]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/ia64/pci/pci.c
Merge branch 'for-linus' of git://git.linaro.org/people/rmk/linux-arm
[mirror_ubuntu-bionic-kernel.git] / arch / ia64 / pci / pci.c
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
3 *
4 * Derived from bios32.c of i386 tree.
5 *
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
10 *
11 * Note: Above list of copyright holders is incomplete...
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
32
33 /*
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
37 */
38
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41
42 /* SAL 3.2 adds support for extended config space. */
43
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
49 {
50 u64 addr, data = 0;
51 int mode, result;
52
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
55
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
62 } else {
63 return -EINVAL;
64 }
65
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 if (result != 0)
68 return -EINVAL;
69
70 *value = (u32) data;
71 return 0;
72 }
73
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 int reg, int len, u32 value)
76 {
77 u64 addr;
78 int mode, result;
79
80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 return -EINVAL;
82
83 if ((seg | reg) <= 255) {
84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 mode = 0;
86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 mode = 1;
89 } else {
90 return -EINVAL;
91 }
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
96 }
97
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 int size, u32 *value)
100 {
101 return raw_pci_read(pci_domain_nr(bus), bus->number,
102 devfn, where, size, value);
103 }
104
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 int size, u32 value)
107 {
108 return raw_pci_write(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
110 }
111
112 struct pci_ops pci_root_ops = {
113 .read = pci_read,
114 .write = pci_write,
115 };
116
117 /* Called by ACPI when it finds a new root bus. */
118
119 static struct pci_controller *alloc_pci_controller(int seg)
120 {
121 struct pci_controller *controller;
122
123 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
124 if (!controller)
125 return NULL;
126
127 controller->segment = seg;
128 controller->node = -1;
129 return controller;
130 }
131
132 struct pci_root_info {
133 struct acpi_device *bridge;
134 struct pci_controller *controller;
135 struct list_head resources;
136 char *name;
137 };
138
139 static unsigned int
140 new_space (u64 phys_base, int sparse)
141 {
142 u64 mmio_base;
143 int i;
144
145 if (phys_base == 0)
146 return 0; /* legacy I/O port space */
147
148 mmio_base = (u64) ioremap(phys_base, 0);
149 for (i = 0; i < num_io_spaces; i++)
150 if (io_space[i].mmio_base == mmio_base &&
151 io_space[i].sparse == sparse)
152 return i;
153
154 if (num_io_spaces == MAX_IO_SPACES) {
155 printk(KERN_ERR "PCI: Too many IO port spaces "
156 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157 return ~0;
158 }
159
160 i = num_io_spaces++;
161 io_space[i].mmio_base = mmio_base;
162 io_space[i].sparse = sparse;
163
164 return i;
165 }
166
167 static u64 add_io_space(struct pci_root_info *info,
168 struct acpi_resource_address64 *addr)
169 {
170 struct resource *resource;
171 char *name;
172 unsigned long base, min, max, base_port;
173 unsigned int sparse = 0, space_nr, len;
174
175 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176 if (!resource) {
177 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178 info->name);
179 goto out;
180 }
181
182 len = strlen(info->name) + 32;
183 name = kzalloc(len, GFP_KERNEL);
184 if (!name) {
185 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186 info->name);
187 goto free_resource;
188 }
189
190 min = addr->minimum;
191 max = min + addr->address_length - 1;
192 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193 sparse = 1;
194
195 space_nr = new_space(addr->translation_offset, sparse);
196 if (space_nr == ~0)
197 goto free_name;
198
199 base = __pa(io_space[space_nr].mmio_base);
200 base_port = IO_SPACE_BASE(space_nr);
201 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202 base_port + min, base_port + max);
203
204 /*
205 * The SDM guarantees the legacy 0-64K space is sparse, but if the
206 * mapping is done by the processor (not the bridge), ACPI may not
207 * mark it as sparse.
208 */
209 if (space_nr == 0)
210 sparse = 1;
211
212 resource->name = name;
213 resource->flags = IORESOURCE_MEM;
214 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216 insert_resource(&iomem_resource, resource);
217
218 return base_port;
219
220 free_name:
221 kfree(name);
222 free_resource:
223 kfree(resource);
224 out:
225 return ~0;
226 }
227
228 static acpi_status resource_to_window(struct acpi_resource *resource,
229 struct acpi_resource_address64 *addr)
230 {
231 acpi_status status;
232
233 /*
234 * We're only interested in _CRS descriptors that are
235 * - address space descriptors for memory or I/O space
236 * - non-zero size
237 * - producers, i.e., the address space is routed downstream,
238 * not consumed by the bridge itself
239 */
240 status = acpi_resource_to_address64(resource, addr);
241 if (ACPI_SUCCESS(status) &&
242 (addr->resource_type == ACPI_MEMORY_RANGE ||
243 addr->resource_type == ACPI_IO_RANGE) &&
244 addr->address_length &&
245 addr->producer_consumer == ACPI_PRODUCER)
246 return AE_OK;
247
248 return AE_ERROR;
249 }
250
251 static acpi_status count_window(struct acpi_resource *resource, void *data)
252 {
253 unsigned int *windows = (unsigned int *) data;
254 struct acpi_resource_address64 addr;
255 acpi_status status;
256
257 status = resource_to_window(resource, &addr);
258 if (ACPI_SUCCESS(status))
259 (*windows)++;
260
261 return AE_OK;
262 }
263
264 static acpi_status add_window(struct acpi_resource *res, void *data)
265 {
266 struct pci_root_info *info = data;
267 struct pci_window *window;
268 struct acpi_resource_address64 addr;
269 acpi_status status;
270 unsigned long flags, offset = 0;
271 struct resource *root;
272
273 /* Return AE_OK for non-window resources to keep scanning for more */
274 status = resource_to_window(res, &addr);
275 if (!ACPI_SUCCESS(status))
276 return AE_OK;
277
278 if (addr.resource_type == ACPI_MEMORY_RANGE) {
279 flags = IORESOURCE_MEM;
280 root = &iomem_resource;
281 offset = addr.translation_offset;
282 } else if (addr.resource_type == ACPI_IO_RANGE) {
283 flags = IORESOURCE_IO;
284 root = &ioport_resource;
285 offset = add_io_space(info, &addr);
286 if (offset == ~0)
287 return AE_OK;
288 } else
289 return AE_OK;
290
291 window = &info->controller->window[info->controller->windows++];
292 window->resource.name = info->name;
293 window->resource.flags = flags;
294 window->resource.start = addr.minimum + offset;
295 window->resource.end = window->resource.start + addr.address_length - 1;
296 window->offset = offset;
297
298 if (insert_resource(root, &window->resource)) {
299 dev_err(&info->bridge->dev,
300 "can't allocate host bridge window %pR\n",
301 &window->resource);
302 } else {
303 if (offset)
304 dev_info(&info->bridge->dev, "host bridge window %pR "
305 "(PCI address [%#llx-%#llx])\n",
306 &window->resource,
307 window->resource.start - offset,
308 window->resource.end - offset);
309 else
310 dev_info(&info->bridge->dev,
311 "host bridge window %pR\n",
312 &window->resource);
313 }
314
315 /* HP's firmware has a hack to work around a Windows bug.
316 * Ignore these tiny memory ranges */
317 if (!((window->resource.flags & IORESOURCE_MEM) &&
318 (window->resource.end - window->resource.start < 16)))
319 pci_add_resource_offset(&info->resources, &window->resource,
320 window->offset);
321
322 return AE_OK;
323 }
324
325 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
326 {
327 struct acpi_device *device = root->device;
328 int domain = root->segment;
329 int bus = root->secondary.start;
330 struct pci_controller *controller;
331 unsigned int windows = 0;
332 struct pci_root_info info;
333 struct pci_bus *pbus;
334 char *name;
335 int pxm;
336
337 controller = alloc_pci_controller(domain);
338 if (!controller)
339 goto out1;
340
341 controller->acpi_handle = device->handle;
342
343 pxm = acpi_get_pxm(controller->acpi_handle);
344 #ifdef CONFIG_NUMA
345 if (pxm >= 0)
346 controller->node = pxm_to_node(pxm);
347 #endif
348
349 INIT_LIST_HEAD(&info.resources);
350 /* insert busn resource at first */
351 pci_add_resource(&info.resources, &root->secondary);
352 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
353 &windows);
354 if (windows) {
355 controller->window =
356 kzalloc_node(sizeof(*controller->window) * windows,
357 GFP_KERNEL, controller->node);
358 if (!controller->window)
359 goto out2;
360
361 name = kmalloc(16, GFP_KERNEL);
362 if (!name)
363 goto out3;
364
365 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
366 info.bridge = device;
367 info.controller = controller;
368 info.name = name;
369 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
370 add_window, &info);
371 }
372 /*
373 * See arch/x86/pci/acpi.c.
374 * The desired pci bus might already be scanned in a quirk. We
375 * should handle the case here, but it appears that IA64 hasn't
376 * such quirk. So we just ignore the case now.
377 */
378 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
379 &info.resources);
380 if (!pbus) {
381 pci_free_resource_list(&info.resources);
382 return NULL;
383 }
384
385 pci_scan_child_bus(pbus);
386 return pbus;
387
388 out3:
389 kfree(controller->window);
390 out2:
391 kfree(controller);
392 out1:
393 return NULL;
394 }
395
396 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
397 {
398 struct pci_controller *controller = bridge->bus->sysdata;
399
400 ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
401 return 0;
402 }
403
404 static int is_valid_resource(struct pci_dev *dev, int idx)
405 {
406 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
407 struct resource *devr = &dev->resource[idx], *busr;
408
409 if (!dev->bus)
410 return 0;
411
412 pci_bus_for_each_resource(dev->bus, busr, i) {
413 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
414 continue;
415 if ((devr->start) && (devr->start >= busr->start) &&
416 (devr->end <= busr->end))
417 return 1;
418 }
419 return 0;
420 }
421
422 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
423 {
424 int i;
425
426 for (i = start; i < limit; i++) {
427 if (!dev->resource[i].flags)
428 continue;
429 if ((is_valid_resource(dev, i)))
430 pci_claim_resource(dev, i);
431 }
432 }
433
434 void pcibios_fixup_device_resources(struct pci_dev *dev)
435 {
436 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
437 }
438 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
439
440 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
441 {
442 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
443 }
444
445 /*
446 * Called after each bus is probed, but before its children are examined.
447 */
448 void pcibios_fixup_bus(struct pci_bus *b)
449 {
450 struct pci_dev *dev;
451
452 if (b->self) {
453 pci_read_bridge_bases(b);
454 pcibios_fixup_bridge_resources(b->self);
455 }
456 list_for_each_entry(dev, &b->devices, bus_list)
457 pcibios_fixup_device_resources(dev);
458 platform_pci_fixup_bus(b);
459 }
460
461 void pcibios_set_master (struct pci_dev *dev)
462 {
463 /* No special bus mastering setup handling */
464 }
465
466 int
467 pcibios_enable_device (struct pci_dev *dev, int mask)
468 {
469 int ret;
470
471 ret = pci_enable_resources(dev, mask);
472 if (ret < 0)
473 return ret;
474
475 if (!dev->msi_enabled)
476 return acpi_pci_irq_enable(dev);
477 return 0;
478 }
479
480 void
481 pcibios_disable_device (struct pci_dev *dev)
482 {
483 BUG_ON(atomic_read(&dev->enable_cnt));
484 if (!dev->msi_enabled)
485 acpi_pci_irq_disable(dev);
486 }
487
488 resource_size_t
489 pcibios_align_resource (void *data, const struct resource *res,
490 resource_size_t size, resource_size_t align)
491 {
492 return res->start;
493 }
494
495 int
496 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
497 enum pci_mmap_state mmap_state, int write_combine)
498 {
499 unsigned long size = vma->vm_end - vma->vm_start;
500 pgprot_t prot;
501
502 /*
503 * I/O space cannot be accessed via normal processor loads and
504 * stores on this platform.
505 */
506 if (mmap_state == pci_mmap_io)
507 /*
508 * XXX we could relax this for I/O spaces for which ACPI
509 * indicates that the space is 1-to-1 mapped. But at the
510 * moment, we don't support multiple PCI address spaces and
511 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
512 */
513 return -EINVAL;
514
515 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
516 return -EINVAL;
517
518 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
519 vma->vm_page_prot);
520
521 /*
522 * If the user requested WC, the kernel uses UC or WC for this region,
523 * and the chipset supports WC, we can use WC. Otherwise, we have to
524 * use the same attribute the kernel uses.
525 */
526 if (write_combine &&
527 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
528 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
529 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
530 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
531 else
532 vma->vm_page_prot = prot;
533
534 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
535 vma->vm_end - vma->vm_start, vma->vm_page_prot))
536 return -EAGAIN;
537
538 return 0;
539 }
540
541 /**
542 * ia64_pci_get_legacy_mem - generic legacy mem routine
543 * @bus: bus to get legacy memory base address for
544 *
545 * Find the base of legacy memory for @bus. This is typically the first
546 * megabyte of bus address space for @bus or is simply 0 on platforms whose
547 * chipsets support legacy I/O and memory routing. Returns the base address
548 * or an error pointer if an error occurred.
549 *
550 * This is the ia64 generic version of this routine. Other platforms
551 * are free to override it with a machine vector.
552 */
553 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
554 {
555 return (char *)__IA64_UNCACHED_OFFSET;
556 }
557
558 /**
559 * pci_mmap_legacy_page_range - map legacy memory space to userland
560 * @bus: bus whose legacy space we're mapping
561 * @vma: vma passed in by mmap
562 *
563 * Map legacy memory space for this device back to userspace using a machine
564 * vector to get the base address.
565 */
566 int
567 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
568 enum pci_mmap_state mmap_state)
569 {
570 unsigned long size = vma->vm_end - vma->vm_start;
571 pgprot_t prot;
572 char *addr;
573
574 /* We only support mmap'ing of legacy memory space */
575 if (mmap_state != pci_mmap_mem)
576 return -ENOSYS;
577
578 /*
579 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
580 * for more details.
581 */
582 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
583 return -EINVAL;
584 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
585 vma->vm_page_prot);
586
587 addr = pci_get_legacy_mem(bus);
588 if (IS_ERR(addr))
589 return PTR_ERR(addr);
590
591 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
592 vma->vm_page_prot = prot;
593
594 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
595 size, vma->vm_page_prot))
596 return -EAGAIN;
597
598 return 0;
599 }
600
601 /**
602 * ia64_pci_legacy_read - read from legacy I/O space
603 * @bus: bus to read
604 * @port: legacy port value
605 * @val: caller allocated storage for returned value
606 * @size: number of bytes to read
607 *
608 * Simply reads @size bytes from @port and puts the result in @val.
609 *
610 * Again, this (and the write routine) are generic versions that can be
611 * overridden by the platform. This is necessary on platforms that don't
612 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
613 */
614 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
615 {
616 int ret = size;
617
618 switch (size) {
619 case 1:
620 *val = inb(port);
621 break;
622 case 2:
623 *val = inw(port);
624 break;
625 case 4:
626 *val = inl(port);
627 break;
628 default:
629 ret = -EINVAL;
630 break;
631 }
632
633 return ret;
634 }
635
636 /**
637 * ia64_pci_legacy_write - perform a legacy I/O write
638 * @bus: bus pointer
639 * @port: port to write
640 * @val: value to write
641 * @size: number of bytes to write from @val
642 *
643 * Simply writes @size bytes of @val to @port.
644 */
645 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
646 {
647 int ret = size;
648
649 switch (size) {
650 case 1:
651 outb(val, port);
652 break;
653 case 2:
654 outw(val, port);
655 break;
656 case 4:
657 outl(val, port);
658 break;
659 default:
660 ret = -EINVAL;
661 break;
662 }
663
664 return ret;
665 }
666
667 /**
668 * set_pci_cacheline_size - determine cacheline size for PCI devices
669 *
670 * We want to use the line-size of the outer-most cache. We assume
671 * that this line-size is the same for all CPUs.
672 *
673 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
674 */
675 static void __init set_pci_dfl_cacheline_size(void)
676 {
677 unsigned long levels, unique_caches;
678 long status;
679 pal_cache_config_info_t cci;
680
681 status = ia64_pal_cache_summary(&levels, &unique_caches);
682 if (status != 0) {
683 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
684 "(status=%ld)\n", __func__, status);
685 return;
686 }
687
688 status = ia64_pal_cache_config_info(levels - 1,
689 /* cache_type (data_or_unified)= */ 2, &cci);
690 if (status != 0) {
691 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
692 "(status=%ld)\n", __func__, status);
693 return;
694 }
695 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
696 }
697
698 u64 ia64_dma_get_required_mask(struct device *dev)
699 {
700 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
701 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
702 u64 mask;
703
704 if (!high_totalram) {
705 /* convert to mask just covering totalram */
706 low_totalram = (1 << (fls(low_totalram) - 1));
707 low_totalram += low_totalram - 1;
708 mask = low_totalram;
709 } else {
710 high_totalram = (1 << (fls(high_totalram) - 1));
711 high_totalram += high_totalram - 1;
712 mask = (((u64)high_totalram) << 32) + 0xffffffff;
713 }
714 return mask;
715 }
716 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
717
718 u64 dma_get_required_mask(struct device *dev)
719 {
720 return platform_dma_get_required_mask(dev);
721 }
722 EXPORT_SYMBOL_GPL(dma_get_required_mask);
723
724 static int __init pcibios_init(void)
725 {
726 set_pci_dfl_cacheline_size();
727 return 0;
728 }
729
730 subsys_initcall(pcibios_init);