]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/m68k/kernel/head.S
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / arch / m68k / kernel / head.S
1 /* -*- mode: asm -*-
2 **
3 ** head.S -- This file contains the initial boot code for the
4 ** Linux/68k kernel.
5 **
6 ** Copyright 1993 by Hamish Macdonald
7 **
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
12 **
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
14 ** and Bjoern Brauel
15 ** VME Support by Richard Hirst
16 **
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
25 ** for linux-2.1.115
26 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
28 **
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
31 ** for more details.
32 **
33 */
34
35 /*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * postion and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in include/linux/autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
256 */
257
258 #include <linux/config.h>
259 #include <linux/linkage.h>
260 #include <linux/init.h>
261 #include <asm/bootinfo.h>
262 #include <asm/setup.h>
263 #include <asm/entry.h>
264 #include <asm/pgtable.h>
265 #include <asm/page.h>
266 #include <asm/offsets.h>
267
268 #ifdef CONFIG_MAC
269
270 #include <asm/machw.h>
271
272 /*
273 * Macintosh console support
274 */
275
276 #define CONSOLE
277 #define CONSOLE_PENGUIN
278
279 /*
280 * Macintosh serial debug support; outputs boot info to the printer
281 * and/or modem serial ports
282 */
283 #undef MAC_SERIAL_DEBUG
284
285 /*
286 * Macintosh serial debug port selection; define one or both;
287 * requires MAC_SERIAL_DEBUG to be defined
288 */
289 #define MAC_USE_SCC_A /* Macintosh modem serial port */
290 #define MAC_USE_SCC_B /* Macintosh printer serial port */
291
292 #endif /* CONFIG_MAC */
293
294 #undef MMU_PRINT
295 #undef MMU_NOCACHE_KERNEL
296 #define SERIAL_DEBUG
297 #undef DEBUG
298
299 /*
300 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
301 * The 8x8 font is harder to read but fits more on the screen.
302 */
303 #define FONT_8x8 /* default */
304 /* #define FONT_8x16 */ /* 2nd choice */
305 /* #define FONT_6x11 */ /* 3rd choice */
306
307 .globl kernel_pg_dir
308 .globl availmem
309 .globl m68k_pgtable_cachemode
310 .globl m68k_supervisor_cachemode
311 #ifdef CONFIG_MVME16x
312 .globl mvme_bdid
313 #endif
314 #ifdef CONFIG_Q40
315 .globl q40_mem_cptr
316 #endif
317
318 CPUTYPE_040 = 1 /* indicates an 040 */
319 CPUTYPE_060 = 2 /* indicates an 060 */
320 CPUTYPE_0460 = 3 /* if either above are set, this is set */
321 CPUTYPE_020 = 4 /* indicates an 020 */
322
323 /* Translation control register */
324 TC_ENABLE = 0x8000
325 TC_PAGE8K = 0x4000
326 TC_PAGE4K = 0x0000
327
328 /* Transparent translation registers */
329 TTR_ENABLE = 0x8000 /* enable transparent translation */
330 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
331 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
332 TTR_USERMODE = 0x0000 /* only user mode access */
333 TTR_CI = 0x0400 /* inhibit cache */
334 TTR_RW = 0x0200 /* read/write mode */
335 TTR_RWM = 0x0100 /* read/write mask */
336 TTR_FCB2 = 0x0040 /* function code base bit 2 */
337 TTR_FCB1 = 0x0020 /* function code base bit 1 */
338 TTR_FCB0 = 0x0010 /* function code base bit 0 */
339 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
340 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
341 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
342
343 /* Cache Control registers */
344 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
345 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
346 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
347 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
348 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
349 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
350 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
351 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
352 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
353 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
354 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
355 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
356 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
357 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
358 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
359 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
360 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
361 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
362 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
363 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
364 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
365 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
366
367 /* Miscellaneous definitions */
368 PAGESIZE = 4096
369 PAGESHIFT = 12
370
371 ROOT_TABLE_SIZE = 128
372 PTR_TABLE_SIZE = 128
373 PAGE_TABLE_SIZE = 64
374 ROOT_INDEX_SHIFT = 25
375 PTR_INDEX_SHIFT = 18
376 PAGE_INDEX_SHIFT = 12
377
378 #ifdef DEBUG
379 /* When debugging use readable names for labels */
380 #ifdef __STDC__
381 #define L(name) .head.S.##name
382 #else
383 #define L(name) .head.S./**/name
384 #endif
385 #else
386 #ifdef __STDC__
387 #define L(name) .L##name
388 #else
389 #define L(name) .L/**/name
390 #endif
391 #endif
392
393 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
394 #ifndef __INITDATA
395 #define __INITDATA .data
396 #define __FINIT .previous
397 #endif
398
399 /* Several macros to make the writing of subroutines easier:
400 * - func_start marks the beginning of the routine which setups the frame
401 * register and saves the registers, it also defines another macro
402 * to automatically restore the registers again.
403 * - func_return marks the end of the routine and simply calls the prepared
404 * macro to restore registers and jump back to the caller.
405 * - func_define generates another macro to automatically put arguments
406 * onto the stack call the subroutine and cleanup the stack again.
407 */
408
409 /* Within subroutines these macros can be used to access the arguments
410 * on the stack. With STACK some allocated memory on the stack can be
411 * accessed and ARG0 points to the return address (used by mmu_engage).
412 */
413 #define STACK %a6@(stackstart)
414 #define ARG0 %a6@(4)
415 #define ARG1 %a6@(8)
416 #define ARG2 %a6@(12)
417 #define ARG3 %a6@(16)
418 #define ARG4 %a6@(20)
419
420 .macro func_start name,saveregs,stack=0
421 L(\name):
422 linkw %a6,#-\stack
423 moveml \saveregs,%sp@-
424 .set stackstart,-\stack
425
426 .macro func_return_\name
427 moveml %sp@+,\saveregs
428 unlk %a6
429 rts
430 .endm
431 .endm
432
433 .macro func_return name
434 func_return_\name
435 .endm
436
437 .macro func_call name
438 jbsr L(\name)
439 .endm
440
441 .macro move_stack nr,arg1,arg2,arg3,arg4
442 .if \nr
443 move_stack "(\nr-1)",\arg2,\arg3,\arg4
444 movel \arg1,%sp@-
445 .endif
446 .endm
447
448 .macro func_define name,nr=0
449 .macro \name arg1,arg2,arg3,arg4
450 move_stack \nr,\arg1,\arg2,\arg3,\arg4
451 func_call \name
452 .if \nr
453 lea %sp@(\nr*4),%sp
454 .endif
455 .endm
456 .endm
457
458 func_define mmu_map,4
459 func_define mmu_map_tt,4
460 func_define mmu_fixup_page_mmu_cache,1
461 func_define mmu_temp_map,2
462 func_define mmu_engage
463 func_define mmu_get_root_table_entry,1
464 func_define mmu_get_ptr_table_entry,2
465 func_define mmu_get_page_table_entry,2
466 func_define mmu_print
467 func_define get_new_page
468 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
469 func_define set_leds
470 #endif
471
472 .macro mmu_map_eq arg1,arg2,arg3
473 mmu_map \arg1,\arg1,\arg2,\arg3
474 .endm
475
476 .macro get_bi_record record
477 pea \record
478 func_call get_bi_record
479 addql #4,%sp
480 .endm
481
482 func_define serial_putc,1
483 func_define console_putc,1
484
485 func_define console_init
486 func_define console_put_stats
487 func_define console_put_penguin
488 func_define console_plot_pixel,3
489 func_define console_scroll
490
491 .macro putc ch
492 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
493 pea \ch
494 #endif
495 #ifdef CONSOLE
496 func_call console_putc
497 #endif
498 #ifdef SERIAL_DEBUG
499 func_call serial_putc
500 #endif
501 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
502 addql #4,%sp
503 #endif
504 .endm
505
506 .macro dputc ch
507 #ifdef DEBUG
508 putc \ch
509 #endif
510 .endm
511
512 func_define putn,1
513
514 .macro dputn nr
515 #ifdef DEBUG
516 putn \nr
517 #endif
518 .endm
519
520 .macro puts string
521 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
522 __INITDATA
523 .Lstr\@:
524 .string "\string"
525 __FINIT
526 pea %pc@(.Lstr\@)
527 func_call puts
528 addql #4,%sp
529 #endif
530 .endm
531
532 .macro dputs string
533 #ifdef DEBUG
534 puts "\string"
535 #endif
536 .endm
537
538 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
539 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
540 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
541 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
542 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
543 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
544 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
545 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
546 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
547 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
548 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
549 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
550 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
551
552 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
553 jeq 42f; \
554 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
555 jne lab ;\
556 42:\
557
558 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
559 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
560 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
561 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
562 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
563 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
564 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
565
566 /* On the HP300 we use the on-board LEDs for debug output before
567 the console is running. Writing a 1 bit turns the corresponding LED
568 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
569 .macro leds mask
570 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
571 hasnt_leds(.Lled\@)
572 pea \mask
573 func_call set_leds
574 addql #4,%sp
575 .Lled\@:
576 #endif
577 .endm
578
579 .text
580 ENTRY(_stext)
581 /*
582 * Version numbers of the bootinfo interface
583 * The area from _stext to _start will later be used as kernel pointer table
584 */
585 bras 1f /* Jump over bootinfo version numbers */
586
587 .long BOOTINFOV_MAGIC
588 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
589 .long MACH_ATARI, ATARI_BOOTI_VERSION
590 .long MACH_MVME147, MVME147_BOOTI_VERSION
591 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
592 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
593 .long MACH_MAC, MAC_BOOTI_VERSION
594 .long MACH_Q40, Q40_BOOTI_VERSION
595 .long MACH_HP300, HP300_BOOTI_VERSION
596 .long 0
597 1: jra __start
598
599 .equ kernel_pg_dir,_stext
600
601 .equ .,_stext+PAGESIZE
602
603 ENTRY(_start)
604 jra __start
605 __INIT
606 ENTRY(__start)
607 /*
608 * Setup initial stack pointer
609 */
610 lea %pc@(_stext),%sp
611
612 /*
613 * Record the CPU and machine type.
614 */
615 get_bi_record BI_MACHTYPE
616 lea %pc@(m68k_machtype),%a1
617 movel %a0@,%a1@
618
619 get_bi_record BI_FPUTYPE
620 lea %pc@(m68k_fputype),%a1
621 movel %a0@,%a1@
622
623 get_bi_record BI_MMUTYPE
624 lea %pc@(m68k_mmutype),%a1
625 movel %a0@,%a1@
626
627 get_bi_record BI_CPUTYPE
628 lea %pc@(m68k_cputype),%a1
629 movel %a0@,%a1@
630
631 leds 0x1
632
633 #ifdef CONFIG_MAC
634 /*
635 * For Macintosh, we need to determine the display parameters early (at least
636 * while debugging it).
637 */
638
639 is_not_mac(L(test_notmac))
640
641 get_bi_record BI_MAC_VADDR
642 lea %pc@(L(mac_videobase)),%a1
643 movel %a0@,%a1@
644
645 get_bi_record BI_MAC_VDEPTH
646 lea %pc@(L(mac_videodepth)),%a1
647 movel %a0@,%a1@
648
649 get_bi_record BI_MAC_VDIM
650 lea %pc@(L(mac_dimensions)),%a1
651 movel %a0@,%a1@
652
653 get_bi_record BI_MAC_VROW
654 lea %pc@(L(mac_rowbytes)),%a1
655 movel %a0@,%a1@
656
657 #ifdef MAC_SERIAL_DEBUG
658 get_bi_record BI_MAC_SCCBASE
659 lea %pc@(L(mac_sccbase)),%a1
660 movel %a0@,%a1@
661 #endif /* MAC_SERIAL_DEBUG */
662
663 #if 0
664 /*
665 * Clear the screen
666 */
667 lea %pc@(L(mac_videobase)),%a0
668 movel %a0@,%a1
669 lea %pc@(L(mac_dimensions)),%a0
670 movel %a0@,%d1
671 swap %d1 /* #rows is high bytes */
672 andl #0xFFFF,%d1 /* rows */
673 subl #10,%d1
674 lea %pc@(L(mac_rowbytes)),%a0
675 loopy2:
676 movel %a0@,%d0
677 subql #1,%d0
678 loopx2:
679 moveb #0x55, %a1@+
680 dbra %d0,loopx2
681 dbra %d1,loopy2
682 #endif
683
684 L(test_notmac):
685 #endif /* CONFIG_MAC */
686
687
688 /*
689 * There are ultimately two pieces of information we want for all kinds of
690 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
691 * and is converted here from a booter type definition to a separate bit
692 * number which allows for the standard is_0x0 macro tests.
693 */
694 movel %pc@(m68k_cputype),%d0
695 /*
696 * Assume it's an 030
697 */
698 clrl %d1
699
700 /*
701 * Test the BootInfo cputype for 060
702 */
703 btst #CPUB_68060,%d0
704 jeq 1f
705 bset #CPUTYPE_060,%d1
706 bset #CPUTYPE_0460,%d1
707 jra 3f
708 1:
709 /*
710 * Test the BootInfo cputype for 040
711 */
712 btst #CPUB_68040,%d0
713 jeq 2f
714 bset #CPUTYPE_040,%d1
715 bset #CPUTYPE_0460,%d1
716 jra 3f
717 2:
718 /*
719 * Test the BootInfo cputype for 020
720 */
721 btst #CPUB_68020,%d0
722 jeq 3f
723 bset #CPUTYPE_020,%d1
724 jra 3f
725 3:
726 /*
727 * Record the cpu type
728 */
729 lea %pc@(L(cputype)),%a0
730 movel %d1,%a0@
731
732 /*
733 * NOTE:
734 *
735 * Now the macros are valid:
736 * is_040_or_060
737 * is_not_040_or_060
738 * is_040
739 * is_060
740 * is_not_060
741 */
742
743 /*
744 * Determine the cache mode for pages holding MMU tables
745 * and for supervisor mode, unused for '020 and '030
746 */
747 clrl %d0
748 clrl %d1
749
750 is_not_040_or_060(L(save_cachetype))
751
752 /*
753 * '040 or '060
754 * d1 := cacheable write-through
755 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
756 * but we have been using write-through since at least 2.0.29 so I
757 * guess it is OK.
758 */
759 #ifdef CONFIG_060_WRITETHROUGH
760 /*
761 * If this is a 68060 board using drivers with cache coherency
762 * problems, then supervisor memory accesses need to be write-through
763 * also; otherwise, we want copyback.
764 */
765
766 is_not_060(1f)
767 movel #_PAGE_CACHE040W,%d0
768 jra L(save_cachetype)
769 #endif /* CONFIG_060_WRITETHROUGH */
770 1:
771 movew #_PAGE_CACHE040,%d0
772
773 movel #_PAGE_CACHE040W,%d1
774
775 L(save_cachetype):
776 /* Save cache mode for supervisor mode and page tables
777 */
778 lea %pc@(m68k_supervisor_cachemode),%a0
779 movel %d0,%a0@
780 lea %pc@(m68k_pgtable_cachemode),%a0
781 movel %d1,%a0@
782
783 /*
784 * raise interrupt level
785 */
786 movew #0x2700,%sr
787
788 /*
789 If running on an Atari, determine the I/O base of the
790 serial port and test if we are running on a Medusa or Hades.
791 This test is necessary here, because on the Hades the serial
792 port is only accessible in the high I/O memory area.
793
794 The test whether it is a Medusa is done by writing to the byte at
795 phys. 0x0. This should result in a bus error on all other machines.
796
797 ...should, but doesn't. The Afterburner040 for the Falcon has the
798 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
799 another test to distinguish Medusa and AB040. This is a
800 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
801 (+AB040), but is in the range where the Medusa always asserts DTACK.
802
803 The test for the Hades is done by reading address 0xb0000000. This
804 should give a bus error on the Medusa.
805 */
806
807 #ifdef CONFIG_ATARI
808 is_not_atari(L(notypetest))
809
810 /* get special machine type (Medusa/Hades/AB40) */
811 moveq #0,%d3 /* default if tag doesn't exist */
812 get_bi_record BI_ATARI_MCH_TYPE
813 tstl %d0
814 jbmi 1f
815 movel %a0@,%d3
816 lea %pc@(atari_mch_type),%a0
817 movel %d3,%a0@
818 1:
819 /* On the Hades, the iobase must be set up before opening the
820 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
821 moveq #0,%d0
822 cmpl #ATARI_MACH_HADES,%d3
823 jbne 1f
824 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
825 1: lea %pc@(L(iobase)),%a0
826 movel %d0,%a0@
827
828 L(notypetest):
829 #endif
830
831 #ifdef CONFIG_VME
832 is_mvme147(L(getvmetype))
833 is_bvme6000(L(getvmetype))
834 is_not_mvme16x(L(gvtdone))
835
836 /* See if the loader has specified the BI_VME_TYPE tag. Recent
837 * versions of VMELILO and TFTPLILO do this. We have to do this
838 * early so we know how to handle console output. If the tag
839 * doesn't exist then we use the Bug for output on MVME16x.
840 */
841 L(getvmetype):
842 get_bi_record BI_VME_TYPE
843 tstl %d0
844 jbmi 1f
845 movel %a0@,%d3
846 lea %pc@(vme_brdtype),%a0
847 movel %d3,%a0@
848 1:
849 #ifdef CONFIG_MVME16x
850 is_not_mvme16x(L(gvtdone))
851
852 /* Need to get the BRD_ID info to differentiate between 162, 167,
853 * etc. This is available as a BI_VME_BRDINFO tag with later
854 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
855 */
856 get_bi_record BI_VME_BRDINFO
857 tstl %d0
858 jpl 1f
859
860 /* Get pointer to board ID data from Bug */
861 movel %d2,%sp@-
862 trap #15
863 .word 0x70 /* trap 0x70 - .BRD_ID */
864 movel %sp@+,%a0
865 1:
866 lea %pc@(mvme_bdid),%a1
867 /* Structure is 32 bytes long */
868 movel %a0@+,%a1@+
869 movel %a0@+,%a1@+
870 movel %a0@+,%a1@+
871 movel %a0@+,%a1@+
872 movel %a0@+,%a1@+
873 movel %a0@+,%a1@+
874 movel %a0@+,%a1@+
875 movel %a0@+,%a1@+
876 #endif
877
878 L(gvtdone):
879
880 #endif
881
882 #ifdef CONFIG_HP300
883 is_not_hp300(L(nothp))
884
885 /* Get the address of the UART for serial debugging */
886 get_bi_record BI_HP300_UART_ADDR
887 tstl %d0
888 jbmi 1f
889 movel %a0@,%d3
890 lea %pc@(L(uartbase)),%a0
891 movel %d3,%a0@
892 get_bi_record BI_HP300_UART_SCODE
893 tstl %d0
894 jbmi 1f
895 movel %a0@,%d3
896 lea %pc@(L(uart_scode)),%a0
897 movel %d3,%a0@
898 1:
899 L(nothp):
900 #endif
901
902 /*
903 * Initialize serial port
904 */
905 jbsr L(serial_init)
906
907 /*
908 * Initialize console
909 */
910 #ifdef CONFIG_MAC
911 is_not_mac(L(nocon))
912 #ifdef CONSOLE
913 console_init
914 #ifdef CONSOLE_PENGUIN
915 console_put_penguin
916 #endif /* CONSOLE_PENGUIN */
917 console_put_stats
918 #endif /* CONSOLE */
919 L(nocon):
920 #endif /* CONFIG_MAC */
921
922
923 putc '\n'
924 putc 'A'
925 leds 0x2
926 dputn %pc@(L(cputype))
927 dputn %pc@(m68k_supervisor_cachemode)
928 dputn %pc@(m68k_pgtable_cachemode)
929 dputc '\n'
930
931 /*
932 * Save physical start address of kernel
933 */
934 lea %pc@(L(phys_kernel_start)),%a0
935 lea %pc@(_stext),%a1
936 subl #_stext,%a1
937 addl #PAGE_OFFSET,%a1
938 movel %a1,%a0@
939
940 putc 'B'
941
942 leds 0x4
943
944 /*
945 * mmu_init
946 *
947 * This block of code does what's necessary to map in the various kinds
948 * of machines for execution of Linux.
949 * First map the first 4 MB of kernel code & data
950 */
951
952 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
953 %pc@(m68k_supervisor_cachemode)
954
955 putc 'C'
956
957 #ifdef CONFIG_AMIGA
958
959 L(mmu_init_amiga):
960
961 is_not_amiga(L(mmu_init_not_amiga))
962 /*
963 * mmu_init_amiga
964 */
965
966 putc 'D'
967
968 is_not_040_or_060(1f)
969
970 /*
971 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000
972 */
973 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
974 /*
975 * Map the Zorro III I/O space with transparent translation
976 * for frame buffer memory etc.
977 */
978 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
979
980 jbra L(mmu_init_done)
981
982 1:
983 /*
984 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000
985 */
986 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
987 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
988
989 jbra L(mmu_init_done)
990
991 L(mmu_init_not_amiga):
992 #endif
993
994 #ifdef CONFIG_ATARI
995
996 L(mmu_init_atari):
997
998 is_not_atari(L(mmu_init_not_atari))
999
1000 putc 'E'
1001
1002 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1003 the last 16 MB of virtual address space to the first 16 MB (i.e.
1004 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1005 needed. I/O ranges are marked non-cachable.
1006
1007 For the Medusa it is better to map the I/O region transparently
1008 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1009 accessible only in the high area.
1010
1011 On the Hades all I/O registers are only accessible in the high
1012 area.
1013 */
1014
1015 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1016 moveq #0,%d0
1017 movel %pc@(atari_mch_type),%d3
1018 cmpl #ATARI_MACH_MEDUSA,%d3
1019 jbeq 2f
1020 cmpl #ATARI_MACH_HADES,%d3
1021 jbne 1f
1022 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1023 1: movel %d0,%d3
1024
1025 is_040_or_060(L(spata68040))
1026
1027 /* Map everything non-cacheable, though not all parts really
1028 * need to disable caches (crucial only for 0xff8000..0xffffff
1029 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1030 * isn't really used, except for sometimes peeking into the
1031 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1032 * this. */
1033 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1034
1035 jbra L(mmu_init_done)
1036
1037 L(spata68040):
1038
1039 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1040
1041 jbra L(mmu_init_done)
1042
1043 L(mmu_init_not_atari):
1044 #endif
1045
1046 #ifdef CONFIG_Q40
1047 is_not_q40(L(notq40))
1048 /*
1049 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1050 * non-cached serialized etc..
1051 * this includes master chip, DAC, RTC and ISA ports
1052 * 0xfe000000-0xfeffffff is for screen and ROM
1053 */
1054
1055 putc 'Q'
1056
1057 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1058 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1059
1060 jbra L(mmu_init_done)
1061
1062 L(notq40):
1063 #endif
1064
1065 #ifdef CONFIG_HP300
1066 is_not_hp300(L(nothp300))
1067
1068 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1069 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1070 * The ROM mapping is needed because the LEDs are mapped there too.
1071 */
1072
1073 is_040(1f)
1074
1075 /*
1076 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000
1077 */
1078 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1079
1080 jbra L(mmu_init_done)
1081
1082 1:
1083 /*
1084 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000
1085 */
1086 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1087
1088 jbra L(mmu_init_done)
1089
1090 L(nothp300):
1091 #endif /* CONFIG_HP300 */
1092
1093 #ifdef CONFIG_MVME147
1094
1095 is_not_mvme147(L(not147))
1096
1097 /*
1098 * On MVME147 we have already created kernel page tables for
1099 * 4MB of RAM at address 0, so now need to do a transparent
1100 * mapping of the top of memory space. Make it 0.5GByte for now,
1101 * so we can access on-board i/o areas.
1102 */
1103
1104 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1105
1106 jbra L(mmu_init_done)
1107
1108 L(not147):
1109 #endif /* CONFIG_MVME147 */
1110
1111 #ifdef CONFIG_MVME16x
1112
1113 is_not_mvme16x(L(not16x))
1114
1115 /*
1116 * On MVME16x we have already created kernel page tables for
1117 * 4MB of RAM at address 0, so now need to do a transparent
1118 * mapping of the top of memory space. Make it 0.5GByte for now.
1119 * Supervisor only access, so transparent mapping doesn't
1120 * clash with User code virtual address space.
1121 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1122 * mapping is needed to allow 167Bug to run.
1123 * IO is in the range 0xfff00000 to 0xfffeffff.
1124 * PROM is 0xff800000->0xffbfffff and SRAM is
1125 * 0xffe00000->0xffe1ffff.
1126 */
1127
1128 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130 jbra L(mmu_init_done)
1131
1132 L(not16x):
1133 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1134
1135 #ifdef CONFIG_BVME6000
1136
1137 is_not_bvme6000(L(not6000))
1138
1139 /*
1140 * On BVME6000 we have already created kernel page tables for
1141 * 4MB of RAM at address 0, so now need to do a transparent
1142 * mapping of the top of memory space. Make it 0.5GByte for now,
1143 * so we can access on-board i/o areas.
1144 * Supervisor only access, so transparent mapping doesn't
1145 * clash with User code virtual address space.
1146 */
1147
1148 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1149
1150 jbra L(mmu_init_done)
1151
1152 L(not6000):
1153 #endif /* CONFIG_BVME6000 */
1154
1155 /*
1156 * mmu_init_mac
1157 *
1158 * The Macintosh mappings are less clear.
1159 *
1160 * Even as of this writing, it is unclear how the
1161 * Macintosh mappings will be done. However, as
1162 * the first author of this code I'm proposing the
1163 * following model:
1164 *
1165 * Map the kernel (that's already done),
1166 * Map the I/O (on most machines that's the
1167 * 0x5000.0000 ... 0x5300.0000 range,
1168 * Map the video frame buffer using as few pages
1169 * as absolutely (this requirement mostly stems from
1170 * the fact that when the frame buffer is at
1171 * 0x0000.0000 then we know there is valid RAM just
1172 * above the screen that we don't want to waste!).
1173 *
1174 * By the way, if the frame buffer is at 0x0000.0000
1175 * then the Macintosh is known as an RBV based Mac.
1176 *
1177 * By the way 2, the code currently maps in a bunch of
1178 * regions. But I'd like to cut that out. (And move most
1179 * of the mappings up into the kernel proper ... or only
1180 * map what's necessary.)
1181 */
1182
1183 #ifdef CONFIG_MAC
1184
1185 L(mmu_init_mac):
1186
1187 is_not_mac(L(mmu_init_not_mac))
1188
1189 putc 'F'
1190
1191 is_not_040_or_060(1f)
1192
1193 moveq #_PAGE_NOCACHE_S,%d3
1194 jbra 2f
1195 1:
1196 moveq #_PAGE_NOCACHE030,%d3
1197 2:
1198 /*
1199 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1200 * we simply map the 4MB that contains the videomem
1201 */
1202
1203 movel #VIDEOMEMMASK,%d0
1204 andl %pc@(L(mac_videobase)),%d0
1205
1206 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1207 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1208 mmu_map_eq #0x40000000,#0x02000000,%d3
1209 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1210 mmu_map_eq #0x50000000,#0x03000000,%d3
1211 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1212 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1213
1214 jbra L(mmu_init_done)
1215
1216 L(mmu_init_not_mac):
1217 #endif
1218
1219 #ifdef CONFIG_SUN3X
1220 is_not_sun3x(L(notsun3x))
1221
1222 /* oh, the pain.. We're gonna want the prom code after
1223 * starting the MMU, so we copy the mappings, translating
1224 * from 8k -> 4k pages as we go.
1225 */
1226
1227 /* copy maps from 0xfee00000 to 0xff000000 */
1228 movel #0xfee00000, %d0
1229 moveq #ROOT_INDEX_SHIFT, %d1
1230 lsrl %d1,%d0
1231 mmu_get_root_table_entry %d0
1232
1233 movel #0xfee00000, %d0
1234 moveq #PTR_INDEX_SHIFT, %d1
1235 lsrl %d1,%d0
1236 andl #PTR_TABLE_SIZE-1, %d0
1237 mmu_get_ptr_table_entry %a0,%d0
1238
1239 movel #0xfee00000, %d0
1240 moveq #PAGE_INDEX_SHIFT, %d1
1241 lsrl %d1,%d0
1242 andl #PAGE_TABLE_SIZE-1, %d0
1243 mmu_get_page_table_entry %a0,%d0
1244
1245 /* this is where the prom page table lives */
1246 movel 0xfefe00d4, %a1
1247 movel %a1@, %a1
1248
1249 movel #((0x200000 >> 13)-1), %d1
1250
1251 1:
1252 movel %a1@+, %d3
1253 movel %d3,%a0@+
1254 addl #0x1000,%d3
1255 movel %d3,%a0@+
1256
1257 dbra %d1,1b
1258
1259 /* setup tt1 for I/O */
1260 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1261 jbra L(mmu_init_done)
1262
1263 L(notsun3x):
1264 #endif
1265
1266 #ifdef CONFIG_APOLLO
1267 is_not_apollo(L(notapollo))
1268
1269 putc 'P'
1270 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1271
1272 L(notapollo):
1273 jbra L(mmu_init_done)
1274 #endif
1275
1276 L(mmu_init_done):
1277
1278 putc 'G'
1279 leds 0x8
1280
1281 /*
1282 * mmu_fixup
1283 *
1284 * On the 040 class machines, all pages that are used for the
1285 * mmu have to be fixed up. According to Motorola, pages holding mmu
1286 * tables should be non-cacheable on a '040 and write-through on a
1287 * '060. But analysis of the reasons for this, and practical
1288 * experience, showed that write-through also works on a '040.
1289 *
1290 * Allocated memory so far goes from kernel_end to memory_start that
1291 * is used for all kind of tables, for that the cache attributes
1292 * are now fixed.
1293 */
1294 L(mmu_fixup):
1295
1296 is_not_040_or_060(L(mmu_fixup_done))
1297
1298 #ifdef MMU_NOCACHE_KERNEL
1299 jbra L(mmu_fixup_done)
1300 #endif
1301
1302 /* first fix the page at the start of the kernel, that
1303 * contains also kernel_pg_dir.
1304 */
1305 movel %pc@(L(phys_kernel_start)),%d0
1306 subl #PAGE_OFFSET,%d0
1307 lea %pc@(_stext),%a0
1308 subl %d0,%a0
1309 mmu_fixup_page_mmu_cache %a0
1310
1311 movel %pc@(L(kernel_end)),%a0
1312 subl %d0,%a0
1313 movel %pc@(L(memory_start)),%a1
1314 subl %d0,%a1
1315 bra 2f
1316 1:
1317 mmu_fixup_page_mmu_cache %a0
1318 addw #PAGESIZE,%a0
1319 2:
1320 cmpl %a0,%a1
1321 jgt 1b
1322
1323 L(mmu_fixup_done):
1324
1325 #ifdef MMU_PRINT
1326 mmu_print
1327 #endif
1328
1329 /*
1330 * mmu_engage
1331 *
1332 * This chunk of code performs the gruesome task of engaging the MMU.
1333 * The reason its gruesome is because when the MMU becomes engaged it
1334 * maps logical addresses to physical addresses. The Program Counter
1335 * register is then passed through the MMU before the next instruction
1336 * is fetched (the instruction following the engage MMU instruction).
1337 * This may mean one of two things:
1338 * 1. The Program Counter falls within the logical address space of
1339 * the kernel of which there are two sub-possibilities:
1340 * A. The PC maps to the correct instruction (logical PC == physical
1341 * code location), or
1342 * B. The PC does not map through and the processor will read some
1343 * data (or instruction) which is not the logically next instr.
1344 * As you can imagine, A is good and B is bad.
1345 * Alternatively,
1346 * 2. The Program Counter does not map through the MMU. The processor
1347 * will take a Bus Error.
1348 * Clearly, 2 is bad.
1349 * It doesn't take a wiz kid to figure you want 1.A.
1350 * This code creates that possibility.
1351 * There are two possible 1.A. states (we now ignore the other above states):
1352 * A. The kernel is located at physical memory addressed the same as
1353 * the logical memory for the kernel, i.e., 0x01000.
1354 * B. The kernel is located some where else. e.g., 0x0400.0000
1355 *
1356 * Under some conditions the Macintosh can look like A or B.
1357 * [A friend and I once noted that Apple hardware engineers should be
1358 * wacked twice each day: once when they show up at work (as in, Whack!,
1359 * "This is for the screwy hardware we know you're going to design today."),
1360 * and also at the end of the day (as in, Whack! "I don't know what
1361 * you designed today, but I'm sure it wasn't good."). -- rst]
1362 *
1363 * This code works on the following premise:
1364 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1365 * then create a mapping for the kernel at logical 0x8000.0000 to
1366 * the physical location of the pc. And, create a transparent
1367 * translation register for the first 16 Meg. Then, after the MMU
1368 * is engaged, the PC can be moved up into the 0x8000.0000 range
1369 * and then the transparent translation can be turned off and then
1370 * the PC can jump to the correct logical location and it will be
1371 * home (finally). This is essentially the code that the Amiga used
1372 * to use. Now, it's generalized for all processors. Which means
1373 * that a fresh (but temporary) mapping has to be created. The mapping
1374 * is made in page 0 (an as of yet unused location -- except for the
1375 * stack!). This temporary mapping will only require 1 pointer table
1376 * and a single page table (it can map 256K).
1377 *
1378 * OK, alternatively, imagine that the Program Counter is not within
1379 * the first 16 Meg. Then, just use Transparent Translation registers
1380 * to do the right thing.
1381 *
1382 * Last, if _start is already at 0x01000, then there's nothing special
1383 * to do (in other words, in a degenerate case of the first case above,
1384 * do nothing).
1385 *
1386 * Let's do it.
1387 *
1388 *
1389 */
1390
1391 putc 'H'
1392
1393 mmu_engage
1394
1395 /*
1396 * After this point no new memory is allocated and
1397 * the start of available memory is stored in availmem.
1398 * (The bootmem allocator requires now the physicall address.)
1399 */
1400
1401 movel L(memory_start),availmem
1402
1403 #ifdef CONFIG_AMIGA
1404 is_not_amiga(1f)
1405 /* fixup the Amiga custom register location before printing */
1406 clrl L(custom)
1407 1:
1408 #endif
1409
1410 #ifdef CONFIG_ATARI
1411 is_not_atari(1f)
1412 /* fixup the Atari iobase register location before printing */
1413 movel #0xff000000,L(iobase)
1414 1:
1415 #endif
1416
1417 #ifdef CONFIG_MAC
1418 is_not_mac(1f)
1419 movel #~VIDEOMEMMASK,%d0
1420 andl L(mac_videobase),%d0
1421 addl #VIDEOMEMBASE,%d0
1422 movel %d0,L(mac_videobase)
1423 #if defined(CONSOLE)
1424 movel %pc@(L(phys_kernel_start)),%d0
1425 subl #PAGE_OFFSET,%d0
1426 subl %d0,L(console_font)
1427 subl %d0,L(console_font_data)
1428 #endif
1429 #ifdef MAC_SERIAL_DEBUG
1430 orl #0x50000000,L(mac_sccbase)
1431 #endif
1432 1:
1433 #endif
1434
1435 #ifdef CONFIG_HP300
1436 is_not_hp300(1f)
1437 /*
1438 * Fix up the iobase register to point to the new location of the LEDs.
1439 */
1440 movel #0xf0000000,L(iobase)
1441
1442 /*
1443 * Energise the FPU and caches.
1444 */
1445 is_040(1f)
1446 movel #0x60,0xf05f400c
1447 jbra 2f
1448
1449 /*
1450 * 040: slightly different, apparently.
1451 */
1452 1: movew #0,0xf05f400e
1453 movew #0x64,0xf05f400e
1454 2:
1455 #endif
1456
1457 #ifdef CONFIG_SUN3X
1458 is_not_sun3x(1f)
1459
1460 /* enable copro */
1461 oriw #0x4000,0x61000000
1462 1:
1463 #endif
1464
1465 #ifdef CONFIG_APOLLO
1466 is_not_apollo(1f)
1467
1468 /*
1469 * Fix up the iobase before printing
1470 */
1471 movel #0x80000000,L(iobase)
1472 1:
1473 #endif
1474
1475 putc 'I'
1476 leds 0x10
1477
1478 /*
1479 * Enable caches
1480 */
1481
1482 is_not_040_or_060(L(cache_not_680460))
1483
1484 L(cache680460):
1485 .chip 68040
1486 nop
1487 cpusha %bc
1488 nop
1489
1490 is_060(L(cache68060))
1491
1492 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1493 /* MMU stuff works in copyback mode now, so enable the cache */
1494 movec %d0,%cacr
1495 jra L(cache_done)
1496
1497 L(cache68060):
1498 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1499 /* MMU stuff works in copyback mode now, so enable the cache */
1500 movec %d0,%cacr
1501 /* enable superscalar dispatch in PCR */
1502 moveq #1,%d0
1503 .chip 68060
1504 movec %d0,%pcr
1505
1506 jbra L(cache_done)
1507 L(cache_not_680460):
1508 L(cache68030):
1509 .chip 68030
1510 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1511 movec %d0,%cacr
1512
1513 jra L(cache_done)
1514 .chip 68k
1515 L(cache_done):
1516
1517 putc 'J'
1518
1519 /*
1520 * Setup initial stack pointer
1521 */
1522 lea init_task,%curptr
1523 lea init_thread_union+THREAD_SIZE,%sp
1524
1525 putc 'K'
1526
1527 subl %a6,%a6 /* clear a6 for gdb */
1528
1529 /*
1530 * The new 64bit printf support requires an early exception initialization.
1531 */
1532 jbsr base_trap_init
1533
1534 /* jump to the kernel start */
1535
1536 putc '\n'
1537 leds 0x55
1538
1539 jbsr start_kernel
1540
1541 /*
1542 * Find a tag record in the bootinfo structure
1543 * The bootinfo structure is located right after the kernel bss
1544 * Returns: d0: size (-1 if not found)
1545 * a0: data pointer (end-of-records if not found)
1546 */
1547 func_start get_bi_record,%d1
1548
1549 movel ARG1,%d0
1550 lea %pc@(_end),%a0
1551 1: tstw %a0@(BIR_TAG)
1552 jeq 3f
1553 cmpw %a0@(BIR_TAG),%d0
1554 jeq 2f
1555 addw %a0@(BIR_SIZE),%a0
1556 jra 1b
1557 2: moveq #0,%d0
1558 movew %a0@(BIR_SIZE),%d0
1559 lea %a0@(BIR_DATA),%a0
1560 jra 4f
1561 3: moveq #-1,%d0
1562 lea %a0@(BIR_SIZE),%a0
1563 4:
1564 func_return get_bi_record
1565
1566
1567 /*
1568 * MMU Initialization Begins Here
1569 *
1570 * The structure of the MMU tables on the 68k machines
1571 * is thus:
1572 * Root Table
1573 * Logical addresses are translated through
1574 * a hierarchical translation mechanism where the high-order
1575 * seven bits of the logical address (LA) are used as an
1576 * index into the "root table." Each entry in the root
1577 * table has a bit which specifies if it's a valid pointer to a
1578 * pointer table. Each entry defines a 32KMeg range of memory.
1579 * If an entry is invalid then that logical range of 32M is
1580 * invalid and references to that range of memory (when the MMU
1581 * is enabled) will fault. If the entry is valid, then it does
1582 * one of two things. On 040/060 class machines, it points to
1583 * a pointer table which then describes more finely the memory
1584 * within that 32M range. On 020/030 class machines, a technique
1585 * called "early terminating descriptors" are used. This technique
1586 * allows an entire 32Meg to be described by a single entry in the
1587 * root table. Thus, this entry in the root table, contains the
1588 * physical address of the memory or I/O at the logical address
1589 * which the entry represents and it also contains the necessary
1590 * cache bits for this region.
1591 *
1592 * Pointer Tables
1593 * Per the Root Table, there will be one or more
1594 * pointer tables. Each pointer table defines a 32M range.
1595 * Not all of the 32M range need be defined. Again, the next
1596 * seven bits of the logical address are used an index into
1597 * the pointer table to point to page tables (if the pointer
1598 * is valid). There will undoubtedly be more than one
1599 * pointer table for the kernel because each pointer table
1600 * defines a range of only 32M. Valid pointer table entries
1601 * point to page tables, or are early terminating entries
1602 * themselves.
1603 *
1604 * Page Tables
1605 * Per the Pointer Tables, each page table entry points
1606 * to the physical page in memory that supports the logical
1607 * address that translates to the particular index.
1608 *
1609 * In short, the Logical Address gets translated as follows:
1610 * bits 31..26 - index into the Root Table
1611 * bits 25..18 - index into the Pointer Table
1612 * bits 17..12 - index into the Page Table
1613 * bits 11..0 - offset into a particular 4K page
1614 *
1615 * The algorithms which follows do one thing: they abstract
1616 * the MMU hardware. For example, there are three kinds of
1617 * cache settings that are relevant. Either, memory is
1618 * being mapped in which case it is either Kernel Code (or
1619 * the RamDisk) or it is MMU data. On the 030, the MMU data
1620 * option also describes the kernel. Or, I/O is being mapped
1621 * in which case it has its own kind of cache bits. There
1622 * are constants which abstract these notions from the code that
1623 * actually makes the call to map some range of memory.
1624 *
1625 *
1626 *
1627 */
1628
1629 #ifdef MMU_PRINT
1630 /*
1631 * mmu_print
1632 *
1633 * This algorithm will print out the current MMU mappings.
1634 *
1635 * Input:
1636 * %a5 points to the root table. Everything else is calculated
1637 * from this.
1638 */
1639
1640 #define mmu_next_valid 0
1641 #define mmu_start_logical 4
1642 #define mmu_next_logical 8
1643 #define mmu_start_physical 12
1644 #define mmu_next_physical 16
1645
1646 #define MMU_PRINT_INVALID -1
1647 #define MMU_PRINT_VALID 1
1648 #define MMU_PRINT_UNINITED 0
1649
1650 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1651
1652 func_start mmu_print,%a0-%a6/%d0-%d7
1653
1654 movel %pc@(L(kernel_pgdir_ptr)),%a5
1655 lea %pc@(L(mmu_print_data)),%a0
1656 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1657
1658 is_not_040_or_060(mmu_030_print)
1659
1660 mmu_040_print:
1661 puts "\nMMU040\n"
1662 puts "rp:"
1663 putn %a5
1664 putc '\n'
1665 #if 0
1666 /*
1667 * The following #if/#endif block is a tight algorithm for dumping the 040
1668 * MMU Map in gory detail. It really isn't that practical unless the
1669 * MMU Map algorithm appears to go awry and you need to debug it at the
1670 * entry per entry level.
1671 */
1672 movel #ROOT_TABLE_SIZE,%d5
1673 #if 0
1674 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1675 subql #1,%d5 | they (might) work
1676 #endif
1677 1: tstl %d5
1678 jbeq mmu_print_done
1679 subq #1,%d5
1680 movel %a5@+,%d7
1681 btst #1,%d7
1682 jbeq 1b
1683
1684 2: putn %d7
1685 andil #0xFFFFFE00,%d7
1686 movel %d7,%a4
1687 movel #PTR_TABLE_SIZE,%d4
1688 putc ' '
1689 3: tstl %d4
1690 jbeq 11f
1691 subq #1,%d4
1692 movel %a4@+,%d7
1693 btst #1,%d7
1694 jbeq 3b
1695
1696 4: putn %d7
1697 andil #0xFFFFFF00,%d7
1698 movel %d7,%a3
1699 movel #PAGE_TABLE_SIZE,%d3
1700 5: movel #8,%d2
1701 6: tstl %d3
1702 jbeq 31f
1703 subq #1,%d3
1704 movel %a3@+,%d6
1705 btst #0,%d6
1706 jbeq 6b
1707 7: tstl %d2
1708 jbeq 8f
1709 subq #1,%d2
1710 putc ' '
1711 jbra 91f
1712 8: putc '\n'
1713 movel #8+1+8+1+1,%d2
1714 9: putc ' '
1715 dbra %d2,9b
1716 movel #7,%d2
1717 91: putn %d6
1718 jbra 6b
1719
1720 31: putc '\n'
1721 movel #8+1,%d2
1722 32: putc ' '
1723 dbra %d2,32b
1724 jbra 3b
1725
1726 11: putc '\n'
1727 jbra 1b
1728 #endif /* MMU 040 Dumping code that's gory and detailed */
1729
1730 lea %pc@(kernel_pg_dir),%a5
1731 movel %a5,%a0 /* a0 has the address of the root table ptr */
1732 movel #0x00000000,%a4 /* logical address */
1733 moveql #0,%d0
1734 40:
1735 /* Increment the logical address and preserve in d5 */
1736 movel %a4,%d5
1737 addil #PAGESIZE<<13,%d5
1738 movel %a0@+,%d6
1739 btst #1,%d6
1740 jbne 41f
1741 jbsr mmu_print_tuple_invalidate
1742 jbra 48f
1743 41:
1744 movel #0,%d1
1745 andil #0xfffffe00,%d6
1746 movel %d6,%a1
1747 42:
1748 movel %a4,%d5
1749 addil #PAGESIZE<<6,%d5
1750 movel %a1@+,%d6
1751 btst #1,%d6
1752 jbne 43f
1753 jbsr mmu_print_tuple_invalidate
1754 jbra 47f
1755 43:
1756 movel #0,%d2
1757 andil #0xffffff00,%d6
1758 movel %d6,%a2
1759 44:
1760 movel %a4,%d5
1761 addil #PAGESIZE,%d5
1762 movel %a2@+,%d6
1763 btst #0,%d6
1764 jbne 45f
1765 jbsr mmu_print_tuple_invalidate
1766 jbra 46f
1767 45:
1768 moveml %d0-%d1,%sp@-
1769 movel %a4,%d0
1770 movel %d6,%d1
1771 andil #0xfffff4e0,%d1
1772 lea %pc@(mmu_040_print_flags),%a6
1773 jbsr mmu_print_tuple
1774 moveml %sp@+,%d0-%d1
1775 46:
1776 movel %d5,%a4
1777 addq #1,%d2
1778 cmpib #64,%d2
1779 jbne 44b
1780 47:
1781 movel %d5,%a4
1782 addq #1,%d1
1783 cmpib #128,%d1
1784 jbne 42b
1785 48:
1786 movel %d5,%a4 /* move to the next logical address */
1787 addq #1,%d0
1788 cmpib #128,%d0
1789 jbne 40b
1790
1791 .chip 68040
1792 movec %dtt1,%d0
1793 movel %d0,%d1
1794 andiw #0x8000,%d1 /* is it valid ? */
1795 jbeq 1f /* No, bail out */
1796
1797 movel %d0,%d1
1798 andil #0xff000000,%d1 /* Get the address */
1799 putn %d1
1800 puts "=="
1801 putn %d1
1802
1803 movel %d0,%d6
1804 jbsr mmu_040_print_flags_tt
1805 1:
1806 movec %dtt0,%d0
1807 movel %d0,%d1
1808 andiw #0x8000,%d1 /* is it valid ? */
1809 jbeq 1f /* No, bail out */
1810
1811 movel %d0,%d1
1812 andil #0xff000000,%d1 /* Get the address */
1813 putn %d1
1814 puts "=="
1815 putn %d1
1816
1817 movel %d0,%d6
1818 jbsr mmu_040_print_flags_tt
1819 1:
1820 .chip 68k
1821
1822 jbra mmu_print_done
1823
1824 mmu_040_print_flags:
1825 btstl #10,%d6
1826 putZc(' ','G') /* global bit */
1827 btstl #7,%d6
1828 putZc(' ','S') /* supervisor bit */
1829 mmu_040_print_flags_tt:
1830 btstl #6,%d6
1831 jbne 3f
1832 putc 'C'
1833 btstl #5,%d6
1834 putZc('w','c') /* write through or copy-back */
1835 jbra 4f
1836 3:
1837 putc 'N'
1838 btstl #5,%d6
1839 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1840 4:
1841 rts
1842
1843 mmu_030_print_flags:
1844 btstl #6,%d6
1845 putZc('C','I') /* write through or copy-back */
1846 rts
1847
1848 mmu_030_print:
1849 puts "\nMMU030\n"
1850 puts "\nrp:"
1851 putn %a5
1852 putc '\n'
1853 movel %a5,%d0
1854 andil #0xfffffff0,%d0
1855 movel %d0,%a0
1856 movel #0x00000000,%a4 /* logical address */
1857 movel #0,%d0
1858 30:
1859 movel %a4,%d5
1860 addil #PAGESIZE<<13,%d5
1861 movel %a0@+,%d6
1862 btst #1,%d6 /* is it a table ptr? */
1863 jbne 31f /* yes */
1864 btst #0,%d6 /* is it early terminating? */
1865 jbeq 1f /* no */
1866 jbsr mmu_030_print_helper
1867 jbra 38f
1868 1:
1869 jbsr mmu_print_tuple_invalidate
1870 jbra 38f
1871 31:
1872 movel #0,%d1
1873 andil #0xfffffff0,%d6
1874 movel %d6,%a1
1875 32:
1876 movel %a4,%d5
1877 addil #PAGESIZE<<6,%d5
1878 movel %a1@+,%d6
1879 btst #1,%d6 /* is it a table ptr? */
1880 jbne 33f /* yes */
1881 btst #0,%d6 /* is it a page descriptor? */
1882 jbeq 1f /* no */
1883 jbsr mmu_030_print_helper
1884 jbra 37f
1885 1:
1886 jbsr mmu_print_tuple_invalidate
1887 jbra 37f
1888 33:
1889 movel #0,%d2
1890 andil #0xfffffff0,%d6
1891 movel %d6,%a2
1892 34:
1893 movel %a4,%d5
1894 addil #PAGESIZE,%d5
1895 movel %a2@+,%d6
1896 btst #0,%d6
1897 jbne 35f
1898 jbsr mmu_print_tuple_invalidate
1899 jbra 36f
1900 35:
1901 jbsr mmu_030_print_helper
1902 36:
1903 movel %d5,%a4
1904 addq #1,%d2
1905 cmpib #64,%d2
1906 jbne 34b
1907 37:
1908 movel %d5,%a4
1909 addq #1,%d1
1910 cmpib #128,%d1
1911 jbne 32b
1912 38:
1913 movel %d5,%a4 /* move to the next logical address */
1914 addq #1,%d0
1915 cmpib #128,%d0
1916 jbne 30b
1917
1918 mmu_print_done:
1919 puts "\n\n"
1920
1921 func_return mmu_print
1922
1923
1924 mmu_030_print_helper:
1925 moveml %d0-%d1,%sp@-
1926 movel %a4,%d0
1927 movel %d6,%d1
1928 lea %pc@(mmu_030_print_flags),%a6
1929 jbsr mmu_print_tuple
1930 moveml %sp@+,%d0-%d1
1931 rts
1932
1933 mmu_print_tuple_invalidate:
1934 moveml %a0/%d7,%sp@-
1935
1936 lea %pc@(L(mmu_print_data)),%a0
1937 tstl %a0@(mmu_next_valid)
1938 jbmi mmu_print_tuple_invalidate_exit
1939
1940 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1941
1942 putn %a4
1943
1944 puts "##\n"
1945
1946 mmu_print_tuple_invalidate_exit:
1947 moveml %sp@+,%a0/%d7
1948 rts
1949
1950
1951 mmu_print_tuple:
1952 moveml %d0-%d7/%a0,%sp@-
1953
1954 lea %pc@(L(mmu_print_data)),%a0
1955
1956 tstl %a0@(mmu_next_valid)
1957 jble mmu_print_tuple_print
1958
1959 cmpl %a0@(mmu_next_physical),%d1
1960 jbeq mmu_print_tuple_increment
1961
1962 mmu_print_tuple_print:
1963 putn %d0
1964 puts "->"
1965 putn %d1
1966
1967 movel %d1,%d6
1968 jbsr %a6@
1969
1970 mmu_print_tuple_record:
1971 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1972
1973 movel %d1,%a0@(mmu_next_physical)
1974
1975 mmu_print_tuple_increment:
1976 movel %d5,%d7
1977 subl %a4,%d7
1978 addl %d7,%a0@(mmu_next_physical)
1979
1980 mmu_print_tuple_exit:
1981 moveml %sp@+,%d0-%d7/%a0
1982 rts
1983
1984 mmu_print_machine_cpu_types:
1985 puts "machine: "
1986
1987 is_not_amiga(1f)
1988 puts "amiga"
1989 jbra 9f
1990 1:
1991 is_not_atari(2f)
1992 puts "atari"
1993 jbra 9f
1994 2:
1995 is_not_mac(3f)
1996 puts "macintosh"
1997 jbra 9f
1998 3: puts "unknown"
1999 9: putc '\n'
2000
2001 puts "cputype: 0"
2002 is_not_060(1f)
2003 putc '6'
2004 jbra 9f
2005 1:
2006 is_not_040_or_060(2f)
2007 putc '4'
2008 jbra 9f
2009 2: putc '3'
2010 9: putc '0'
2011 putc '\n'
2012
2013 rts
2014 #endif /* MMU_PRINT */
2015
2016 /*
2017 * mmu_map_tt
2018 *
2019 * This is a specific function which works on all 680x0 machines.
2020 * On 030, 040 & 060 it will attempt to use Transparent Translation
2021 * registers (tt1).
2022 * On 020 it will call the standard mmu_map which will use early
2023 * terminating descriptors.
2024 */
2025 func_start mmu_map_tt,%d0/%d1/%a0,4
2026
2027 dputs "mmu_map_tt:"
2028 dputn ARG1
2029 dputn ARG2
2030 dputn ARG3
2031 dputn ARG4
2032 dputc '\n'
2033
2034 is_020(L(do_map))
2035
2036 /* Extract the highest bit set
2037 */
2038 bfffo ARG3{#0,#32},%d1
2039 cmpw #8,%d1
2040 jcc L(do_map)
2041
2042 /* And get the mask
2043 */
2044 moveq #-1,%d0
2045 lsrl %d1,%d0
2046 lsrl #1,%d0
2047
2048 /* Mask the address
2049 */
2050 movel %d0,%d1
2051 notl %d1
2052 andl ARG2,%d1
2053
2054 /* Generate the upper 16bit of the tt register
2055 */
2056 lsrl #8,%d0
2057 orl %d0,%d1
2058 clrw %d1
2059
2060 is_040_or_060(L(mmu_map_tt_040))
2061
2062 /* set 030 specific bits (read/write access for supervisor mode
2063 * (highest function code set, lower two bits masked))
2064 */
2065 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2066 movel ARG4,%d0
2067 btst #6,%d0
2068 jeq 1f
2069 orw #TTR_CI,%d1
2070
2071 1: lea STACK,%a0
2072 dputn %d1
2073 movel %d1,%a0@
2074 .chip 68030
2075 tstl ARG1
2076 jne 1f
2077 pmove %a0@,%tt0
2078 jra 2f
2079 1: pmove %a0@,%tt1
2080 2: .chip 68k
2081 jra L(mmu_map_tt_done)
2082
2083 /* set 040 specific bits
2084 */
2085 L(mmu_map_tt_040):
2086 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2087 orl ARG4,%d1
2088 dputn %d1
2089
2090 .chip 68040
2091 tstl ARG1
2092 jne 1f
2093 movec %d1,%itt0
2094 movec %d1,%dtt0
2095 jra 2f
2096 1: movec %d1,%itt1
2097 movec %d1,%dtt1
2098 2: .chip 68k
2099
2100 jra L(mmu_map_tt_done)
2101
2102 L(do_map):
2103 mmu_map_eq ARG2,ARG3,ARG4
2104
2105 L(mmu_map_tt_done):
2106
2107 func_return mmu_map_tt
2108
2109 /*
2110 * mmu_map
2111 *
2112 * This routine will map a range of memory using a pointer
2113 * table and allocating the pages on the fly from the kernel.
2114 * The pointer table does not have to be already linked into
2115 * the root table, this routine will do that if necessary.
2116 *
2117 * NOTE
2118 * This routine will assert failure and use the serial_putc
2119 * routines in the case of a run-time error. For example,
2120 * if the address is already mapped.
2121 *
2122 * NOTE-2
2123 * This routine will use early terminating descriptors
2124 * where possible for the 68020+68851 and 68030 type
2125 * processors.
2126 */
2127 func_start mmu_map,%d0-%d4/%a0-%a4
2128
2129 dputs "\nmmu_map:"
2130 dputn ARG1
2131 dputn ARG2
2132 dputn ARG3
2133 dputn ARG4
2134 dputc '\n'
2135
2136 /* Get logical address and round it down to 256KB
2137 */
2138 movel ARG1,%d0
2139 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2140 movel %d0,%a3
2141
2142 /* Get the end address
2143 */
2144 movel ARG1,%a4
2145 addl ARG3,%a4
2146 subql #1,%a4
2147
2148 /* Get physical address and round it down to 256KB
2149 */
2150 movel ARG2,%d0
2151 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2152 movel %d0,%a2
2153
2154 /* Add page attributes to the physical address
2155 */
2156 movel ARG4,%d0
2157 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2158 addw %d0,%a2
2159
2160 dputn %a2
2161 dputn %a3
2162 dputn %a4
2163
2164 is_not_040_or_060(L(mmu_map_030))
2165
2166 addw #_PAGE_GLOBAL040,%a2
2167 /*
2168 * MMU 040 & 060 Support
2169 *
2170 * The MMU usage for the 040 and 060 is different enough from
2171 * the 030 and 68851 that there is separate code. This comment
2172 * block describes the data structures and algorithms built by
2173 * this code.
2174 *
2175 * The 040 does not support early terminating descriptors, as
2176 * the 030 does. Therefore, a third level of table is needed
2177 * for the 040, and that would be the page table. In Linux,
2178 * page tables are allocated directly from the memory above the
2179 * kernel.
2180 *
2181 */
2182
2183 L(mmu_map_040):
2184 /* Calculate the offset into the root table
2185 */
2186 movel %a3,%d0
2187 moveq #ROOT_INDEX_SHIFT,%d1
2188 lsrl %d1,%d0
2189 mmu_get_root_table_entry %d0
2190
2191 /* Calculate the offset into the pointer table
2192 */
2193 movel %a3,%d0
2194 moveq #PTR_INDEX_SHIFT,%d1
2195 lsrl %d1,%d0
2196 andl #PTR_TABLE_SIZE-1,%d0
2197 mmu_get_ptr_table_entry %a0,%d0
2198
2199 /* Calculate the offset into the page table
2200 */
2201 movel %a3,%d0
2202 moveq #PAGE_INDEX_SHIFT,%d1
2203 lsrl %d1,%d0
2204 andl #PAGE_TABLE_SIZE-1,%d0
2205 mmu_get_page_table_entry %a0,%d0
2206
2207 /* The page table entry must not no be busy
2208 */
2209 tstl %a0@
2210 jne L(mmu_map_error)
2211
2212 /* Do the mapping and advance the pointers
2213 */
2214 movel %a2,%a0@
2215 2:
2216 addw #PAGESIZE,%a2
2217 addw #PAGESIZE,%a3
2218
2219 /* Ready with mapping?
2220 */
2221 lea %a3@(-1),%a0
2222 cmpl %a0,%a4
2223 jhi L(mmu_map_040)
2224 jra L(mmu_map_done)
2225
2226 L(mmu_map_030):
2227 /* Calculate the offset into the root table
2228 */
2229 movel %a3,%d0
2230 moveq #ROOT_INDEX_SHIFT,%d1
2231 lsrl %d1,%d0
2232 mmu_get_root_table_entry %d0
2233
2234 /* Check if logical address 32MB aligned,
2235 * so we can try to map it once
2236 */
2237 movel %a3,%d0
2238 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2239 jne 1f
2240
2241 /* Is there enough to map for 32MB at once
2242 */
2243 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2244 cmpl %a1,%a4
2245 jcs 1f
2246
2247 addql #1,%a1
2248
2249 /* The root table entry must not no be busy
2250 */
2251 tstl %a0@
2252 jne L(mmu_map_error)
2253
2254 /* Do the mapping and advance the pointers
2255 */
2256 dputs "early term1"
2257 dputn %a2
2258 dputn %a3
2259 dputn %a1
2260 dputc '\n'
2261 movel %a2,%a0@
2262
2263 movel %a1,%a3
2264 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2265 jra L(mmu_mapnext_030)
2266 1:
2267 /* Calculate the offset into the pointer table
2268 */
2269 movel %a3,%d0
2270 moveq #PTR_INDEX_SHIFT,%d1
2271 lsrl %d1,%d0
2272 andl #PTR_TABLE_SIZE-1,%d0
2273 mmu_get_ptr_table_entry %a0,%d0
2274
2275 /* The pointer table entry must not no be busy
2276 */
2277 tstl %a0@
2278 jne L(mmu_map_error)
2279
2280 /* Do the mapping and advance the pointers
2281 */
2282 dputs "early term2"
2283 dputn %a2
2284 dputn %a3
2285 dputc '\n'
2286 movel %a2,%a0@
2287
2288 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2289 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2290
2291 L(mmu_mapnext_030):
2292 /* Ready with mapping?
2293 */
2294 lea %a3@(-1),%a0
2295 cmpl %a0,%a4
2296 jhi L(mmu_map_030)
2297 jra L(mmu_map_done)
2298
2299 L(mmu_map_error):
2300
2301 dputs "mmu_map error:"
2302 dputn %a2
2303 dputn %a3
2304 dputc '\n'
2305
2306 L(mmu_map_done):
2307
2308 func_return mmu_map
2309
2310 /*
2311 * mmu_fixup
2312 *
2313 * On the 040 class machines, all pages that are used for the
2314 * mmu have to be fixed up.
2315 */
2316
2317 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2318
2319 dputs "mmu_fixup_page_mmu_cache"
2320 dputn ARG1
2321
2322 /* Calculate the offset into the root table
2323 */
2324 movel ARG1,%d0
2325 moveq #ROOT_INDEX_SHIFT,%d1
2326 lsrl %d1,%d0
2327 mmu_get_root_table_entry %d0
2328
2329 /* Calculate the offset into the pointer table
2330 */
2331 movel ARG1,%d0
2332 moveq #PTR_INDEX_SHIFT,%d1
2333 lsrl %d1,%d0
2334 andl #PTR_TABLE_SIZE-1,%d0
2335 mmu_get_ptr_table_entry %a0,%d0
2336
2337 /* Calculate the offset into the page table
2338 */
2339 movel ARG1,%d0
2340 moveq #PAGE_INDEX_SHIFT,%d1
2341 lsrl %d1,%d0
2342 andl #PAGE_TABLE_SIZE-1,%d0
2343 mmu_get_page_table_entry %a0,%d0
2344
2345 movel %a0@,%d0
2346 andil #_CACHEMASK040,%d0
2347 orl %pc@(m68k_pgtable_cachemode),%d0
2348 movel %d0,%a0@
2349
2350 dputc '\n'
2351
2352 func_return mmu_fixup_page_mmu_cache
2353
2354 /*
2355 * mmu_temp_map
2356 *
2357 * create a temporary mapping to enable the mmu,
2358 * this we don't need any transparation translation tricks.
2359 */
2360
2361 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2362
2363 dputs "mmu_temp_map"
2364 dputn ARG1
2365 dputn ARG2
2366 dputc '\n'
2367
2368 lea %pc@(L(temp_mmap_mem)),%a1
2369
2370 /* Calculate the offset in the root table
2371 */
2372 movel ARG2,%d0
2373 moveq #ROOT_INDEX_SHIFT,%d1
2374 lsrl %d1,%d0
2375 mmu_get_root_table_entry %d0
2376
2377 /* Check if the table is temporary allocated, so we have to reuse it
2378 */
2379 movel %a0@,%d0
2380 cmpl %pc@(L(memory_start)),%d0
2381 jcc 1f
2382
2383 /* Temporary allocate a ptr table and insert it into the root table
2384 */
2385 movel %a1@,%d0
2386 addl #PTR_TABLE_SIZE*4,%a1@
2387 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2388 movel %d0,%a0@
2389 dputs " (new)"
2390 1:
2391 dputn %d0
2392 /* Mask the root table entry for the ptr table
2393 */
2394 andw #-ROOT_TABLE_SIZE,%d0
2395 movel %d0,%a0
2396
2397 /* Calculate the offset into the pointer table
2398 */
2399 movel ARG2,%d0
2400 moveq #PTR_INDEX_SHIFT,%d1
2401 lsrl %d1,%d0
2402 andl #PTR_TABLE_SIZE-1,%d0
2403 lea %a0@(%d0*4),%a0
2404 dputn %a0
2405
2406 /* Check if a temporary page table is already allocated
2407 */
2408 movel %a0@,%d0
2409 jne 1f
2410
2411 /* Temporary allocate a page table and insert it into the ptr table
2412 */
2413 movel %a1@,%d0
2414 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2415 alignment restriction for pointer tables on the '0[46]0. */
2416 addl #512,%a1@
2417 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2418 movel %d0,%a0@
2419 dputs " (new)"
2420 1:
2421 dputn %d0
2422 /* Mask the ptr table entry for the page table
2423 */
2424 andw #-PTR_TABLE_SIZE,%d0
2425 movel %d0,%a0
2426
2427 /* Calculate the offset into the page table
2428 */
2429 movel ARG2,%d0
2430 moveq #PAGE_INDEX_SHIFT,%d1
2431 lsrl %d1,%d0
2432 andl #PAGE_TABLE_SIZE-1,%d0
2433 lea %a0@(%d0*4),%a0
2434 dputn %a0
2435
2436 /* Insert the address into the page table
2437 */
2438 movel ARG1,%d0
2439 andw #-PAGESIZE,%d0
2440 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2441 movel %d0,%a0@
2442 dputn %d0
2443
2444 dputc '\n'
2445
2446 func_return mmu_temp_map
2447
2448 func_start mmu_engage,%d0-%d2/%a0-%a3
2449
2450 moveq #ROOT_TABLE_SIZE-1,%d0
2451 /* Temporarily use a different root table. */
2452 lea %pc@(L(kernel_pgdir_ptr)),%a0
2453 movel %a0@,%a2
2454 movel %pc@(L(memory_start)),%a1
2455 movel %a1,%a0@
2456 movel %a2,%a0
2457 1:
2458 movel %a0@+,%a1@+
2459 dbra %d0,1b
2460
2461 lea %pc@(L(temp_mmap_mem)),%a0
2462 movel %a1,%a0@
2463
2464 movew #PAGESIZE-1,%d0
2465 1:
2466 clrl %a1@+
2467 dbra %d0,1b
2468
2469 lea %pc@(1b),%a0
2470 movel #1b,%a1
2471 /* Skip temp mappings if phys == virt */
2472 cmpl %a0,%a1
2473 jeq 1f
2474
2475 mmu_temp_map %a0,%a0
2476 mmu_temp_map %a0,%a1
2477
2478 addw #PAGESIZE,%a0
2479 addw #PAGESIZE,%a1
2480 mmu_temp_map %a0,%a0
2481 mmu_temp_map %a0,%a1
2482 1:
2483 movel %pc@(L(memory_start)),%a3
2484 movel %pc@(L(phys_kernel_start)),%d2
2485
2486 is_not_040_or_060(L(mmu_engage_030))
2487
2488 L(mmu_engage_040):
2489 .chip 68040
2490 nop
2491 cinva %bc
2492 nop
2493 pflusha
2494 nop
2495 movec %a3,%srp
2496 movel #TC_ENABLE+TC_PAGE4K,%d0
2497 movec %d0,%tc /* enable the MMU */
2498 jmp 1f:l
2499 1: nop
2500 movec %a2,%srp
2501 nop
2502 cinva %bc
2503 nop
2504 pflusha
2505 .chip 68k
2506 jra L(mmu_engage_cleanup)
2507
2508 L(mmu_engage_030_temp):
2509 .space 12
2510 L(mmu_engage_030):
2511 .chip 68030
2512 lea %pc@(L(mmu_engage_030_temp)),%a0
2513 movel #0x80000002,%a0@
2514 movel %a3,%a0@(4)
2515 movel #0x0808,%d0
2516 movec %d0,%cacr
2517 pmove %a0@,%srp
2518 pflusha
2519 /*
2520 * enable,super root enable,4096 byte pages,7 bit root index,
2521 * 7 bit pointer index, 6 bit page table index.
2522 */
2523 movel #0x82c07760,%a0@(8)
2524 pmove %a0@(8),%tc /* enable the MMU */
2525 jmp 1f:l
2526 1: movel %a2,%a0@(4)
2527 movel #0x0808,%d0
2528 movec %d0,%cacr
2529 pmove %a0@,%srp
2530 pflusha
2531 .chip 68k
2532
2533 L(mmu_engage_cleanup):
2534 subl #PAGE_OFFSET,%d2
2535 subl %d2,%a2
2536 movel %a2,L(kernel_pgdir_ptr)
2537 subl %d2,%fp
2538 subl %d2,%sp
2539 subl %d2,ARG0
2540
2541 func_return mmu_engage
2542
2543 func_start mmu_get_root_table_entry,%d0/%a1
2544
2545 #if 0
2546 dputs "mmu_get_root_table_entry:"
2547 dputn ARG1
2548 dputs " ="
2549 #endif
2550
2551 movel %pc@(L(kernel_pgdir_ptr)),%a0
2552 tstl %a0
2553 jne 2f
2554
2555 dputs "\nmmu_init:"
2556
2557 /* Find the start of free memory, get_bi_record does this for us,
2558 * as the bootinfo structure is located directly behind the kernel
2559 * and and we simply search for the last entry.
2560 */
2561 get_bi_record BI_LAST
2562 addw #PAGESIZE-1,%a0
2563 movel %a0,%d0
2564 andw #-PAGESIZE,%d0
2565
2566 dputn %d0
2567
2568 lea %pc@(L(memory_start)),%a0
2569 movel %d0,%a0@
2570 lea %pc@(L(kernel_end)),%a0
2571 movel %d0,%a0@
2572
2573 /* we have to return the first page at _stext since the init code
2574 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2575 * page is used for further ptr tables in get_ptr_table.
2576 */
2577 lea %pc@(_stext),%a0
2578 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2579 movel %a0,%a1@
2580 addl #ROOT_TABLE_SIZE*4,%a1@
2581
2582 lea %pc@(L(mmu_num_pointer_tables)),%a1
2583 addql #1,%a1@
2584
2585 /* clear the page
2586 */
2587 movel %a0,%a1
2588 movew #PAGESIZE/4-1,%d0
2589 1:
2590 clrl %a1@+
2591 dbra %d0,1b
2592
2593 lea %pc@(L(kernel_pgdir_ptr)),%a1
2594 movel %a0,%a1@
2595
2596 dputn %a0
2597 dputc '\n'
2598 2:
2599 movel ARG1,%d0
2600 lea %a0@(%d0*4),%a0
2601
2602 #if 0
2603 dputn %a0
2604 dputc '\n'
2605 #endif
2606
2607 func_return mmu_get_root_table_entry
2608
2609
2610
2611 func_start mmu_get_ptr_table_entry,%d0/%a1
2612
2613 #if 0
2614 dputs "mmu_get_ptr_table_entry:"
2615 dputn ARG1
2616 dputn ARG2
2617 dputs " ="
2618 #endif
2619
2620 movel ARG1,%a0
2621 movel %a0@,%d0
2622 jne 2f
2623
2624 /* Keep track of the number of pointer tables we use
2625 */
2626 dputs "\nmmu_get_new_ptr_table:"
2627 lea %pc@(L(mmu_num_pointer_tables)),%a0
2628 movel %a0@,%d0
2629 addql #1,%a0@
2630
2631 /* See if there is a free pointer table in our cache of pointer tables
2632 */
2633 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2634 andw #7,%d0
2635 jne 1f
2636
2637 /* Get a new pointer table page from above the kernel memory
2638 */
2639 get_new_page
2640 movel %a0,%a1@
2641 1:
2642 /* There is an unused pointer table in our cache... use it
2643 */
2644 movel %a1@,%d0
2645 addl #PTR_TABLE_SIZE*4,%a1@
2646
2647 dputn %d0
2648 dputc '\n'
2649
2650 /* Insert the new pointer table into the root table
2651 */
2652 movel ARG1,%a0
2653 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2654 movel %d0,%a0@
2655 2:
2656 /* Extract the pointer table entry
2657 */
2658 andw #-PTR_TABLE_SIZE,%d0
2659 movel %d0,%a0
2660 movel ARG2,%d0
2661 lea %a0@(%d0*4),%a0
2662
2663 #if 0
2664 dputn %a0
2665 dputc '\n'
2666 #endif
2667
2668 func_return mmu_get_ptr_table_entry
2669
2670
2671 func_start mmu_get_page_table_entry,%d0/%a1
2672
2673 #if 0
2674 dputs "mmu_get_page_table_entry:"
2675 dputn ARG1
2676 dputn ARG2
2677 dputs " ="
2678 #endif
2679
2680 movel ARG1,%a0
2681 movel %a0@,%d0
2682 jne 2f
2683
2684 /* If the page table entry doesn't exist, we allocate a complete new
2685 * page and use it as one continues big page table which can cover
2686 * 4MB of memory, nearly almost all mappings have that alignment.
2687 */
2688 get_new_page
2689 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2690
2691 /* align pointer table entry for a page of page tables
2692 */
2693 movel ARG1,%d0
2694 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2695 movel %d0,%a1
2696
2697 /* Insert the page tables into the pointer entries
2698 */
2699 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2700 1:
2701 movel %a0,%a1@+
2702 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2703 dbra %d0,1b
2704
2705 /* Now we can get the initialized pointer table entry
2706 */
2707 movel ARG1,%a0
2708 movel %a0@,%d0
2709 2:
2710 /* Extract the page table entry
2711 */
2712 andw #-PAGE_TABLE_SIZE,%d0
2713 movel %d0,%a0
2714 movel ARG2,%d0
2715 lea %a0@(%d0*4),%a0
2716
2717 #if 0
2718 dputn %a0
2719 dputc '\n'
2720 #endif
2721
2722 func_return mmu_get_page_table_entry
2723
2724 /*
2725 * get_new_page
2726 *
2727 * Return a new page from the memory start and clear it.
2728 */
2729 func_start get_new_page,%d0/%a1
2730
2731 dputs "\nget_new_page:"
2732
2733 /* allocate the page and adjust memory_start
2734 */
2735 lea %pc@(L(memory_start)),%a0
2736 movel %a0@,%a1
2737 addl #PAGESIZE,%a0@
2738
2739 /* clear the new page
2740 */
2741 movel %a1,%a0
2742 movew #PAGESIZE/4-1,%d0
2743 1:
2744 clrl %a1@+
2745 dbra %d0,1b
2746
2747 dputn %a0
2748 dputc '\n'
2749
2750 func_return get_new_page
2751
2752
2753
2754 /*
2755 * Debug output support
2756 * Atarians have a choice between the parallel port, the serial port
2757 * from the MFP or a serial port of the SCC
2758 */
2759
2760 #ifdef CONFIG_MAC
2761
2762 L(scc_initable_mac):
2763 .byte 9,12 /* Reset */
2764 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2765 .byte 3,0xc0 /* receiver: 8 bpc */
2766 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2767 .byte 9,0 /* no interrupts */
2768 .byte 10,0 /* NRZ */
2769 .byte 11,0x50 /* use baud rate generator */
2770 .byte 12,10,13,0 /* 9600 baud */
2771 .byte 14,1 /* Baud rate generator enable */
2772 .byte 3,0xc1 /* enable receiver */
2773 .byte 5,0xea /* enable transmitter */
2774 .byte -1
2775 .even
2776 #endif
2777
2778 #ifdef CONFIG_ATARI
2779 /* #define USE_PRINTER */
2780 /* #define USE_SCC_B */
2781 /* #define USE_SCC_A */
2782 #define USE_MFP
2783
2784 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2785 #define USE_SCC
2786 /* Initialisation table for SCC */
2787 L(scc_initable):
2788 .byte 9,12 /* Reset */
2789 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2790 .byte 3,0xc0 /* receiver: 8 bpc */
2791 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2792 .byte 9,0 /* no interrupts */
2793 .byte 10,0 /* NRZ */
2794 .byte 11,0x50 /* use baud rate generator */
2795 .byte 12,24,13,0 /* 9600 baud */
2796 .byte 14,2,14,3 /* use master clock for BRG, enable */
2797 .byte 3,0xc1 /* enable receiver */
2798 .byte 5,0xea /* enable transmitter */
2799 .byte -1
2800 .even
2801 #endif
2802
2803 #ifdef USE_PRINTER
2804
2805 LPSG_SELECT = 0xff8800
2806 LPSG_READ = 0xff8800
2807 LPSG_WRITE = 0xff8802
2808 LPSG_IO_A = 14
2809 LPSG_IO_B = 15
2810 LPSG_CONTROL = 7
2811 LSTMFP_GPIP = 0xfffa01
2812 LSTMFP_DDR = 0xfffa05
2813 LSTMFP_IERB = 0xfffa09
2814
2815 #elif defined(USE_SCC_B)
2816
2817 LSCC_CTRL = 0xff8c85
2818 LSCC_DATA = 0xff8c87
2819
2820 #elif defined(USE_SCC_A)
2821
2822 LSCC_CTRL = 0xff8c81
2823 LSCC_DATA = 0xff8c83
2824
2825 #elif defined(USE_MFP)
2826
2827 LMFP_UCR = 0xfffa29
2828 LMFP_TDCDR = 0xfffa1d
2829 LMFP_TDDR = 0xfffa25
2830 LMFP_TSR = 0xfffa2d
2831 LMFP_UDR = 0xfffa2f
2832
2833 #endif
2834 #endif /* CONFIG_ATARI */
2835
2836 /*
2837 * Serial port output support.
2838 */
2839
2840 /*
2841 * Initialize serial port hardware for 9600/8/1
2842 */
2843 func_start serial_init,%d0/%d1/%a0/%a1
2844 /*
2845 * Some of the register usage that follows
2846 * CONFIG_AMIGA
2847 * a0 = pointer to boot info record
2848 * d0 = boot info offset
2849 * CONFIG_ATARI
2850 * a0 = address of SCC
2851 * a1 = Liobase address/address of scc_initable
2852 * d0 = init data for serial port
2853 * CONFIG_MAC
2854 * a0 = address of SCC
2855 * a1 = address of scc_initable_mac
2856 * d0 = init data for serial port
2857 */
2858
2859 #ifdef CONFIG_AMIGA
2860 #define SERIAL_DTR 7
2861 #define SERIAL_CNTRL CIABBASE+C_PRA
2862
2863 is_not_amiga(1f)
2864 lea %pc@(L(custom)),%a0
2865 movel #-ZTWOBASE,%a0@
2866 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2867 get_bi_record BI_AMIGA_SERPER
2868 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2869 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2870 1:
2871 #endif
2872 #ifdef CONFIG_ATARI
2873 is_not_atari(4f)
2874 movel %pc@(L(iobase)),%a1
2875 #if defined(USE_PRINTER)
2876 bclr #0,%a1@(LSTMFP_IERB)
2877 bclr #0,%a1@(LSTMFP_DDR)
2878 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2879 moveb #0xff,%a1@(LPSG_WRITE)
2880 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2881 clrb %a1@(LPSG_WRITE)
2882 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2883 moveb %a1@(LPSG_READ),%d0
2884 bset #5,%d0
2885 moveb %d0,%a1@(LPSG_WRITE)
2886 #elif defined(USE_SCC)
2887 lea %a1@(LSCC_CTRL),%a0
2888 lea %pc@(L(scc_initable)),%a1
2889 2: moveb %a1@+,%d0
2890 jmi 3f
2891 moveb %d0,%a0@
2892 moveb %a1@+,%a0@
2893 jra 2b
2894 3: clrb %a0@
2895 #elif defined(USE_MFP)
2896 bclr #1,%a1@(LMFP_TSR)
2897 moveb #0x88,%a1@(LMFP_UCR)
2898 andb #0x70,%a1@(LMFP_TDCDR)
2899 moveb #2,%a1@(LMFP_TDDR)
2900 orb #1,%a1@(LMFP_TDCDR)
2901 bset #1,%a1@(LMFP_TSR)
2902 #endif
2903 jra L(serial_init_done)
2904 4:
2905 #endif
2906 #ifdef CONFIG_MAC
2907 is_not_mac(L(serial_init_not_mac))
2908 #ifdef MAC_SERIAL_DEBUG
2909 #if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2910 #define MAC_USE_SCC_B
2911 #endif
2912 #define mac_scc_cha_b_ctrl_offset 0x0
2913 #define mac_scc_cha_a_ctrl_offset 0x2
2914 #define mac_scc_cha_b_data_offset 0x4
2915 #define mac_scc_cha_a_data_offset 0x6
2916
2917 #ifdef MAC_USE_SCC_A
2918 /* Initialize channel A */
2919 movel %pc@(L(mac_sccbase)),%a0
2920 lea %pc@(L(scc_initable_mac)),%a1
2921 5: moveb %a1@+,%d0
2922 jmi 6f
2923 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2924 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2925 jra 5b
2926 6:
2927 #endif /* MAC_USE_SCC_A */
2928
2929 #ifdef MAC_USE_SCC_B
2930 /* Initialize channel B */
2931 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2932 movel %pc@(L(mac_sccbase)),%a0
2933 #endif /* MAC_USE_SCC_A */
2934 lea %pc@(L(scc_initable_mac)),%a1
2935 7: moveb %a1@+,%d0
2936 jmi 8f
2937 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2938 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2939 jra 7b
2940 8:
2941 #endif /* MAC_USE_SCC_B */
2942 #endif /* MAC_SERIAL_DEBUG */
2943
2944 jra L(serial_init_done)
2945 L(serial_init_not_mac):
2946 #endif /* CONFIG_MAC */
2947
2948 #ifdef CONFIG_Q40
2949 is_not_q40(2f)
2950 /* debug output goes into SRAM, so we don't do it unless requested
2951 - check for '%LX$' signature in SRAM */
2952 lea %pc@(q40_mem_cptr),%a1
2953 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2954 move.l #0xff020000,%a1
2955 cmp.b #'%',%a1@
2956 bne 2f /*nodbg*/
2957 addq.w #4,%a1
2958 cmp.b #'L',%a1@
2959 bne 2f /*nodbg*/
2960 addq.w #4,%a1
2961 cmp.b #'X',%a1@
2962 bne 2f /*nodbg*/
2963 addq.w #4,%a1
2964 cmp.b #'$',%a1@
2965 bne 2f /*nodbg*/
2966 /* signature OK */
2967 lea %pc@(L(q40_do_debug)),%a1
2968 tas %a1@
2969 /*nodbg: q40_do_debug is 0 by default*/
2970 2:
2971 #endif
2972
2973 #ifdef CONFIG_APOLLO
2974 /* We count on the PROM initializing SIO1 */
2975 #endif
2976
2977 #ifdef CONFIG_HP300
2978 /* We count on the boot loader initialising the UART */
2979 #endif
2980
2981 L(serial_init_done):
2982 func_return serial_init
2983
2984 /*
2985 * Output character on serial port.
2986 */
2987 func_start serial_putc,%d0/%d1/%a0/%a1
2988
2989 movel ARG1,%d0
2990 cmpib #'\n',%d0
2991 jbne 1f
2992
2993 /* A little safe recursion is good for the soul */
2994 serial_putc #'\r'
2995 1:
2996
2997 #ifdef CONFIG_AMIGA
2998 is_not_amiga(2f)
2999 andw #0x00ff,%d0
3000 oriw #0x0100,%d0
3001 movel %pc@(L(custom)),%a0
3002 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3003 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3004 andw #0x2000,%d0
3005 jeq 1b
3006 jra L(serial_putc_done)
3007 2:
3008 #endif
3009
3010 #ifdef CONFIG_MAC
3011 is_not_mac(5f)
3012
3013 #ifdef MAC_SERIAL_DEBUG
3014
3015 #ifdef MAC_USE_SCC_A
3016 movel %pc@(L(mac_sccbase)),%a1
3017 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3018 jeq 3b
3019 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3020 #endif /* MAC_USE_SCC_A */
3021
3022 #ifdef MAC_USE_SCC_B
3023 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3024 movel %pc@(L(mac_sccbase)),%a1
3025 #endif /* MAC_USE_SCC_A */
3026 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3027 jeq 4b
3028 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3029 #endif /* MAC_USE_SCC_B */
3030
3031 #endif /* MAC_SERIAL_DEBUG */
3032
3033 jra L(serial_putc_done)
3034 5:
3035 #endif /* CONFIG_MAC */
3036
3037 #ifdef CONFIG_ATARI
3038 is_not_atari(4f)
3039 movel %pc@(L(iobase)),%a1
3040 #if defined(USE_PRINTER)
3041 3: btst #0,%a1@(LSTMFP_GPIP)
3042 jne 3b
3043 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3044 moveb %d0,%a1@(LPSG_WRITE)
3045 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3046 moveb %a1@(LPSG_READ),%d0
3047 bclr #5,%d0
3048 moveb %d0,%a1@(LPSG_WRITE)
3049 nop
3050 nop
3051 bset #5,%d0
3052 moveb %d0,%a1@(LPSG_WRITE)
3053 #elif defined(USE_SCC)
3054 3: btst #2,%a1@(LSCC_CTRL)
3055 jeq 3b
3056 moveb %d0,%a1@(LSCC_DATA)
3057 #elif defined(USE_MFP)
3058 3: btst #7,%a1@(LMFP_TSR)
3059 jeq 3b
3060 moveb %d0,%a1@(LMFP_UDR)
3061 #endif
3062 jra L(serial_putc_done)
3063 4:
3064 #endif /* CONFIG_ATARI */
3065
3066 #ifdef CONFIG_MVME147
3067 is_not_mvme147(2f)
3068 1: btst #2,M147_SCC_CTRL_A
3069 jeq 1b
3070 moveb %d0,M147_SCC_DATA_A
3071 jbra L(serial_putc_done)
3072 2:
3073 #endif
3074
3075 #ifdef CONFIG_MVME16x
3076 is_not_mvme16x(2f)
3077 /*
3078 * If the loader gave us a board type then we can use that to
3079 * select an appropriate output routine; otherwise we just use
3080 * the Bug code. If we haev to use the Bug that means the Bug
3081 * workspace has to be valid, which means the Bug has to use
3082 * the SRAM, which is non-standard.
3083 */
3084 moveml %d0-%d7/%a2-%a6,%sp@-
3085 movel vme_brdtype,%d1
3086 jeq 1f | No tag - use the Bug
3087 cmpi #VME_TYPE_MVME162,%d1
3088 jeq 6f
3089 cmpi #VME_TYPE_MVME172,%d1
3090 jne 5f
3091 /* 162/172; it's an SCC */
3092 6: btst #2,M162_SCC_CTRL_A
3093 nop
3094 nop
3095 nop
3096 jeq 6b
3097 moveb #8,M162_SCC_CTRL_A
3098 nop
3099 nop
3100 nop
3101 moveb %d0,M162_SCC_CTRL_A
3102 jra 3f
3103 5:
3104 /* 166/167/177; it's a CD2401 */
3105 moveb #0,M167_CYCAR
3106 moveb M167_CYIER,%d2
3107 moveb #0x02,M167_CYIER
3108 7:
3109 btst #5,M167_PCSCCTICR
3110 jeq 7b
3111 moveb M167_PCTPIACKR,%d1
3112 moveb M167_CYLICR,%d1
3113 jeq 8f
3114 moveb #0x08,M167_CYTEOIR
3115 jra 7b
3116 8:
3117 moveb %d0,M167_CYTDR
3118 moveb #0,M167_CYTEOIR
3119 moveb %d2,M167_CYIER
3120 jra 3f
3121 1:
3122 moveb %d0,%sp@-
3123 trap #15
3124 .word 0x0020 /* TRAP 0x020 */
3125 3:
3126 moveml %sp@+,%d0-%d7/%a2-%a6
3127 jbra L(serial_putc_done)
3128 2:
3129 #endif /* CONFIG_MVME16x */
3130
3131 #ifdef CONFIG_BVME6000
3132 is_not_bvme6000(2f)
3133 /*
3134 * The BVME6000 machine has a serial port ...
3135 */
3136 1: btst #2,BVME_SCC_CTRL_A
3137 jeq 1b
3138 moveb %d0,BVME_SCC_DATA_A
3139 jbra L(serial_putc_done)
3140 2:
3141 #endif
3142
3143 #ifdef CONFIG_SUN3X
3144 is_not_sun3x(2f)
3145 movel %d0,-(%sp)
3146 movel 0xFEFE0018,%a1
3147 jbsr (%a1)
3148 addq #4,%sp
3149 jbra L(serial_putc_done)
3150 2:
3151 #endif
3152
3153 #ifdef CONFIG_Q40
3154 is_not_q40(2f)
3155 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3156 beq 2f
3157 lea %pc@(q40_mem_cptr),%a1
3158 move.l %a1@,%a0
3159 move.b %d0,%a0@
3160 addq.l #4,%a0
3161 move.l %a0,%a1@
3162 jbra L(serial_putc_done)
3163 2:
3164 #endif
3165
3166 #ifdef CONFIG_APOLLO
3167 is_not_apollo(2f)
3168 movl %pc@(L(iobase)),%a1
3169 moveb %d0,%a1@(LTHRB0)
3170 1: moveb %a1@(LSRB0),%d0
3171 andb #0x4,%d0
3172 beq 1b
3173 jbra L(serial_putc_done)
3174 2:
3175 #endif
3176
3177 #ifdef CONFIG_HP300
3178 is_not_hp300(3f)
3179 movl %pc@(L(iobase)),%a1
3180 addl %pc@(L(uartbase)),%a1
3181 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3182 jmi 3f /* Unset? Exit */
3183 cmpi #256,%d1 /* APCI scode? */
3184 jeq 2f
3185 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3186 andb #0x20,%d1
3187 beq 1b
3188 moveb %d0,%a1@(DCADATA)
3189 jbra L(serial_putc_done)
3190 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3191 andb #0x20,%d1
3192 beq 2b
3193 moveb %d0,%a1@(APCIDATA)
3194 jbra L(serial_putc_done)
3195 3:
3196 #endif
3197
3198 L(serial_putc_done):
3199 func_return serial_putc
3200
3201 /*
3202 * Output a string.
3203 */
3204 func_start puts,%d0/%a0
3205
3206 movel ARG1,%a0
3207 jra 2f
3208 1:
3209 #ifdef CONSOLE
3210 console_putc %d0
3211 #endif
3212 #ifdef SERIAL_DEBUG
3213 serial_putc %d0
3214 #endif
3215 2: moveb %a0@+,%d0
3216 jne 1b
3217
3218 func_return puts
3219
3220 /*
3221 * Output number in hex notation.
3222 */
3223
3224 func_start putn,%d0-%d2
3225
3226 putc ' '
3227
3228 movel ARG1,%d0
3229 moveq #7,%d1
3230 1: roll #4,%d0
3231 move %d0,%d2
3232 andb #0x0f,%d2
3233 addb #'0',%d2
3234 cmpb #'9',%d2
3235 jls 2f
3236 addb #'A'-('9'+1),%d2
3237 2:
3238 #ifdef CONSOLE
3239 console_putc %d2
3240 #endif
3241 #ifdef SERIAL_DEBUG
3242 serial_putc %d2
3243 #endif
3244 dbra %d1,1b
3245
3246 func_return putn
3247
3248 #ifdef CONFIG_MAC
3249 /*
3250 * mac_serial_print
3251 *
3252 * This routine takes its parameters on the stack. It then
3253 * turns around and calls the internal routine. This routine
3254 * is used until the Linux console driver initializes itself.
3255 *
3256 * The calling parameters are:
3257 * void mac_serial_print(const char *str);
3258 *
3259 * This routine does NOT understand variable arguments only
3260 * simple strings!
3261 */
3262 ENTRY(mac_serial_print)
3263 moveml %d0/%a0,%sp@-
3264 #if 1
3265 move %sr,%sp@-
3266 ori #0x0700,%sr
3267 #endif
3268 movel %sp@(10),%a0 /* fetch parameter */
3269 jra 2f
3270 1: serial_putc %d0
3271 2: moveb %a0@+,%d0
3272 jne 1b
3273 #if 1
3274 move %sp@+,%sr
3275 #endif
3276 moveml %sp@+,%d0/%a0
3277 rts
3278 #endif /* CONFIG_MAC */
3279
3280 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3281 func_start set_leds,%d0/%a0
3282 movel ARG1,%d0
3283 #ifdef CONFIG_HP300
3284 is_not_hp300(1f)
3285 movel %pc@(L(iobase)),%a0
3286 moveb %d0,%a0@(0x1ffff)
3287 jra 2f
3288 #endif
3289 1:
3290 #ifdef CONFIG_APOLLO
3291 movel %pc@(L(iobase)),%a0
3292 lsll #8,%d0
3293 eorw #0xff00,%d0
3294 moveb %d0,%a0@(LCPUCTRL)
3295 #endif
3296 2:
3297 func_return set_leds
3298 #endif
3299
3300 #ifdef CONSOLE
3301 /*
3302 * For continuity, see the data alignment
3303 * to which this structure is tied.
3304 */
3305 #define Lconsole_struct_cur_column 0
3306 #define Lconsole_struct_cur_row 4
3307 #define Lconsole_struct_num_columns 8
3308 #define Lconsole_struct_num_rows 12
3309 #define Lconsole_struct_left_edge 16
3310 #define Lconsole_struct_penguin_putc 20
3311
3312 func_start console_init,%a0-%a4/%d0-%d7
3313 /*
3314 * Some of the register usage that follows
3315 * a0 = pointer to boot_info
3316 * a1 = pointer to screen
3317 * a2 = pointer to Lconsole_globals
3318 * d3 = pixel width of screen
3319 * d4 = pixel height of screen
3320 * (d3,d4) ~= (x,y) of a point just below
3321 * and to the right of the screen
3322 * NOT on the screen!
3323 * d5 = number of bytes per scan line
3324 * d6 = number of bytes on the entire screen
3325 */
3326
3327 lea %pc@(L(console_globals)),%a2
3328 movel %pc@(L(mac_videobase)),%a1
3329 movel %pc@(L(mac_rowbytes)),%d5
3330 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3331 movel %d3,%d4
3332 swap %d4 /* -> high byte */
3333 andl #0xffff,%d3 /* d3 = screen width in pixels */
3334 andl #0xffff,%d4 /* d4 = screen height in pixels */
3335
3336 movel %d5,%d6
3337 | subl #20,%d6
3338 mulul %d4,%d6 /* scan line bytes x num scan lines */
3339 divul #8,%d6 /* we'll clear 8 bytes at a time */
3340 moveq #-1,%d0 /* Mac_black */
3341 subq #1,%d6
3342
3343 L(console_clear_loop):
3344 movel %d0,%a1@+
3345 movel %d0,%a1@+
3346 dbra %d6,L(console_clear_loop)
3347
3348 /* Calculate font size */
3349
3350 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3351 lea %pc@(font_vga_8x8),%a0
3352 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3353 lea %pc@(font_vga_8x16),%a0
3354 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3355 lea %pc@(font_vga_6x11),%a0
3356 #elif defined(CONFIG_FONT_8x8) /* default */
3357 lea %pc@(font_vga_8x8),%a0
3358 #else /* no compiled-in font */
3359 lea 0,%a0
3360 #endif
3361
3362 /*
3363 * At this point we make a shift in register usage
3364 * a1 = address of console_font pointer
3365 */
3366 lea %pc@(L(console_font)),%a1
3367 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3368 tstl %a0
3369 jeq 1f
3370 lea %pc@(L(console_font_data)),%a4
3371 movel %a0@(FONT_DESC_DATA),%d0
3372 subl #L(console_font),%a1
3373 addl %a1,%d0
3374 movel %d0,%a4@
3375
3376 /*
3377 * Calculate global maxs
3378 * Note - we can use either an
3379 * 8 x 16 or 8 x 8 character font
3380 * 6 x 11 also supported
3381 */
3382 /* ASSERT: a0 = contents of Lconsole_font */
3383 movel %d3,%d0 /* screen width in pixels */
3384 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3385
3386 movel %d4,%d1 /* screen height in pixels */
3387 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3388
3389 movel %d0,%a2@(Lconsole_struct_num_columns)
3390 movel %d1,%a2@(Lconsole_struct_num_rows)
3391
3392 /*
3393 * Clear the current row and column
3394 */
3395 clrl %a2@(Lconsole_struct_cur_column)
3396 clrl %a2@(Lconsole_struct_cur_row)
3397 clrl %a2@(Lconsole_struct_left_edge)
3398
3399 /*
3400 * Initialization is complete
3401 */
3402 1:
3403 func_return console_init
3404
3405 func_start console_put_stats,%a0/%d7
3406 /*
3407 * Some of the register usage that follows
3408 * a0 = pointer to boot_info
3409 * d7 = value of boot_info fields
3410 */
3411 puts "\nMacLinux\n\n"
3412
3413 #ifdef SERIAL_DEBUG
3414 puts " vidaddr:"
3415 putn %pc@(L(mac_videobase)) /* video addr. */
3416
3417 puts "\n _stext:"
3418 lea %pc@(_stext),%a0
3419 putn %a0
3420
3421 puts "\nbootinfo:"
3422 lea %pc@(_end),%a0
3423 putn %a0
3424
3425 puts "\ncpuid:"
3426 putn %pc@(L(cputype))
3427 putc '\n'
3428
3429 #ifdef MAC_SERIAL_DEBUG
3430 putn %pc@(L(mac_sccbase))
3431 putc '\n'
3432 #endif
3433 # if defined(MMU_PRINT)
3434 jbsr mmu_print_machine_cpu_types
3435 # endif /* MMU_PRINT */
3436 #endif /* SERIAL_DEBUG */
3437
3438 func_return console_put_stats
3439
3440 #ifdef CONSOLE_PENGUIN
3441 func_start console_put_penguin,%a0-%a1/%d0-%d7
3442 /*
3443 * Get 'that_penguin' onto the screen in the upper right corner
3444 * penguin is 64 x 74 pixels, align against right edge of screen
3445 */
3446 lea %pc@(L(mac_dimensions)),%a0
3447 movel %a0@,%d0
3448 andil #0xffff,%d0
3449 subil #64,%d0 /* snug up against the right edge */
3450 clrl %d1 /* start at the top */
3451 movel #73,%d7
3452 lea %pc@(L(that_penguin)),%a1
3453 L(console_penguin_row):
3454 movel #31,%d6
3455 L(console_penguin_pixel_pair):
3456 moveb %a1@,%d2
3457 lsrb #4,%d2
3458 console_plot_pixel %d0,%d1,%d2
3459 addq #1,%d0
3460 moveb %a1@+,%d2
3461 console_plot_pixel %d0,%d1,%d2
3462 addq #1,%d0
3463 dbra %d6,L(console_penguin_pixel_pair)
3464
3465 subil #64,%d0
3466 addq #1,%d1
3467 dbra %d7,L(console_penguin_row)
3468
3469 func_return console_put_penguin
3470
3471 /* include penguin bitmap */
3472 L(that_penguin):
3473 #include "../mac/mac_penguin.S"
3474 #endif
3475
3476 /*
3477 * Calculate source and destination addresses
3478 * output a1 = dest
3479 * a2 = source
3480 */
3481
3482 func_start console_scroll,%a0-%a4/%d0-%d7
3483 lea %pc@(L(mac_videobase)),%a0
3484 movel %a0@,%a1
3485 movel %a1,%a2
3486 lea %pc@(L(mac_rowbytes)),%a0
3487 movel %a0@,%d5
3488 movel %pc@(L(console_font)),%a0
3489 tstl %a0
3490 jeq 1f
3491 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3492 addal %d5,%a2
3493
3494 /*
3495 * Get dimensions
3496 */
3497 lea %pc@(L(mac_dimensions)),%a0
3498 movel %a0@,%d3
3499 movel %d3,%d4
3500 swap %d4
3501 andl #0xffff,%d3 /* d3 = screen width in pixels */
3502 andl #0xffff,%d4 /* d4 = screen height in pixels */
3503
3504 /*
3505 * Calculate number of bytes to move
3506 */
3507 lea %pc@(L(mac_rowbytes)),%a0
3508 movel %a0@,%d6
3509 movel %pc@(L(console_font)),%a0
3510 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3511 mulul %d4,%d6 /* scan line bytes x num scan lines */
3512 divul #32,%d6 /* we'll move 8 longs at a time */
3513 subq #1,%d6
3514
3515 L(console_scroll_loop):
3516 movel %a2@+,%a1@+
3517 movel %a2@+,%a1@+
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 movel %a2@+,%a1@+
3521 movel %a2@+,%a1@+
3522 movel %a2@+,%a1@+
3523 movel %a2@+,%a1@+
3524 dbra %d6,L(console_scroll_loop)
3525
3526 lea %pc@(L(mac_rowbytes)),%a0
3527 movel %a0@,%d6
3528 movel %pc@(L(console_font)),%a0
3529 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3530 divul #32,%d6 /* we'll move 8 words at a time */
3531 subq #1,%d6
3532
3533 moveq #-1,%d0
3534 L(console_scroll_clear_loop):
3535 movel %d0,%a1@+
3536 movel %d0,%a1@+
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 movel %d0,%a1@+
3540 movel %d0,%a1@+
3541 movel %d0,%a1@+
3542 movel %d0,%a1@+
3543 dbra %d6,L(console_scroll_clear_loop)
3544
3545 1:
3546 func_return console_scroll
3547
3548
3549 func_start console_putc,%a0/%a1/%d0-%d7
3550
3551 is_not_mac(L(console_exit))
3552 tstl %pc@(L(console_font))
3553 jeq L(console_exit)
3554
3555 /* Output character in d7 on console.
3556 */
3557 movel ARG1,%d7
3558 cmpib #'\n',%d7
3559 jbne 1f
3560
3561 /* A little safe recursion is good for the soul */
3562 console_putc #'\r'
3563 1:
3564 lea %pc@(L(console_globals)),%a0
3565
3566 cmpib #10,%d7
3567 jne L(console_not_lf)
3568 movel %a0@(Lconsole_struct_cur_row),%d0
3569 addil #1,%d0
3570 movel %d0,%a0@(Lconsole_struct_cur_row)
3571 movel %a0@(Lconsole_struct_num_rows),%d1
3572 cmpl %d1,%d0
3573 jcs 1f
3574 subil #1,%d0
3575 movel %d0,%a0@(Lconsole_struct_cur_row)
3576 console_scroll
3577 1:
3578 jra L(console_exit)
3579
3580 L(console_not_lf):
3581 cmpib #13,%d7
3582 jne L(console_not_cr)
3583 clrl %a0@(Lconsole_struct_cur_column)
3584 jra L(console_exit)
3585
3586 L(console_not_cr):
3587 cmpib #1,%d7
3588 jne L(console_not_home)
3589 clrl %a0@(Lconsole_struct_cur_row)
3590 clrl %a0@(Lconsole_struct_cur_column)
3591 jra L(console_exit)
3592
3593 /*
3594 * At this point we know that the %d7 character is going to be
3595 * rendered on the screen. Register usage is -
3596 * a0 = pointer to console globals
3597 * a1 = font data
3598 * d0 = cursor column
3599 * d1 = cursor row to draw the character
3600 * d7 = character number
3601 */
3602 L(console_not_home):
3603 movel %a0@(Lconsole_struct_cur_column),%d0
3604 addql #1,%a0@(Lconsole_struct_cur_column)
3605 movel %a0@(Lconsole_struct_num_columns),%d1
3606 cmpl %d1,%d0
3607 jcs 1f
3608 console_putc #'\n' /* recursion is OK! */
3609 1:
3610 movel %a0@(Lconsole_struct_cur_row),%d1
3611
3612 /*
3613 * At this point we make a shift in register usage
3614 * a0 = address of pointer to font data (fbcon_font_desc)
3615 */
3616 movel %pc@(L(console_font)),%a0
3617 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3618 andl #0x000000ff,%d7
3619 /* ASSERT: a0 = contents of Lconsole_font */
3620 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3621 addl %d7,%a1 /* a1 = points to char image */
3622
3623 /*
3624 * At this point we make a shift in register usage
3625 * d0 = pixel coordinate, x
3626 * d1 = pixel coordinate, y
3627 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3628 * d3 = font scan line data (8 pixels)
3629 * d6 = count down for the font's pixel width (8)
3630 * d7 = count down for the font's pixel count in height
3631 */
3632 /* ASSERT: a0 = contents of Lconsole_font */
3633 mulul %a0@(FONT_DESC_WIDTH),%d0
3634 mulul %a0@(FONT_DESC_HEIGHT),%d1
3635 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3636 subq #1,%d7
3637 L(console_read_char_scanline):
3638 moveb %a1@+,%d3
3639
3640 /* ASSERT: a0 = contents of Lconsole_font */
3641 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3642 subql #1,%d6
3643
3644 L(console_do_font_scanline):
3645 lslb #1,%d3
3646 scsb %d2 /* convert 1 bit into a byte */
3647 console_plot_pixel %d0,%d1,%d2
3648 addq #1,%d0
3649 dbra %d6,L(console_do_font_scanline)
3650
3651 /* ASSERT: a0 = contents of Lconsole_font */
3652 subl %a0@(FONT_DESC_WIDTH),%d0
3653 addq #1,%d1
3654 dbra %d7,L(console_read_char_scanline)
3655
3656 L(console_exit):
3657 func_return console_putc
3658
3659 /*
3660 * Input:
3661 * d0 = x coordinate
3662 * d1 = y coordinate
3663 * d2 = (bit 0) 1/0 for white/black (!)
3664 * All registers are preserved
3665 */
3666 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3667
3668 movel %pc@(L(mac_videobase)),%a1
3669 movel %pc@(L(mac_videodepth)),%d3
3670 movel ARG1,%d0
3671 movel ARG2,%d1
3672 mulul %pc@(L(mac_rowbytes)),%d1
3673 movel ARG3,%d2
3674
3675 /*
3676 * Register usage:
3677 * d0 = x coord becomes byte offset into frame buffer
3678 * d1 = y coord
3679 * d2 = black or white (0/1)
3680 * d3 = video depth
3681 * d4 = temp of x (d0) for many bit depths
3682 */
3683 L(test_1bit):
3684 cmpb #1,%d3
3685 jbne L(test_2bit)
3686 movel %d0,%d4 /* we need the low order 3 bits! */
3687 divul #8,%d0
3688 addal %d0,%a1
3689 addal %d1,%a1
3690 andb #7,%d4
3691 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3692 andb #1,%d2
3693 jbne L(white_1)
3694 bsetb %d4,%a1@
3695 jbra L(console_plot_pixel_exit)
3696 L(white_1):
3697 bclrb %d4,%a1@
3698 jbra L(console_plot_pixel_exit)
3699
3700 L(test_2bit):
3701 cmpb #2,%d3
3702 jbne L(test_4bit)
3703 movel %d0,%d4 /* we need the low order 2 bits! */
3704 divul #4,%d0
3705 addal %d0,%a1
3706 addal %d1,%a1
3707 andb #3,%d4
3708 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3709 lsll #1,%d4 /* ! */
3710 andb #1,%d2
3711 jbne L(white_2)
3712 bsetb %d4,%a1@
3713 addq #1,%d4
3714 bsetb %d4,%a1@
3715 jbra L(console_plot_pixel_exit)
3716 L(white_2):
3717 bclrb %d4,%a1@
3718 addq #1,%d4
3719 bclrb %d4,%a1@
3720 jbra L(console_plot_pixel_exit)
3721
3722 L(test_4bit):
3723 cmpb #4,%d3
3724 jbne L(test_8bit)
3725 movel %d0,%d4 /* we need the low order bit! */
3726 divul #2,%d0
3727 addal %d0,%a1
3728 addal %d1,%a1
3729 andb #1,%d4
3730 eorb #1,%d4
3731 lsll #2,%d4 /* ! */
3732 andb #1,%d2
3733 jbne L(white_4)
3734 bsetb %d4,%a1@
3735 addq #1,%d4
3736 bsetb %d4,%a1@
3737 addq #1,%d4
3738 bsetb %d4,%a1@
3739 addq #1,%d4
3740 bsetb %d4,%a1@
3741 jbra L(console_plot_pixel_exit)
3742 L(white_4):
3743 bclrb %d4,%a1@
3744 addq #1,%d4
3745 bclrb %d4,%a1@
3746 addq #1,%d4
3747 bclrb %d4,%a1@
3748 addq #1,%d4
3749 bclrb %d4,%a1@
3750 jbra L(console_plot_pixel_exit)
3751
3752 L(test_8bit):
3753 cmpb #8,%d3
3754 jbne L(test_16bit)
3755 addal %d0,%a1
3756 addal %d1,%a1
3757 andb #1,%d2
3758 jbne L(white_8)
3759 moveb #0xff,%a1@
3760 jbra L(console_plot_pixel_exit)
3761 L(white_8):
3762 clrb %a1@
3763 jbra L(console_plot_pixel_exit)
3764
3765 L(test_16bit):
3766 cmpb #16,%d3
3767 jbne L(console_plot_pixel_exit)
3768 addal %d0,%a1
3769 addal %d0,%a1
3770 addal %d1,%a1
3771 andb #1,%d2
3772 jbne L(white_16)
3773 clrw %a1@
3774 jbra L(console_plot_pixel_exit)
3775 L(white_16):
3776 movew #0x0fff,%a1@
3777 jbra L(console_plot_pixel_exit)
3778
3779 L(console_plot_pixel_exit):
3780 func_return console_plot_pixel
3781 #endif /* CONSOLE */
3782
3783 #if 0
3784 /*
3785 * This is some old code lying around. I don't believe
3786 * it's used or important anymore. My guess is it contributed
3787 * to getting to this point, but it's done for now.
3788 * It was still in the 2.1.77 head.S, so it's still here.
3789 * (And still not used!)
3790 */
3791 L(showtest):
3792 moveml %a0/%d7,%sp@-
3793 puts "A="
3794 putn %a1
3795
3796 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3797
3798 puts "DA="
3799 putn %a0
3800
3801 puts "D="
3802 putn %a0@
3803
3804 puts "S="
3805 lea %pc@(L(mmu)),%a0
3806 .long 0xf0106200 | pmove %psr,%a0@
3807 clrl %d7
3808 movew %a0@,%d7
3809 putn %d7
3810
3811 putc '\n'
3812 moveml %sp@+,%a0/%d7
3813 rts
3814 #endif /* 0 */
3815
3816 __INITDATA
3817 .align 4
3818
3819 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3820 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3821 L(custom):
3822 L(iobase):
3823 .long 0
3824 #endif
3825
3826 #if defined(CONSOLE)
3827 L(console_globals):
3828 .long 0 /* cursor column */
3829 .long 0 /* cursor row */
3830 .long 0 /* max num columns */
3831 .long 0 /* max num rows */
3832 .long 0 /* left edge */
3833 .long 0 /* mac putc */
3834 L(console_font):
3835 .long 0 /* pointer to console font (struct font_desc) */
3836 L(console_font_data):
3837 .long 0 /* pointer to console font data */
3838 #endif /* CONSOLE */
3839
3840 #if defined(MMU_PRINT)
3841 L(mmu_print_data):
3842 .long 0 /* valid flag */
3843 .long 0 /* start logical */
3844 .long 0 /* next logical */
3845 .long 0 /* start physical */
3846 .long 0 /* next physical */
3847 #endif /* MMU_PRINT */
3848
3849 L(cputype):
3850 .long 0
3851 L(mmu_cached_pointer_tables):
3852 .long 0
3853 L(mmu_num_pointer_tables):
3854 .long 0
3855 L(phys_kernel_start):
3856 .long 0
3857 L(kernel_end):
3858 .long 0
3859 L(memory_start):
3860 .long 0
3861 L(kernel_pgdir_ptr):
3862 .long 0
3863 L(temp_mmap_mem):
3864 .long 0
3865
3866 #if defined (CONFIG_MVME147)
3867 M147_SCC_CTRL_A = 0xfffe3002
3868 M147_SCC_DATA_A = 0xfffe3003
3869 #endif
3870
3871 #if defined (CONFIG_MVME16x)
3872 M162_SCC_CTRL_A = 0xfff45005
3873 M167_CYCAR = 0xfff450ee
3874 M167_CYIER = 0xfff45011
3875 M167_CYLICR = 0xfff45026
3876 M167_CYTEOIR = 0xfff45085
3877 M167_CYTDR = 0xfff450f8
3878 M167_PCSCCTICR = 0xfff4201e
3879 M167_PCTPIACKR = 0xfff42025
3880 #endif
3881
3882 #if defined (CONFIG_BVME6000)
3883 BVME_SCC_CTRL_A = 0xffb0000b
3884 BVME_SCC_DATA_A = 0xffb0000f
3885 #endif
3886
3887 #if defined(CONFIG_MAC)
3888 L(mac_booter_data):
3889 .long 0
3890 L(mac_videobase):
3891 .long 0
3892 L(mac_videodepth):
3893 .long 0
3894 L(mac_dimensions):
3895 .long 0
3896 L(mac_rowbytes):
3897 .long 0
3898 #ifdef MAC_SERIAL_DEBUG
3899 L(mac_sccbase):
3900 .long 0
3901 #endif /* MAC_SERIAL_DEBUG */
3902 #endif
3903
3904 #if defined (CONFIG_APOLLO)
3905 LSRB0 = 0x10412
3906 LTHRB0 = 0x10416
3907 LCPUCTRL = 0x10100
3908 #endif
3909
3910 #if defined(CONFIG_HP300)
3911 DCADATA = 0x11
3912 DCALSR = 0x1b
3913 APCIDATA = 0x00
3914 APCILSR = 0x14
3915 L(uartbase):
3916 .long 0
3917 L(uart_scode):
3918 .long -1
3919 #endif
3920
3921 __FINIT
3922 .data
3923 .align 4
3924
3925 availmem:
3926 .long 0
3927 m68k_pgtable_cachemode:
3928 .long 0
3929 m68k_supervisor_cachemode:
3930 .long 0
3931 #if defined(CONFIG_MVME16x)
3932 mvme_bdid:
3933 .long 0,0,0,0,0,0,0,0
3934 #endif
3935 #if defined(CONFIG_Q40)
3936 q40_mem_cptr:
3937 .long 0
3938 L(q40_do_debug):
3939 .long 0
3940 #endif