_device (struct pci_dev *dev)
575 {
576 BUG_ON(atomic_read(&dev->enable_cnt));
577 if (!dev->msi_enabled)
578 acpi_pci_irq_disable(dev);
579 }
580
581 resource_size_t
582 pcibios_align_resource (void *data, const struct resource *res,
583 resource_size_t size, resource_size_t align)
584 {
585 return res->start;
586 }
587
588 int
589 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
590 enum pci_mmap_state mmap_state, int write_combine)
591 {
592 unsigned long size = vma->vm_end - vma->vm_start;
593 pgprot_t prot;
594
595 /*
596 * I/O space cannot be accessed via normal processor loads and
597 * stores on this platform.
598 */
599 if (mmap_state == pci_mmap_io)
600 /*
601 * XXX we could relax this for I/O spaces for which ACPI
602 * indicates that the space is 1-to-1 mapped. But at the
603 * moment, we don't support multiple PCI address spaces and
604 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
605 */
606 return -EINVAL;
607
608 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
609 return -EINVAL;
610
611 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
612 vma->vm_page_prot);
613
614 /*
615 * If the user requested WC, the kernel uses UC or WC for this region,
616 * and the chipset supports WC, we can use WC. Otherwise, we have to
617 * use the same attribute the kernel uses.
618 */
619 if (write_combine &&
620 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
621 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
622 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
623 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
624 else
625 vma->vm_page_prot = prot;
626
627 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
628 vma->vm_end - vma->vm_start, vma->vm_page_prot))
629 return -EAGAIN;
630
631 return 0;
632 }
633
634 /**
635 * ia64_pci_get_legacy_mem - generic legacy mem routine
636 * @bus: bus to get legacy memory base address for
637 *
638 * Find the base of legacy memory for @bus. This is typically the first
639 * megabyte of bus address space for @bus or is simply 0 on platforms whose
640 * chipsets support legacy I/O and memory routing. Returns the base address
641 * or an error pointer if an error occurred.
642 *
643 * This is the ia64 generic version of this routine. Other platforms
644 * are free to override it with a machine vector.
645 */
646 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
647 {
648 return (char *)__IA64_UNCACHED_OFFSET;
649 }
650
651 /**
652 * pci_mmap_legacy_page_range - map legacy memory space to userland
653 * @bus: bus whose legacy space we're mapping
654 * @vma: vma passed in by mmap
655 *
656 * Map legacy memory space for this device back to userspace using a machine
657 * vector to get the base address.
658 */
659 int
660 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
661 enum pci_mmap_state mmap_state)
662 {
663 unsigned long size = vma->vm_end - vma->vm_start;
664 pgprot_t prot;
665 char *addr;
666
667 /* We only support mmap'ing of legacy memory space */
668 if (mmap_state != pci_mmap_mem)
669 return -ENOSYS;
670
671 /*
672 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
673 * for more details.
674 */
675 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
676 return -EINVAL;
677 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
678 vma->vm_page_prot);
679
680 addr = pci_get_legacy_mem(bus);
681 if (IS_ERR(addr))
682 return PTR_ERR(addr);
683
684 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
685 vma->vm_page_prot = prot;
686
687 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
688 size, vma->vm_page_prot))
689 return -EAGAIN;
690
691 return 0;
692 }
693
694 /**
695 * ia64_pci_legacy_read - read from legacy I/O space
696 * @bus: bus to read
697 * @port: legacy port value
698 * @val: caller allocated storage for returned value
699 * @size: number of bytes to read
700 *
701 * Simply reads @size bytes from @port and puts the result in @val.
702 *
703 * Again, this (and the write routine) are generic versions that can be
704 * overridden by the platform. This is necessary on platforms that don't
705 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
706 */
707 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
708 {
709 int ret = size;
710
711 switch (size) {
712 case 1:
713 *val = inb(port);
714 break;
715 case 2:
716 *val = inw(port);
717 break;
718 case 4:
719 *val = inl(port);
720 break;
721 default:
722 ret = -EINVAL;
723 break;
724 }
725
726 return ret;
727 }
728
729 /**
730 * ia64_pci_legacy_write - perform a legacy I/O write
731 * @bus: bus pointer
732 * @port: port to write
733 * @val: value to write
734 * @size: number of bytes to write from @val
735 *
736 * Simply writes @size bytes of @val to @port.
737 */
738 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
739 {
740 int ret = size;
741
742 switch (size) {
743 case 1:
744 outb(val, port);
745 break;
746 case 2:
747 outw(val, port);
748 break;
749 case 4:
750 outl(val, port);
751 break;
752 default:
753 ret = -EINVAL;
754 break;
755 }
756
757 return ret;
758 }
759
760 /**
761 * set_pci_cacheline_size - determine cacheline size for PCI devices
762 *
763 * We want to use the line-size of the outer-most cache. We assume
764 * that this line-size is the same for all CPUs.
765 *
766 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
767 */
768 static void __init set_pci_dfl_cacheline_size(void)
769 {
770 unsigned long levels, unique_caches;
771 long status;
772 pal_cache_config_info_t cci;
773
774 status = ia64_pal_cache_summary(&levels, &unique_caches);
775 if (status != 0) {
776 pr_err("%s: ia64_pal_cache_summary() failed "
777 "(status=%ld)\n", __func__, status);
778 return;
779 }
780
781 status = ia64_pal_cache_config_info(levels - 1,
782 /* cache_type (data_or_unified)= */ 2, &cci);
783 if (status != 0) {
784 pr_err("%s: ia64_pal_cache_config_info() failed "
785 "(status=%ld)\n", __func__, status);
786 return;
787 }
788 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
789 }
790
791 u64 ia64_dma_get_required_mask(struct device *dev)
792 {
793 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
794 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
795 u64 mask;
796
797 if (!high_totalram) {
798 /* convert to mask just covering totalram */
799 low_totalram = (1 << (fls(low_totalram) - 1));
800 low_totalram += low_totalram - 1;
801 mask = low_totalram;
802 } else {
803 high_totalram = (1 << (fls(high_totalram) - 1));
804 high_totalram += high_totalram - 1;
805 mask = (((u64)high_totalram) << 32) + 0xffffffff;
806 }
807 return mask;
808 }
809 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
810
811 u64 dma_get_required_mask(struct device *dev)
812 {
813 return platform_dma_get_required_mask(dev);
814 }
815 EXPORT_SYMBOL_GPL(dma_get_required_mask);
816
817 static int __init pcibios_init(void)
818 {
819 set_pci_dfl_cacheline_size();
820 return 0;
821 }
822
823 subsys_initcall(pcibios_init);