]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/m68k/kernel/head.S
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / m68k / kernel / head.S
1 /* -*- mode: asm -*-
2 **
3 ** head.S -- This file contains the initial boot code for the
4 ** Linux/68k kernel.
5 **
6 ** Copyright 1993 by Hamish Macdonald
7 **
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
12 **
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
14 ** and Bjoern Brauel
15 ** VME Support by Richard Hirst
16 **
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
25 ** for linux-2.1.115
26 ** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
28 **
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
31 ** for more details.
32 **
33 */
34
35 /*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
200 *
201 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
203 *
204 * TEST_MMU: This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine. The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
208 *
209 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
210 * When head.S boots on Atari, Amiga, Macintosh, and VME
211 * machines. At that point the underlying logic will be
212 * believed to be solid enough to be trusted, and TEST_MMU
213 * can be dropped. Do note that that will clean up the
214 * head.S code significantly as large blocks of #if/#else
215 * clauses can be removed.
216 *
217 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work. A test case was to remove
219 * the cacheability of the kernel bits.
220 *
221 * MMU_PRINT: There is a routine built into head.S that can display the
222 * MMU data structures. It outputs its result through the serial_putc
223 * interface. So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
225 *
226 * SERIAL_DEBUG: There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console. This constant determines whether those
229 * are used.
230 *
231 * DEBUG: This is the standard DEBUG flag that can be set for building
232 * the kernel. It has the effect adding additional tests into
233 * the code.
234 *
235 * FONT_6x11:
236 * FONT_8x8:
237 * FONT_8x16:
238 * In theory these could be determined at run time or handed
239 * over by the booter. But, let's be real, it's a fine hard
240 * coded value. (But, you will notice the code is run-time
241 * flexible!) A pointer to the font's struct font_desc
242 * is kept locally in Lconsole_font. It is used to determine
243 * font size information dynamically.
244 *
245 * Atari constants:
246 * USE_PRINTER: Use the printer port for serial debug.
247 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
250 *
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
254 */
255
256 #include <linux/linkage.h>
257 #include <linux/init.h>
258 #include <asm/bootinfo.h>
259 #include <asm/bootinfo-amiga.h>
260 #include <asm/bootinfo-atari.h>
261 #include <asm/bootinfo-hp300.h>
262 #include <asm/bootinfo-mac.h>
263 #include <asm/bootinfo-q40.h>
264 #include <asm/bootinfo-vme.h>
265 #include <asm/setup.h>
266 #include <asm/entry.h>
267 #include <asm/pgtable.h>
268 #include <asm/page.h>
269 #include <asm/asm-offsets.h>
270 #ifdef CONFIG_MAC
271 # include <asm/machw.h>
272 #endif
273
274 #ifdef CONFIG_EARLY_PRINTK
275 # define SERIAL_DEBUG
276 # if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
277 # define CONSOLE_DEBUG
278 # endif
279 #endif
280
281 #undef MMU_PRINT
282 #undef MMU_NOCACHE_KERNEL
283 #undef DEBUG
284
285 /*
286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
287 * The 8x8 font is harder to read but fits more on the screen.
288 */
289 #define FONT_8x8 /* default */
290 /* #define FONT_8x16 */ /* 2nd choice */
291 /* #define FONT_6x11 */ /* 3rd choice */
292
293 .globl kernel_pg_dir
294 .globl availmem
295 .globl m68k_init_mapped_size
296 .globl m68k_pgtable_cachemode
297 .globl m68k_supervisor_cachemode
298 #ifdef CONFIG_MVME16x
299 .globl mvme_bdid
300 #endif
301 #ifdef CONFIG_Q40
302 .globl q40_mem_cptr
303 #endif
304
305 CPUTYPE_040 = 1 /* indicates an 040 */
306 CPUTYPE_060 = 2 /* indicates an 060 */
307 CPUTYPE_0460 = 3 /* if either above are set, this is set */
308 CPUTYPE_020 = 4 /* indicates an 020 */
309
310 /* Translation control register */
311 TC_ENABLE = 0x8000
312 TC_PAGE8K = 0x4000
313 TC_PAGE4K = 0x0000
314
315 /* Transparent translation registers */
316 TTR_ENABLE = 0x8000 /* enable transparent translation */
317 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
318 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
319 TTR_USERMODE = 0x0000 /* only user mode access */
320 TTR_CI = 0x0400 /* inhibit cache */
321 TTR_RW = 0x0200 /* read/write mode */
322 TTR_RWM = 0x0100 /* read/write mask */
323 TTR_FCB2 = 0x0040 /* function code base bit 2 */
324 TTR_FCB1 = 0x0020 /* function code base bit 1 */
325 TTR_FCB0 = 0x0010 /* function code base bit 0 */
326 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
327 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
328 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
329
330 /* Cache Control registers */
331 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
332 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
333 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
334 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
335 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
336 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
337 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
338 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
339 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
340 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
341 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
342 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
343 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
344 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
345 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
346 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
347 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
348 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
349 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
350 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
351 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
352 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
353
354 /* Miscellaneous definitions */
355 PAGESIZE = 4096
356 PAGESHIFT = 12
357
358 ROOT_TABLE_SIZE = 128
359 PTR_TABLE_SIZE = 128
360 PAGE_TABLE_SIZE = 64
361 ROOT_INDEX_SHIFT = 25
362 PTR_INDEX_SHIFT = 18
363 PAGE_INDEX_SHIFT = 12
364
365 #ifdef DEBUG
366 /* When debugging use readable names for labels */
367 #ifdef __STDC__
368 #define L(name) .head.S.##name
369 #else
370 #define L(name) .head.S./**/name
371 #endif
372 #else
373 #ifdef __STDC__
374 #define L(name) .L##name
375 #else
376 #define L(name) .L/**/name
377 #endif
378 #endif
379
380 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
381 #ifndef __INITDATA
382 #define __INITDATA .data
383 #define __FINIT .previous
384 #endif
385
386 /* Several macros to make the writing of subroutines easier:
387 * - func_start marks the beginning of the routine which setups the frame
388 * register and saves the registers, it also defines another macro
389 * to automatically restore the registers again.
390 * - func_return marks the end of the routine and simply calls the prepared
391 * macro to restore registers and jump back to the caller.
392 * - func_define generates another macro to automatically put arguments
393 * onto the stack call the subroutine and cleanup the stack again.
394 */
395
396 /* Within subroutines these macros can be used to access the arguments
397 * on the stack. With STACK some allocated memory on the stack can be
398 * accessed and ARG0 points to the return address (used by mmu_engage).
399 */
400 #define STACK %a6@(stackstart)
401 #define ARG0 %a6@(4)
402 #define ARG1 %a6@(8)
403 #define ARG2 %a6@(12)
404 #define ARG3 %a6@(16)
405 #define ARG4 %a6@(20)
406
407 .macro func_start name,saveregs,stack=0
408 L(\name):
409 linkw %a6,#-\stack
410 moveml \saveregs,%sp@-
411 .set stackstart,-\stack
412
413 .macro func_return_\name
414 moveml %sp@+,\saveregs
415 unlk %a6
416 rts
417 .endm
418 .endm
419
420 .macro func_return name
421 func_return_\name
422 .endm
423
424 .macro func_call name
425 jbsr L(\name)
426 .endm
427
428 .macro move_stack nr,arg1,arg2,arg3,arg4
429 .if \nr
430 move_stack "(\nr-1)",\arg2,\arg3,\arg4
431 movel \arg1,%sp@-
432 .endif
433 .endm
434
435 .macro func_define name,nr=0
436 .macro \name arg1,arg2,arg3,arg4
437 move_stack \nr,\arg1,\arg2,\arg3,\arg4
438 func_call \name
439 .if \nr
440 lea %sp@(\nr*4),%sp
441 .endif
442 .endm
443 .endm
444
445 func_define mmu_map,4
446 func_define mmu_map_tt,4
447 func_define mmu_fixup_page_mmu_cache,1
448 func_define mmu_temp_map,2
449 func_define mmu_engage
450 func_define mmu_get_root_table_entry,1
451 func_define mmu_get_ptr_table_entry,2
452 func_define mmu_get_page_table_entry,2
453 func_define mmu_print
454 func_define get_new_page
455 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
456 func_define set_leds
457 #endif
458
459 .macro mmu_map_eq arg1,arg2,arg3
460 mmu_map \arg1,\arg1,\arg2,\arg3
461 .endm
462
463 .macro get_bi_record record
464 pea \record
465 func_call get_bi_record
466 addql #4,%sp
467 .endm
468
469 func_define serial_putc,1
470 func_define console_putc,1
471
472 func_define console_init
473 func_define console_put_penguin
474 func_define console_plot_pixel,3
475 func_define console_scroll
476
477 .macro putc ch
478 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
479 pea \ch
480 #endif
481 #ifdef CONSOLE_DEBUG
482 func_call console_putc
483 #endif
484 #ifdef SERIAL_DEBUG
485 func_call serial_putc
486 #endif
487 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
488 addql #4,%sp
489 #endif
490 .endm
491
492 .macro dputc ch
493 #ifdef DEBUG
494 putc \ch
495 #endif
496 .endm
497
498 func_define putn,1
499
500 .macro dputn nr
501 #ifdef DEBUG
502 putn \nr
503 #endif
504 .endm
505
506 .macro puts string
507 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
508 __INITDATA
509 .Lstr\@:
510 .string "\string"
511 __FINIT
512 pea %pc@(.Lstr\@)
513 func_call puts
514 addql #4,%sp
515 #endif
516 .endm
517
518 .macro dputs string
519 #ifdef DEBUG
520 puts "\string"
521 #endif
522 .endm
523
524 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
525 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
526 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
527 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
528 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
529 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
530 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
531 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
532 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
533 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
534 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
535 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
536 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
537
538 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
539 jeq 42f; \
540 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
541 jne lab ;\
542 42:\
543
544 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
545 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
546 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
547 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
548 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
549 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
550 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
551
552 /* On the HP300 we use the on-board LEDs for debug output before
553 the console is running. Writing a 1 bit turns the corresponding LED
554 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
555 .macro leds mask
556 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
557 hasnt_leds(.Lled\@)
558 pea \mask
559 func_call set_leds
560 addql #4,%sp
561 .Lled\@:
562 #endif
563 .endm
564
565 __HEAD
566 ENTRY(_stext)
567 /*
568 * Version numbers of the bootinfo interface
569 * The area from _stext to _start will later be used as kernel pointer table
570 */
571 bras 1f /* Jump over bootinfo version numbers */
572
573 .long BOOTINFOV_MAGIC
574 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
575 .long MACH_ATARI, ATARI_BOOTI_VERSION
576 .long MACH_MVME147, MVME147_BOOTI_VERSION
577 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
578 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
579 .long MACH_MAC, MAC_BOOTI_VERSION
580 .long MACH_Q40, Q40_BOOTI_VERSION
581 .long MACH_HP300, HP300_BOOTI_VERSION
582 .long 0
583 1: jra __start
584
585 .equ kernel_pg_dir,_stext
586
587 .equ .,_stext+PAGESIZE
588
589 ENTRY(_start)
590 jra __start
591 __INIT
592 ENTRY(__start)
593 /*
594 * Setup initial stack pointer
595 */
596 lea %pc@(_stext),%sp
597
598 /*
599 * Record the CPU and machine type.
600 */
601 get_bi_record BI_MACHTYPE
602 lea %pc@(m68k_machtype),%a1
603 movel %a0@,%a1@
604
605 get_bi_record BI_FPUTYPE
606 lea %pc@(m68k_fputype),%a1
607 movel %a0@,%a1@
608
609 get_bi_record BI_MMUTYPE
610 lea %pc@(m68k_mmutype),%a1
611 movel %a0@,%a1@
612
613 get_bi_record BI_CPUTYPE
614 lea %pc@(m68k_cputype),%a1
615 movel %a0@,%a1@
616
617 leds 0x1
618
619 #ifdef CONFIG_MAC
620 /*
621 * For Macintosh, we need to determine the display parameters early (at least
622 * while debugging it).
623 */
624
625 is_not_mac(L(test_notmac))
626
627 get_bi_record BI_MAC_VADDR
628 lea %pc@(L(mac_videobase)),%a1
629 movel %a0@,%a1@
630
631 get_bi_record BI_MAC_VDEPTH
632 lea %pc@(L(mac_videodepth)),%a1
633 movel %a0@,%a1@
634
635 get_bi_record BI_MAC_VDIM
636 lea %pc@(L(mac_dimensions)),%a1
637 movel %a0@,%a1@
638
639 get_bi_record BI_MAC_VROW
640 lea %pc@(L(mac_rowbytes)),%a1
641 movel %a0@,%a1@
642
643 get_bi_record BI_MAC_SCCBASE
644 lea %pc@(L(mac_sccbase)),%a1
645 movel %a0@,%a1@
646
647 L(test_notmac):
648 #endif /* CONFIG_MAC */
649
650
651 /*
652 * There are ultimately two pieces of information we want for all kinds of
653 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
654 * and is converted here from a booter type definition to a separate bit
655 * number which allows for the standard is_0x0 macro tests.
656 */
657 movel %pc@(m68k_cputype),%d0
658 /*
659 * Assume it's an 030
660 */
661 clrl %d1
662
663 /*
664 * Test the BootInfo cputype for 060
665 */
666 btst #CPUB_68060,%d0
667 jeq 1f
668 bset #CPUTYPE_060,%d1
669 bset #CPUTYPE_0460,%d1
670 jra 3f
671 1:
672 /*
673 * Test the BootInfo cputype for 040
674 */
675 btst #CPUB_68040,%d0
676 jeq 2f
677 bset #CPUTYPE_040,%d1
678 bset #CPUTYPE_0460,%d1
679 jra 3f
680 2:
681 /*
682 * Test the BootInfo cputype for 020
683 */
684 btst #CPUB_68020,%d0
685 jeq 3f
686 bset #CPUTYPE_020,%d1
687 jra 3f
688 3:
689 /*
690 * Record the cpu type
691 */
692 lea %pc@(L(cputype)),%a0
693 movel %d1,%a0@
694
695 /*
696 * NOTE:
697 *
698 * Now the macros are valid:
699 * is_040_or_060
700 * is_not_040_or_060
701 * is_040
702 * is_060
703 * is_not_060
704 */
705
706 /*
707 * Determine the cache mode for pages holding MMU tables
708 * and for supervisor mode, unused for '020 and '030
709 */
710 clrl %d0
711 clrl %d1
712
713 is_not_040_or_060(L(save_cachetype))
714
715 /*
716 * '040 or '060
717 * d1 := cacheable write-through
718 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
719 * but we have been using write-through since at least 2.0.29 so I
720 * guess it is OK.
721 */
722 #ifdef CONFIG_060_WRITETHROUGH
723 /*
724 * If this is a 68060 board using drivers with cache coherency
725 * problems, then supervisor memory accesses need to be write-through
726 * also; otherwise, we want copyback.
727 */
728
729 is_not_060(1f)
730 movel #_PAGE_CACHE040W,%d0
731 jra L(save_cachetype)
732 #endif /* CONFIG_060_WRITETHROUGH */
733 1:
734 movew #_PAGE_CACHE040,%d0
735
736 movel #_PAGE_CACHE040W,%d1
737
738 L(save_cachetype):
739 /* Save cache mode for supervisor mode and page tables
740 */
741 lea %pc@(m68k_supervisor_cachemode),%a0
742 movel %d0,%a0@
743 lea %pc@(m68k_pgtable_cachemode),%a0
744 movel %d1,%a0@
745
746 /*
747 * raise interrupt level
748 */
749 movew #0x2700,%sr
750
751 /*
752 If running on an Atari, determine the I/O base of the
753 serial port and test if we are running on a Medusa or Hades.
754 This test is necessary here, because on the Hades the serial
755 port is only accessible in the high I/O memory area.
756
757 The test whether it is a Medusa is done by writing to the byte at
758 phys. 0x0. This should result in a bus error on all other machines.
759
760 ...should, but doesn't. The Afterburner040 for the Falcon has the
761 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
762 another test to distinguish Medusa and AB040. This is a
763 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
764 (+AB040), but is in the range where the Medusa always asserts DTACK.
765
766 The test for the Hades is done by reading address 0xb0000000. This
767 should give a bus error on the Medusa.
768 */
769
770 #ifdef CONFIG_ATARI
771 is_not_atari(L(notypetest))
772
773 /* get special machine type (Medusa/Hades/AB40) */
774 moveq #0,%d3 /* default if tag doesn't exist */
775 get_bi_record BI_ATARI_MCH_TYPE
776 tstl %d0
777 jbmi 1f
778 movel %a0@,%d3
779 lea %pc@(atari_mch_type),%a0
780 movel %d3,%a0@
781 1:
782 /* On the Hades, the iobase must be set up before opening the
783 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
784 moveq #0,%d0
785 cmpl #ATARI_MACH_HADES,%d3
786 jbne 1f
787 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
788 1: lea %pc@(L(iobase)),%a0
789 movel %d0,%a0@
790
791 L(notypetest):
792 #endif
793
794 #ifdef CONFIG_VME
795 is_mvme147(L(getvmetype))
796 is_bvme6000(L(getvmetype))
797 is_not_mvme16x(L(gvtdone))
798
799 /* See if the loader has specified the BI_VME_TYPE tag. Recent
800 * versions of VMELILO and TFTPLILO do this. We have to do this
801 * early so we know how to handle console output. If the tag
802 * doesn't exist then we use the Bug for output on MVME16x.
803 */
804 L(getvmetype):
805 get_bi_record BI_VME_TYPE
806 tstl %d0
807 jbmi 1f
808 movel %a0@,%d3
809 lea %pc@(vme_brdtype),%a0
810 movel %d3,%a0@
811 1:
812 #ifdef CONFIG_MVME16x
813 is_not_mvme16x(L(gvtdone))
814
815 /* Need to get the BRD_ID info to differentiate between 162, 167,
816 * etc. This is available as a BI_VME_BRDINFO tag with later
817 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
818 */
819 get_bi_record BI_VME_BRDINFO
820 tstl %d0
821 jpl 1f
822
823 /* Get pointer to board ID data from Bug */
824 movel %d2,%sp@-
825 trap #15
826 .word 0x70 /* trap 0x70 - .BRD_ID */
827 movel %sp@+,%a0
828 1:
829 lea %pc@(mvme_bdid),%a1
830 /* Structure is 32 bytes long */
831 movel %a0@+,%a1@+
832 movel %a0@+,%a1@+
833 movel %a0@+,%a1@+
834 movel %a0@+,%a1@+
835 movel %a0@+,%a1@+
836 movel %a0@+,%a1@+
837 movel %a0@+,%a1@+
838 movel %a0@+,%a1@+
839 #endif
840
841 L(gvtdone):
842
843 #endif
844
845 #ifdef CONFIG_HP300
846 is_not_hp300(L(nothp))
847
848 /* Get the address of the UART for serial debugging */
849 get_bi_record BI_HP300_UART_ADDR
850 tstl %d0
851 jbmi 1f
852 movel %a0@,%d3
853 lea %pc@(L(uartbase)),%a0
854 movel %d3,%a0@
855 get_bi_record BI_HP300_UART_SCODE
856 tstl %d0
857 jbmi 1f
858 movel %a0@,%d3
859 lea %pc@(L(uart_scode)),%a0
860 movel %d3,%a0@
861 1:
862 L(nothp):
863 #endif
864
865 /*
866 * Initialize serial port
867 */
868 jbsr L(serial_init)
869
870 /*
871 * Initialize console
872 */
873 #ifdef CONFIG_MAC
874 is_not_mac(L(nocon))
875 # ifdef CONSOLE_DEBUG
876 console_init
877 # ifdef CONFIG_LOGO
878 console_put_penguin
879 # endif /* CONFIG_LOGO */
880 # endif /* CONSOLE_DEBUG */
881 L(nocon):
882 #endif /* CONFIG_MAC */
883
884
885 putc '\n'
886 putc 'A'
887 leds 0x2
888 dputn %pc@(L(cputype))
889 dputn %pc@(m68k_supervisor_cachemode)
890 dputn %pc@(m68k_pgtable_cachemode)
891 dputc '\n'
892
893 /*
894 * Save physical start address of kernel
895 */
896 lea %pc@(L(phys_kernel_start)),%a0
897 lea %pc@(_stext),%a1
898 subl #_stext,%a1
899 addl #PAGE_OFFSET,%a1
900 movel %a1,%a0@
901
902 putc 'B'
903
904 leds 0x4
905
906 /*
907 * mmu_init
908 *
909 * This block of code does what's necessary to map in the various kinds
910 * of machines for execution of Linux.
911 * First map the first 4, 8, or 16 MB of kernel code & data
912 */
913
914 get_bi_record BI_MEMCHUNK
915 movel %a0@(4),%d0
916 movel #16*1024*1024,%d1
917 cmpl %d0,%d1
918 jls 1f
919 lsrl #1,%d1
920 cmpl %d0,%d1
921 jls 1f
922 lsrl #1,%d1
923 1:
924 lea %pc@(m68k_init_mapped_size),%a0
925 movel %d1,%a0@
926 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
927 %pc@(m68k_supervisor_cachemode)
928
929 putc 'C'
930
931 #ifdef CONFIG_AMIGA
932
933 L(mmu_init_amiga):
934
935 is_not_amiga(L(mmu_init_not_amiga))
936 /*
937 * mmu_init_amiga
938 */
939
940 putc 'D'
941
942 is_not_040_or_060(1f)
943
944 /*
945 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
946 */
947 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
948 /*
949 * Map the Zorro III I/O space with transparent translation
950 * for frame buffer memory etc.
951 */
952 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
953
954 jbra L(mmu_init_done)
955
956 1:
957 /*
958 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
959 */
960 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
961 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
962
963 jbra L(mmu_init_done)
964
965 L(mmu_init_not_amiga):
966 #endif
967
968 #ifdef CONFIG_ATARI
969
970 L(mmu_init_atari):
971
972 is_not_atari(L(mmu_init_not_atari))
973
974 putc 'E'
975
976 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
977 the last 16 MB of virtual address space to the first 16 MB (i.e.
978 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
979 needed. I/O ranges are marked non-cachable.
980
981 For the Medusa it is better to map the I/O region transparently
982 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
983 accessible only in the high area.
984
985 On the Hades all I/O registers are only accessible in the high
986 area.
987 */
988
989 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
990 moveq #0,%d0
991 movel %pc@(atari_mch_type),%d3
992 cmpl #ATARI_MACH_MEDUSA,%d3
993 jbeq 2f
994 cmpl #ATARI_MACH_HADES,%d3
995 jbne 1f
996 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
997 1: movel %d0,%d3
998
999 is_040_or_060(L(spata68040))
1000
1001 /* Map everything non-cacheable, though not all parts really
1002 * need to disable caches (crucial only for 0xff8000..0xffffff
1003 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1004 * isn't really used, except for sometimes peeking into the
1005 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1006 * this. */
1007 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1008
1009 jbra L(mmu_init_done)
1010
1011 L(spata68040):
1012
1013 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1014
1015 jbra L(mmu_init_done)
1016
1017 L(mmu_init_not_atari):
1018 #endif
1019
1020 #ifdef CONFIG_Q40
1021 is_not_q40(L(notq40))
1022 /*
1023 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1024 * non-cached serialized etc..
1025 * this includes master chip, DAC, RTC and ISA ports
1026 * 0xfe000000-0xfeffffff is for screen and ROM
1027 */
1028
1029 putc 'Q'
1030
1031 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1032 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1033
1034 jbra L(mmu_init_done)
1035
1036 L(notq40):
1037 #endif
1038
1039 #ifdef CONFIG_HP300
1040 is_not_hp300(L(nothp300))
1041
1042 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1043 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1044 * The ROM mapping is needed because the LEDs are mapped there too.
1045 */
1046
1047 is_040(1f)
1048
1049 /*
1050 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1051 */
1052 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1053
1054 jbra L(mmu_init_done)
1055
1056 1:
1057 /*
1058 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1059 */
1060 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1061
1062 jbra L(mmu_init_done)
1063
1064 L(nothp300):
1065 #endif /* CONFIG_HP300 */
1066
1067 #ifdef CONFIG_MVME147
1068
1069 is_not_mvme147(L(not147))
1070
1071 /*
1072 * On MVME147 we have already created kernel page tables for
1073 * 4MB of RAM at address 0, so now need to do a transparent
1074 * mapping of the top of memory space. Make it 0.5GByte for now,
1075 * so we can access on-board i/o areas.
1076 */
1077
1078 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1079
1080 jbra L(mmu_init_done)
1081
1082 L(not147):
1083 #endif /* CONFIG_MVME147 */
1084
1085 #ifdef CONFIG_MVME16x
1086
1087 is_not_mvme16x(L(not16x))
1088
1089 /*
1090 * On MVME16x we have already created kernel page tables for
1091 * 4MB of RAM at address 0, so now need to do a transparent
1092 * mapping of the top of memory space. Make it 0.5GByte for now.
1093 * Supervisor only access, so transparent mapping doesn't
1094 * clash with User code virtual address space.
1095 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1096 * mapping is needed to allow 167Bug to run.
1097 * IO is in the range 0xfff00000 to 0xfffeffff.
1098 * PROM is 0xff800000->0xffbfffff and SRAM is
1099 * 0xffe00000->0xffe1ffff.
1100 */
1101
1102 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1103
1104 jbra L(mmu_init_done)
1105
1106 L(not16x):
1107 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1108
1109 #ifdef CONFIG_BVME6000
1110
1111 is_not_bvme6000(L(not6000))
1112
1113 /*
1114 * On BVME6000 we have already created kernel page tables for
1115 * 4MB of RAM at address 0, so now need to do a transparent
1116 * mapping of the top of memory space. Make it 0.5GByte for now,
1117 * so we can access on-board i/o areas.
1118 * Supervisor only access, so transparent mapping doesn't
1119 * clash with User code virtual address space.
1120 */
1121
1122 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1123
1124 jbra L(mmu_init_done)
1125
1126 L(not6000):
1127 #endif /* CONFIG_BVME6000 */
1128
1129 /*
1130 * mmu_init_mac
1131 *
1132 * The Macintosh mappings are less clear.
1133 *
1134 * Even as of this writing, it is unclear how the
1135 * Macintosh mappings will be done. However, as
1136 * the first author of this code I'm proposing the
1137 * following model:
1138 *
1139 * Map the kernel (that's already done),
1140 * Map the I/O (on most machines that's the
1141 * 0x5000.0000 ... 0x5300.0000 range,
1142 * Map the video frame buffer using as few pages
1143 * as absolutely (this requirement mostly stems from
1144 * the fact that when the frame buffer is at
1145 * 0x0000.0000 then we know there is valid RAM just
1146 * above the screen that we don't want to waste!).
1147 *
1148 * By the way, if the frame buffer is at 0x0000.0000
1149 * then the Macintosh is known as an RBV based Mac.
1150 *
1151 * By the way 2, the code currently maps in a bunch of
1152 * regions. But I'd like to cut that out. (And move most
1153 * of the mappings up into the kernel proper ... or only
1154 * map what's necessary.)
1155 */
1156
1157 #ifdef CONFIG_MAC
1158
1159 L(mmu_init_mac):
1160
1161 is_not_mac(L(mmu_init_not_mac))
1162
1163 putc 'F'
1164
1165 is_not_040_or_060(1f)
1166
1167 moveq #_PAGE_NOCACHE_S,%d3
1168 jbra 2f
1169 1:
1170 moveq #_PAGE_NOCACHE030,%d3
1171 2:
1172 /*
1173 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1174 * we simply map the 4MB that contains the videomem
1175 */
1176
1177 movel #VIDEOMEMMASK,%d0
1178 andl %pc@(L(mac_videobase)),%d0
1179
1180 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1181 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1182 mmu_map_eq #0x40000000,#0x02000000,%d3
1183 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1184 mmu_map_eq #0x50000000,#0x03000000,%d3
1185 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1186 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1187
1188 jbra L(mmu_init_done)
1189
1190 L(mmu_init_not_mac):
1191 #endif
1192
1193 #ifdef CONFIG_SUN3X
1194 is_not_sun3x(L(notsun3x))
1195
1196 /* oh, the pain.. We're gonna want the prom code after
1197 * starting the MMU, so we copy the mappings, translating
1198 * from 8k -> 4k pages as we go.
1199 */
1200
1201 /* copy maps from 0xfee00000 to 0xff000000 */
1202 movel #0xfee00000, %d0
1203 moveq #ROOT_INDEX_SHIFT, %d1
1204 lsrl %d1,%d0
1205 mmu_get_root_table_entry %d0
1206
1207 movel #0xfee00000, %d0
1208 moveq #PTR_INDEX_SHIFT, %d1
1209 lsrl %d1,%d0
1210 andl #PTR_TABLE_SIZE-1, %d0
1211 mmu_get_ptr_table_entry %a0,%d0
1212
1213 movel #0xfee00000, %d0
1214 moveq #PAGE_INDEX_SHIFT, %d1
1215 lsrl %d1,%d0
1216 andl #PAGE_TABLE_SIZE-1, %d0
1217 mmu_get_page_table_entry %a0,%d0
1218
1219 /* this is where the prom page table lives */
1220 movel 0xfefe00d4, %a1
1221 movel %a1@, %a1
1222
1223 movel #((0x200000 >> 13)-1), %d1
1224
1225 1:
1226 movel %a1@+, %d3
1227 movel %d3,%a0@+
1228 addl #0x1000,%d3
1229 movel %d3,%a0@+
1230
1231 dbra %d1,1b
1232
1233 /* setup tt1 for I/O */
1234 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1235 jbra L(mmu_init_done)
1236
1237 L(notsun3x):
1238 #endif
1239
1240 #ifdef CONFIG_APOLLO
1241 is_not_apollo(L(notapollo))
1242
1243 putc 'P'
1244 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1245
1246 L(notapollo):
1247 jbra L(mmu_init_done)
1248 #endif
1249
1250 L(mmu_init_done):
1251
1252 putc 'G'
1253 leds 0x8
1254
1255 /*
1256 * mmu_fixup
1257 *
1258 * On the 040 class machines, all pages that are used for the
1259 * mmu have to be fixed up. According to Motorola, pages holding mmu
1260 * tables should be non-cacheable on a '040 and write-through on a
1261 * '060. But analysis of the reasons for this, and practical
1262 * experience, showed that write-through also works on a '040.
1263 *
1264 * Allocated memory so far goes from kernel_end to memory_start that
1265 * is used for all kind of tables, for that the cache attributes
1266 * are now fixed.
1267 */
1268 L(mmu_fixup):
1269
1270 is_not_040_or_060(L(mmu_fixup_done))
1271
1272 #ifdef MMU_NOCACHE_KERNEL
1273 jbra L(mmu_fixup_done)
1274 #endif
1275
1276 /* first fix the page at the start of the kernel, that
1277 * contains also kernel_pg_dir.
1278 */
1279 movel %pc@(L(phys_kernel_start)),%d0
1280 subl #PAGE_OFFSET,%d0
1281 lea %pc@(_stext),%a0
1282 subl %d0,%a0
1283 mmu_fixup_page_mmu_cache %a0
1284
1285 movel %pc@(L(kernel_end)),%a0
1286 subl %d0,%a0
1287 movel %pc@(L(memory_start)),%a1
1288 subl %d0,%a1
1289 bra 2f
1290 1:
1291 mmu_fixup_page_mmu_cache %a0
1292 addw #PAGESIZE,%a0
1293 2:
1294 cmpl %a0,%a1
1295 jgt 1b
1296
1297 L(mmu_fixup_done):
1298
1299 #ifdef MMU_PRINT
1300 mmu_print
1301 #endif
1302
1303 /*
1304 * mmu_engage
1305 *
1306 * This chunk of code performs the gruesome task of engaging the MMU.
1307 * The reason its gruesome is because when the MMU becomes engaged it
1308 * maps logical addresses to physical addresses. The Program Counter
1309 * register is then passed through the MMU before the next instruction
1310 * is fetched (the instruction following the engage MMU instruction).
1311 * This may mean one of two things:
1312 * 1. The Program Counter falls within the logical address space of
1313 * the kernel of which there are two sub-possibilities:
1314 * A. The PC maps to the correct instruction (logical PC == physical
1315 * code location), or
1316 * B. The PC does not map through and the processor will read some
1317 * data (or instruction) which is not the logically next instr.
1318 * As you can imagine, A is good and B is bad.
1319 * Alternatively,
1320 * 2. The Program Counter does not map through the MMU. The processor
1321 * will take a Bus Error.
1322 * Clearly, 2 is bad.
1323 * It doesn't take a wiz kid to figure you want 1.A.
1324 * This code creates that possibility.
1325 * There are two possible 1.A. states (we now ignore the other above states):
1326 * A. The kernel is located at physical memory addressed the same as
1327 * the logical memory for the kernel, i.e., 0x01000.
1328 * B. The kernel is located some where else. e.g., 0x0400.0000
1329 *
1330 * Under some conditions the Macintosh can look like A or B.
1331 * [A friend and I once noted that Apple hardware engineers should be
1332 * wacked twice each day: once when they show up at work (as in, Whack!,
1333 * "This is for the screwy hardware we know you're going to design today."),
1334 * and also at the end of the day (as in, Whack! "I don't know what
1335 * you designed today, but I'm sure it wasn't good."). -- rst]
1336 *
1337 * This code works on the following premise:
1338 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1339 * then create a mapping for the kernel at logical 0x8000.0000 to
1340 * the physical location of the pc. And, create a transparent
1341 * translation register for the first 16 Meg. Then, after the MMU
1342 * is engaged, the PC can be moved up into the 0x8000.0000 range
1343 * and then the transparent translation can be turned off and then
1344 * the PC can jump to the correct logical location and it will be
1345 * home (finally). This is essentially the code that the Amiga used
1346 * to use. Now, it's generalized for all processors. Which means
1347 * that a fresh (but temporary) mapping has to be created. The mapping
1348 * is made in page 0 (an as of yet unused location -- except for the
1349 * stack!). This temporary mapping will only require 1 pointer table
1350 * and a single page table (it can map 256K).
1351 *
1352 * OK, alternatively, imagine that the Program Counter is not within
1353 * the first 16 Meg. Then, just use Transparent Translation registers
1354 * to do the right thing.
1355 *
1356 * Last, if _start is already at 0x01000, then there's nothing special
1357 * to do (in other words, in a degenerate case of the first case above,
1358 * do nothing).
1359 *
1360 * Let's do it.
1361 *
1362 *
1363 */
1364
1365 putc 'H'
1366
1367 mmu_engage
1368
1369 /*
1370 * After this point no new memory is allocated and
1371 * the start of available memory is stored in availmem.
1372 * (The bootmem allocator requires now the physicall address.)
1373 */
1374
1375 movel L(memory_start),availmem
1376
1377 #ifdef CONFIG_AMIGA
1378 is_not_amiga(1f)
1379 /* fixup the Amiga custom register location before printing */
1380 clrl L(custom)
1381 1:
1382 #endif
1383
1384 #ifdef CONFIG_ATARI
1385 is_not_atari(1f)
1386 /* fixup the Atari iobase register location before printing */
1387 movel #0xff000000,L(iobase)
1388 1:
1389 #endif
1390
1391 #ifdef CONFIG_MAC
1392 is_not_mac(1f)
1393 movel #~VIDEOMEMMASK,%d0
1394 andl L(mac_videobase),%d0
1395 addl #VIDEOMEMBASE,%d0
1396 movel %d0,L(mac_videobase)
1397 #ifdef CONSOLE_DEBUG
1398 movel %pc@(L(phys_kernel_start)),%d0
1399 subl #PAGE_OFFSET,%d0
1400 subl %d0,L(console_font)
1401 subl %d0,L(console_font_data)
1402 #endif
1403 orl #0x50000000,L(mac_sccbase)
1404 1:
1405 #endif
1406
1407 #ifdef CONFIG_HP300
1408 is_not_hp300(2f)
1409 /*
1410 * Fix up the iobase register to point to the new location of the LEDs.
1411 */
1412 movel #0xf0000000,L(iobase)
1413
1414 /*
1415 * Energise the FPU and caches.
1416 */
1417 is_040(1f)
1418 movel #0x60,0xf05f400c
1419 jbra 2f
1420
1421 /*
1422 * 040: slightly different, apparently.
1423 */
1424 1: movew #0,0xf05f400e
1425 movew #0x64,0xf05f400e
1426 2:
1427 #endif
1428
1429 #ifdef CONFIG_SUN3X
1430 is_not_sun3x(1f)
1431
1432 /* enable copro */
1433 oriw #0x4000,0x61000000
1434 1:
1435 #endif
1436
1437 #ifdef CONFIG_APOLLO
1438 is_not_apollo(1f)
1439
1440 /*
1441 * Fix up the iobase before printing
1442 */
1443 movel #0x80000000,L(iobase)
1444 1:
1445 #endif
1446
1447 putc 'I'
1448 leds 0x10
1449
1450 /*
1451 * Enable caches
1452 */
1453
1454 is_not_040_or_060(L(cache_not_680460))
1455
1456 L(cache680460):
1457 .chip 68040
1458 nop
1459 cpusha %bc
1460 nop
1461
1462 is_060(L(cache68060))
1463
1464 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1465 /* MMU stuff works in copyback mode now, so enable the cache */
1466 movec %d0,%cacr
1467 jra L(cache_done)
1468
1469 L(cache68060):
1470 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1471 /* MMU stuff works in copyback mode now, so enable the cache */
1472 movec %d0,%cacr
1473 /* enable superscalar dispatch in PCR */
1474 moveq #1,%d0
1475 .chip 68060
1476 movec %d0,%pcr
1477
1478 jbra L(cache_done)
1479 L(cache_not_680460):
1480 L(cache68030):
1481 .chip 68030
1482 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1483 movec %d0,%cacr
1484
1485 jra L(cache_done)
1486 .chip 68k
1487 L(cache_done):
1488
1489 putc 'J'
1490
1491 /*
1492 * Setup initial stack pointer
1493 */
1494 lea init_task,%curptr
1495 lea init_thread_union+THREAD_SIZE,%sp
1496
1497 putc 'K'
1498
1499 subl %a6,%a6 /* clear a6 for gdb */
1500
1501 /*
1502 * The new 64bit printf support requires an early exception initialization.
1503 */
1504 jbsr base_trap_init
1505
1506 /* jump to the kernel start */
1507
1508 putc '\n'
1509 leds 0x55
1510
1511 jbsr start_kernel
1512
1513 /*
1514 * Find a tag record in the bootinfo structure
1515 * The bootinfo structure is located right after the kernel
1516 * Returns: d0: size (-1 if not found)
1517 * a0: data pointer (end-of-records if not found)
1518 */
1519 func_start get_bi_record,%d1
1520
1521 movel ARG1,%d0
1522 lea %pc@(_end),%a0
1523 1: tstw %a0@(BIR_TAG)
1524 jeq 3f
1525 cmpw %a0@(BIR_TAG),%d0
1526 jeq 2f
1527 addw %a0@(BIR_SIZE),%a0
1528 jra 1b
1529 2: moveq #0,%d0
1530 movew %a0@(BIR_SIZE),%d0
1531 lea %a0@(BIR_DATA),%a0
1532 jra 4f
1533 3: moveq #-1,%d0
1534 lea %a0@(BIR_SIZE),%a0
1535 4:
1536 func_return get_bi_record
1537
1538
1539 /*
1540 * MMU Initialization Begins Here
1541 *
1542 * The structure of the MMU tables on the 68k machines
1543 * is thus:
1544 * Root Table
1545 * Logical addresses are translated through
1546 * a hierarchical translation mechanism where the high-order
1547 * seven bits of the logical address (LA) are used as an
1548 * index into the "root table." Each entry in the root
1549 * table has a bit which specifies if it's a valid pointer to a
1550 * pointer table. Each entry defines a 32KMeg range of memory.
1551 * If an entry is invalid then that logical range of 32M is
1552 * invalid and references to that range of memory (when the MMU
1553 * is enabled) will fault. If the entry is valid, then it does
1554 * one of two things. On 040/060 class machines, it points to
1555 * a pointer table which then describes more finely the memory
1556 * within that 32M range. On 020/030 class machines, a technique
1557 * called "early terminating descriptors" are used. This technique
1558 * allows an entire 32Meg to be described by a single entry in the
1559 * root table. Thus, this entry in the root table, contains the
1560 * physical address of the memory or I/O at the logical address
1561 * which the entry represents and it also contains the necessary
1562 * cache bits for this region.
1563 *
1564 * Pointer Tables
1565 * Per the Root Table, there will be one or more
1566 * pointer tables. Each pointer table defines a 32M range.
1567 * Not all of the 32M range need be defined. Again, the next
1568 * seven bits of the logical address are used an index into
1569 * the pointer table to point to page tables (if the pointer
1570 * is valid). There will undoubtedly be more than one
1571 * pointer table for the kernel because each pointer table
1572 * defines a range of only 32M. Valid pointer table entries
1573 * point to page tables, or are early terminating entries
1574 * themselves.
1575 *
1576 * Page Tables
1577 * Per the Pointer Tables, each page table entry points
1578 * to the physical page in memory that supports the logical
1579 * address that translates to the particular index.
1580 *
1581 * In short, the Logical Address gets translated as follows:
1582 * bits 31..26 - index into the Root Table
1583 * bits 25..18 - index into the Pointer Table
1584 * bits 17..12 - index into the Page Table
1585 * bits 11..0 - offset into a particular 4K page
1586 *
1587 * The algorithms which follows do one thing: they abstract
1588 * the MMU hardware. For example, there are three kinds of
1589 * cache settings that are relevant. Either, memory is
1590 * being mapped in which case it is either Kernel Code (or
1591 * the RamDisk) or it is MMU data. On the 030, the MMU data
1592 * option also describes the kernel. Or, I/O is being mapped
1593 * in which case it has its own kind of cache bits. There
1594 * are constants which abstract these notions from the code that
1595 * actually makes the call to map some range of memory.
1596 *
1597 *
1598 *
1599 */
1600
1601 #ifdef MMU_PRINT
1602 /*
1603 * mmu_print
1604 *
1605 * This algorithm will print out the current MMU mappings.
1606 *
1607 * Input:
1608 * %a5 points to the root table. Everything else is calculated
1609 * from this.
1610 */
1611
1612 #define mmu_next_valid 0
1613 #define mmu_start_logical 4
1614 #define mmu_next_logical 8
1615 #define mmu_start_physical 12
1616 #define mmu_next_physical 16
1617
1618 #define MMU_PRINT_INVALID -1
1619 #define MMU_PRINT_VALID 1
1620 #define MMU_PRINT_UNINITED 0
1621
1622 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1623
1624 func_start mmu_print,%a0-%a6/%d0-%d7
1625
1626 movel %pc@(L(kernel_pgdir_ptr)),%a5
1627 lea %pc@(L(mmu_print_data)),%a0
1628 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1629
1630 is_not_040_or_060(mmu_030_print)
1631
1632 mmu_040_print:
1633 puts "\nMMU040\n"
1634 puts "rp:"
1635 putn %a5
1636 putc '\n'
1637 #if 0
1638 /*
1639 * The following #if/#endif block is a tight algorithm for dumping the 040
1640 * MMU Map in gory detail. It really isn't that practical unless the
1641 * MMU Map algorithm appears to go awry and you need to debug it at the
1642 * entry per entry level.
1643 */
1644 movel #ROOT_TABLE_SIZE,%d5
1645 #if 0
1646 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1647 subql #1,%d5 | they (might) work
1648 #endif
1649 1: tstl %d5
1650 jbeq mmu_print_done
1651 subq #1,%d5
1652 movel %a5@+,%d7
1653 btst #1,%d7
1654 jbeq 1b
1655
1656 2: putn %d7
1657 andil #0xFFFFFE00,%d7
1658 movel %d7,%a4
1659 movel #PTR_TABLE_SIZE,%d4
1660 putc ' '
1661 3: tstl %d4
1662 jbeq 11f
1663 subq #1,%d4
1664 movel %a4@+,%d7
1665 btst #1,%d7
1666 jbeq 3b
1667
1668 4: putn %d7
1669 andil #0xFFFFFF00,%d7
1670 movel %d7,%a3
1671 movel #PAGE_TABLE_SIZE,%d3
1672 5: movel #8,%d2
1673 6: tstl %d3
1674 jbeq 31f
1675 subq #1,%d3
1676 movel %a3@+,%d6
1677 btst #0,%d6
1678 jbeq 6b
1679 7: tstl %d2
1680 jbeq 8f
1681 subq #1,%d2
1682 putc ' '
1683 jbra 91f
1684 8: putc '\n'
1685 movel #8+1+8+1+1,%d2
1686 9: putc ' '
1687 dbra %d2,9b
1688 movel #7,%d2
1689 91: putn %d6
1690 jbra 6b
1691
1692 31: putc '\n'
1693 movel #8+1,%d2
1694 32: putc ' '
1695 dbra %d2,32b
1696 jbra 3b
1697
1698 11: putc '\n'
1699 jbra 1b
1700 #endif /* MMU 040 Dumping code that's gory and detailed */
1701
1702 lea %pc@(kernel_pg_dir),%a5
1703 movel %a5,%a0 /* a0 has the address of the root table ptr */
1704 movel #0x00000000,%a4 /* logical address */
1705 moveql #0,%d0
1706 40:
1707 /* Increment the logical address and preserve in d5 */
1708 movel %a4,%d5
1709 addil #PAGESIZE<<13,%d5
1710 movel %a0@+,%d6
1711 btst #1,%d6
1712 jbne 41f
1713 jbsr mmu_print_tuple_invalidate
1714 jbra 48f
1715 41:
1716 movel #0,%d1
1717 andil #0xfffffe00,%d6
1718 movel %d6,%a1
1719 42:
1720 movel %a4,%d5
1721 addil #PAGESIZE<<6,%d5
1722 movel %a1@+,%d6
1723 btst #1,%d6
1724 jbne 43f
1725 jbsr mmu_print_tuple_invalidate
1726 jbra 47f
1727 43:
1728 movel #0,%d2
1729 andil #0xffffff00,%d6
1730 movel %d6,%a2
1731 44:
1732 movel %a4,%d5
1733 addil #PAGESIZE,%d5
1734 movel %a2@+,%d6
1735 btst #0,%d6
1736 jbne 45f
1737 jbsr mmu_print_tuple_invalidate
1738 jbra 46f
1739 45:
1740 moveml %d0-%d1,%sp@-
1741 movel %a4,%d0
1742 movel %d6,%d1
1743 andil #0xfffff4e0,%d1
1744 lea %pc@(mmu_040_print_flags),%a6
1745 jbsr mmu_print_tuple
1746 moveml %sp@+,%d0-%d1
1747 46:
1748 movel %d5,%a4
1749 addq #1,%d2
1750 cmpib #64,%d2
1751 jbne 44b
1752 47:
1753 movel %d5,%a4
1754 addq #1,%d1
1755 cmpib #128,%d1
1756 jbne 42b
1757 48:
1758 movel %d5,%a4 /* move to the next logical address */
1759 addq #1,%d0
1760 cmpib #128,%d0
1761 jbne 40b
1762
1763 .chip 68040
1764 movec %dtt1,%d0
1765 movel %d0,%d1
1766 andiw #0x8000,%d1 /* is it valid ? */
1767 jbeq 1f /* No, bail out */
1768
1769 movel %d0,%d1
1770 andil #0xff000000,%d1 /* Get the address */
1771 putn %d1
1772 puts "=="
1773 putn %d1
1774
1775 movel %d0,%d6
1776 jbsr mmu_040_print_flags_tt
1777 1:
1778 movec %dtt0,%d0
1779 movel %d0,%d1
1780 andiw #0x8000,%d1 /* is it valid ? */
1781 jbeq 1f /* No, bail out */
1782
1783 movel %d0,%d1
1784 andil #0xff000000,%d1 /* Get the address */
1785 putn %d1
1786 puts "=="
1787 putn %d1
1788
1789 movel %d0,%d6
1790 jbsr mmu_040_print_flags_tt
1791 1:
1792 .chip 68k
1793
1794 jbra mmu_print_done
1795
1796 mmu_040_print_flags:
1797 btstl #10,%d6
1798 putZc(' ','G') /* global bit */
1799 btstl #7,%d6
1800 putZc(' ','S') /* supervisor bit */
1801 mmu_040_print_flags_tt:
1802 btstl #6,%d6
1803 jbne 3f
1804 putc 'C'
1805 btstl #5,%d6
1806 putZc('w','c') /* write through or copy-back */
1807 jbra 4f
1808 3:
1809 putc 'N'
1810 btstl #5,%d6
1811 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1812 4:
1813 rts
1814
1815 mmu_030_print_flags:
1816 btstl #6,%d6
1817 putZc('C','I') /* write through or copy-back */
1818 rts
1819
1820 mmu_030_print:
1821 puts "\nMMU030\n"
1822 puts "\nrp:"
1823 putn %a5
1824 putc '\n'
1825 movel %a5,%d0
1826 andil #0xfffffff0,%d0
1827 movel %d0,%a0
1828 movel #0x00000000,%a4 /* logical address */
1829 movel #0,%d0
1830 30:
1831 movel %a4,%d5
1832 addil #PAGESIZE<<13,%d5
1833 movel %a0@+,%d6
1834 btst #1,%d6 /* is it a table ptr? */
1835 jbne 31f /* yes */
1836 btst #0,%d6 /* is it early terminating? */
1837 jbeq 1f /* no */
1838 jbsr mmu_030_print_helper
1839 jbra 38f
1840 1:
1841 jbsr mmu_print_tuple_invalidate
1842 jbra 38f
1843 31:
1844 movel #0,%d1
1845 andil #0xfffffff0,%d6
1846 movel %d6,%a1
1847 32:
1848 movel %a4,%d5
1849 addil #PAGESIZE<<6,%d5
1850 movel %a1@+,%d6
1851 btst #1,%d6 /* is it a table ptr? */
1852 jbne 33f /* yes */
1853 btst #0,%d6 /* is it a page descriptor? */
1854 jbeq 1f /* no */
1855 jbsr mmu_030_print_helper
1856 jbra 37f
1857 1:
1858 jbsr mmu_print_tuple_invalidate
1859 jbra 37f
1860 33:
1861 movel #0,%d2
1862 andil #0xfffffff0,%d6
1863 movel %d6,%a2
1864 34:
1865 movel %a4,%d5
1866 addil #PAGESIZE,%d5
1867 movel %a2@+,%d6
1868 btst #0,%d6
1869 jbne 35f
1870 jbsr mmu_print_tuple_invalidate
1871 jbra 36f
1872 35:
1873 jbsr mmu_030_print_helper
1874 36:
1875 movel %d5,%a4
1876 addq #1,%d2
1877 cmpib #64,%d2
1878 jbne 34b
1879 37:
1880 movel %d5,%a4
1881 addq #1,%d1
1882 cmpib #128,%d1
1883 jbne 32b
1884 38:
1885 movel %d5,%a4 /* move to the next logical address */
1886 addq #1,%d0
1887 cmpib #128,%d0
1888 jbne 30b
1889
1890 mmu_print_done:
1891 puts "\n"
1892
1893 func_return mmu_print
1894
1895
1896 mmu_030_print_helper:
1897 moveml %d0-%d1,%sp@-
1898 movel %a4,%d0
1899 movel %d6,%d1
1900 lea %pc@(mmu_030_print_flags),%a6
1901 jbsr mmu_print_tuple
1902 moveml %sp@+,%d0-%d1
1903 rts
1904
1905 mmu_print_tuple_invalidate:
1906 moveml %a0/%d7,%sp@-
1907
1908 lea %pc@(L(mmu_print_data)),%a0
1909 tstl %a0@(mmu_next_valid)
1910 jbmi mmu_print_tuple_invalidate_exit
1911
1912 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1913
1914 putn %a4
1915
1916 puts "##\n"
1917
1918 mmu_print_tuple_invalidate_exit:
1919 moveml %sp@+,%a0/%d7
1920 rts
1921
1922
1923 mmu_print_tuple:
1924 moveml %d0-%d7/%a0,%sp@-
1925
1926 lea %pc@(L(mmu_print_data)),%a0
1927
1928 tstl %a0@(mmu_next_valid)
1929 jble mmu_print_tuple_print
1930
1931 cmpl %a0@(mmu_next_physical),%d1
1932 jbeq mmu_print_tuple_increment
1933
1934 mmu_print_tuple_print:
1935 putn %d0
1936 puts "->"
1937 putn %d1
1938
1939 movel %d1,%d6
1940 jbsr %a6@
1941
1942 mmu_print_tuple_record:
1943 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1944
1945 movel %d1,%a0@(mmu_next_physical)
1946
1947 mmu_print_tuple_increment:
1948 movel %d5,%d7
1949 subl %a4,%d7
1950 addl %d7,%a0@(mmu_next_physical)
1951
1952 mmu_print_tuple_exit:
1953 moveml %sp@+,%d0-%d7/%a0
1954 rts
1955
1956 mmu_print_machine_cpu_types:
1957 puts "machine: "
1958
1959 is_not_amiga(1f)
1960 puts "amiga"
1961 jbra 9f
1962 1:
1963 is_not_atari(2f)
1964 puts "atari"
1965 jbra 9f
1966 2:
1967 is_not_mac(3f)
1968 puts "macintosh"
1969 jbra 9f
1970 3: puts "unknown"
1971 9: putc '\n'
1972
1973 puts "cputype: 0"
1974 is_not_060(1f)
1975 putc '6'
1976 jbra 9f
1977 1:
1978 is_not_040_or_060(2f)
1979 putc '4'
1980 jbra 9f
1981 2: putc '3'
1982 9: putc '0'
1983 putc '\n'
1984
1985 rts
1986 #endif /* MMU_PRINT */
1987
1988 /*
1989 * mmu_map_tt
1990 *
1991 * This is a specific function which works on all 680x0 machines.
1992 * On 030, 040 & 060 it will attempt to use Transparent Translation
1993 * registers (tt1).
1994 * On 020 it will call the standard mmu_map which will use early
1995 * terminating descriptors.
1996 */
1997 func_start mmu_map_tt,%d0/%d1/%a0,4
1998
1999 dputs "mmu_map_tt:"
2000 dputn ARG1
2001 dputn ARG2
2002 dputn ARG3
2003 dputn ARG4
2004 dputc '\n'
2005
2006 is_020(L(do_map))
2007
2008 /* Extract the highest bit set
2009 */
2010 bfffo ARG3{#0,#32},%d1
2011 cmpw #8,%d1
2012 jcc L(do_map)
2013
2014 /* And get the mask
2015 */
2016 moveq #-1,%d0
2017 lsrl %d1,%d0
2018 lsrl #1,%d0
2019
2020 /* Mask the address
2021 */
2022 movel %d0,%d1
2023 notl %d1
2024 andl ARG2,%d1
2025
2026 /* Generate the upper 16bit of the tt register
2027 */
2028 lsrl #8,%d0
2029 orl %d0,%d1
2030 clrw %d1
2031
2032 is_040_or_060(L(mmu_map_tt_040))
2033
2034 /* set 030 specific bits (read/write access for supervisor mode
2035 * (highest function code set, lower two bits masked))
2036 */
2037 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2038 movel ARG4,%d0
2039 btst #6,%d0
2040 jeq 1f
2041 orw #TTR_CI,%d1
2042
2043 1: lea STACK,%a0
2044 dputn %d1
2045 movel %d1,%a0@
2046 .chip 68030
2047 tstl ARG1
2048 jne 1f
2049 pmove %a0@,%tt0
2050 jra 2f
2051 1: pmove %a0@,%tt1
2052 2: .chip 68k
2053 jra L(mmu_map_tt_done)
2054
2055 /* set 040 specific bits
2056 */
2057 L(mmu_map_tt_040):
2058 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2059 orl ARG4,%d1
2060 dputn %d1
2061
2062 .chip 68040
2063 tstl ARG1
2064 jne 1f
2065 movec %d1,%itt0
2066 movec %d1,%dtt0
2067 jra 2f
2068 1: movec %d1,%itt1
2069 movec %d1,%dtt1
2070 2: .chip 68k
2071
2072 jra L(mmu_map_tt_done)
2073
2074 L(do_map):
2075 mmu_map_eq ARG2,ARG3,ARG4
2076
2077 L(mmu_map_tt_done):
2078
2079 func_return mmu_map_tt
2080
2081 /*
2082 * mmu_map
2083 *
2084 * This routine will map a range of memory using a pointer
2085 * table and allocating the pages on the fly from the kernel.
2086 * The pointer table does not have to be already linked into
2087 * the root table, this routine will do that if necessary.
2088 *
2089 * NOTE
2090 * This routine will assert failure and use the serial_putc
2091 * routines in the case of a run-time error. For example,
2092 * if the address is already mapped.
2093 *
2094 * NOTE-2
2095 * This routine will use early terminating descriptors
2096 * where possible for the 68020+68851 and 68030 type
2097 * processors.
2098 */
2099 func_start mmu_map,%d0-%d4/%a0-%a4
2100
2101 dputs "\nmmu_map:"
2102 dputn ARG1
2103 dputn ARG2
2104 dputn ARG3
2105 dputn ARG4
2106 dputc '\n'
2107
2108 /* Get logical address and round it down to 256KB
2109 */
2110 movel ARG1,%d0
2111 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2112 movel %d0,%a3
2113
2114 /* Get the end address
2115 */
2116 movel ARG1,%a4
2117 addl ARG3,%a4
2118 subql #1,%a4
2119
2120 /* Get physical address and round it down to 256KB
2121 */
2122 movel ARG2,%d0
2123 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2124 movel %d0,%a2
2125
2126 /* Add page attributes to the physical address
2127 */
2128 movel ARG4,%d0
2129 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2130 addw %d0,%a2
2131
2132 dputn %a2
2133 dputn %a3
2134 dputn %a4
2135
2136 is_not_040_or_060(L(mmu_map_030))
2137
2138 addw #_PAGE_GLOBAL040,%a2
2139 /*
2140 * MMU 040 & 060 Support
2141 *
2142 * The MMU usage for the 040 and 060 is different enough from
2143 * the 030 and 68851 that there is separate code. This comment
2144 * block describes the data structures and algorithms built by
2145 * this code.
2146 *
2147 * The 040 does not support early terminating descriptors, as
2148 * the 030 does. Therefore, a third level of table is needed
2149 * for the 040, and that would be the page table. In Linux,
2150 * page tables are allocated directly from the memory above the
2151 * kernel.
2152 *
2153 */
2154
2155 L(mmu_map_040):
2156 /* Calculate the offset into the root table
2157 */
2158 movel %a3,%d0
2159 moveq #ROOT_INDEX_SHIFT,%d1
2160 lsrl %d1,%d0
2161 mmu_get_root_table_entry %d0
2162
2163 /* Calculate the offset into the pointer table
2164 */
2165 movel %a3,%d0
2166 moveq #PTR_INDEX_SHIFT,%d1
2167 lsrl %d1,%d0
2168 andl #PTR_TABLE_SIZE-1,%d0
2169 mmu_get_ptr_table_entry %a0,%d0
2170
2171 /* Calculate the offset into the page table
2172 */
2173 movel %a3,%d0
2174 moveq #PAGE_INDEX_SHIFT,%d1
2175 lsrl %d1,%d0
2176 andl #PAGE_TABLE_SIZE-1,%d0
2177 mmu_get_page_table_entry %a0,%d0
2178
2179 /* The page table entry must not no be busy
2180 */
2181 tstl %a0@
2182 jne L(mmu_map_error)
2183
2184 /* Do the mapping and advance the pointers
2185 */
2186 movel %a2,%a0@
2187 2:
2188 addw #PAGESIZE,%a2
2189 addw #PAGESIZE,%a3
2190
2191 /* Ready with mapping?
2192 */
2193 lea %a3@(-1),%a0
2194 cmpl %a0,%a4
2195 jhi L(mmu_map_040)
2196 jra L(mmu_map_done)
2197
2198 L(mmu_map_030):
2199 /* Calculate the offset into the root table
2200 */
2201 movel %a3,%d0
2202 moveq #ROOT_INDEX_SHIFT,%d1
2203 lsrl %d1,%d0
2204 mmu_get_root_table_entry %d0
2205
2206 /* Check if logical address 32MB aligned,
2207 * so we can try to map it once
2208 */
2209 movel %a3,%d0
2210 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2211 jne 1f
2212
2213 /* Is there enough to map for 32MB at once
2214 */
2215 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2216 cmpl %a1,%a4
2217 jcs 1f
2218
2219 addql #1,%a1
2220
2221 /* The root table entry must not no be busy
2222 */
2223 tstl %a0@
2224 jne L(mmu_map_error)
2225
2226 /* Do the mapping and advance the pointers
2227 */
2228 dputs "early term1"
2229 dputn %a2
2230 dputn %a3
2231 dputn %a1
2232 dputc '\n'
2233 movel %a2,%a0@
2234
2235 movel %a1,%a3
2236 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2237 jra L(mmu_mapnext_030)
2238 1:
2239 /* Calculate the offset into the pointer table
2240 */
2241 movel %a3,%d0
2242 moveq #PTR_INDEX_SHIFT,%d1
2243 lsrl %d1,%d0
2244 andl #PTR_TABLE_SIZE-1,%d0
2245 mmu_get_ptr_table_entry %a0,%d0
2246
2247 /* The pointer table entry must not no be busy
2248 */
2249 tstl %a0@
2250 jne L(mmu_map_error)
2251
2252 /* Do the mapping and advance the pointers
2253 */
2254 dputs "early term2"
2255 dputn %a2
2256 dputn %a3
2257 dputc '\n'
2258 movel %a2,%a0@
2259
2260 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2261 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2262
2263 L(mmu_mapnext_030):
2264 /* Ready with mapping?
2265 */
2266 lea %a3@(-1),%a0
2267 cmpl %a0,%a4
2268 jhi L(mmu_map_030)
2269 jra L(mmu_map_done)
2270
2271 L(mmu_map_error):
2272
2273 dputs "mmu_map error:"
2274 dputn %a2
2275 dputn %a3
2276 dputc '\n'
2277
2278 L(mmu_map_done):
2279
2280 func_return mmu_map
2281
2282 /*
2283 * mmu_fixup
2284 *
2285 * On the 040 class machines, all pages that are used for the
2286 * mmu have to be fixed up.
2287 */
2288
2289 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2290
2291 dputs "mmu_fixup_page_mmu_cache"
2292 dputn ARG1
2293
2294 /* Calculate the offset into the root table
2295 */
2296 movel ARG1,%d0
2297 moveq #ROOT_INDEX_SHIFT,%d1
2298 lsrl %d1,%d0
2299 mmu_get_root_table_entry %d0
2300
2301 /* Calculate the offset into the pointer table
2302 */
2303 movel ARG1,%d0
2304 moveq #PTR_INDEX_SHIFT,%d1
2305 lsrl %d1,%d0
2306 andl #PTR_TABLE_SIZE-1,%d0
2307 mmu_get_ptr_table_entry %a0,%d0
2308
2309 /* Calculate the offset into the page table
2310 */
2311 movel ARG1,%d0
2312 moveq #PAGE_INDEX_SHIFT,%d1
2313 lsrl %d1,%d0
2314 andl #PAGE_TABLE_SIZE-1,%d0
2315 mmu_get_page_table_entry %a0,%d0
2316
2317 movel %a0@,%d0
2318 andil #_CACHEMASK040,%d0
2319 orl %pc@(m68k_pgtable_cachemode),%d0
2320 movel %d0,%a0@
2321
2322 dputc '\n'
2323
2324 func_return mmu_fixup_page_mmu_cache
2325
2326 /*
2327 * mmu_temp_map
2328 *
2329 * create a temporary mapping to enable the mmu,
2330 * this we don't need any transparation translation tricks.
2331 */
2332
2333 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2334
2335 dputs "mmu_temp_map"
2336 dputn ARG1
2337 dputn ARG2
2338 dputc '\n'
2339
2340 lea %pc@(L(temp_mmap_mem)),%a1
2341
2342 /* Calculate the offset in the root table
2343 */
2344 movel ARG2,%d0
2345 moveq #ROOT_INDEX_SHIFT,%d1
2346 lsrl %d1,%d0
2347 mmu_get_root_table_entry %d0
2348
2349 /* Check if the table is temporary allocated, so we have to reuse it
2350 */
2351 movel %a0@,%d0
2352 cmpl %pc@(L(memory_start)),%d0
2353 jcc 1f
2354
2355 /* Temporary allocate a ptr table and insert it into the root table
2356 */
2357 movel %a1@,%d0
2358 addl #PTR_TABLE_SIZE*4,%a1@
2359 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2360 movel %d0,%a0@
2361 dputs " (new)"
2362 1:
2363 dputn %d0
2364 /* Mask the root table entry for the ptr table
2365 */
2366 andw #-ROOT_TABLE_SIZE,%d0
2367 movel %d0,%a0
2368
2369 /* Calculate the offset into the pointer table
2370 */
2371 movel ARG2,%d0
2372 moveq #PTR_INDEX_SHIFT,%d1
2373 lsrl %d1,%d0
2374 andl #PTR_TABLE_SIZE-1,%d0
2375 lea %a0@(%d0*4),%a0
2376 dputn %a0
2377
2378 /* Check if a temporary page table is already allocated
2379 */
2380 movel %a0@,%d0
2381 jne 1f
2382
2383 /* Temporary allocate a page table and insert it into the ptr table
2384 */
2385 movel %a1@,%d0
2386 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2387 alignment restriction for pointer tables on the '0[46]0. */
2388 addl #512,%a1@
2389 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2390 movel %d0,%a0@
2391 dputs " (new)"
2392 1:
2393 dputn %d0
2394 /* Mask the ptr table entry for the page table
2395 */
2396 andw #-PTR_TABLE_SIZE,%d0
2397 movel %d0,%a0
2398
2399 /* Calculate the offset into the page table
2400 */
2401 movel ARG2,%d0
2402 moveq #PAGE_INDEX_SHIFT,%d1
2403 lsrl %d1,%d0
2404 andl #PAGE_TABLE_SIZE-1,%d0
2405 lea %a0@(%d0*4),%a0
2406 dputn %a0
2407
2408 /* Insert the address into the page table
2409 */
2410 movel ARG1,%d0
2411 andw #-PAGESIZE,%d0
2412 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2413 movel %d0,%a0@
2414 dputn %d0
2415
2416 dputc '\n'
2417
2418 func_return mmu_temp_map
2419
2420 func_start mmu_engage,%d0-%d2/%a0-%a3
2421
2422 moveq #ROOT_TABLE_SIZE-1,%d0
2423 /* Temporarily use a different root table. */
2424 lea %pc@(L(kernel_pgdir_ptr)),%a0
2425 movel %a0@,%a2
2426 movel %pc@(L(memory_start)),%a1
2427 movel %a1,%a0@
2428 movel %a2,%a0
2429 1:
2430 movel %a0@+,%a1@+
2431 dbra %d0,1b
2432
2433 lea %pc@(L(temp_mmap_mem)),%a0
2434 movel %a1,%a0@
2435
2436 movew #PAGESIZE-1,%d0
2437 1:
2438 clrl %a1@+
2439 dbra %d0,1b
2440
2441 lea %pc@(1b),%a0
2442 movel #1b,%a1
2443 /* Skip temp mappings if phys == virt */
2444 cmpl %a0,%a1
2445 jeq 1f
2446
2447 mmu_temp_map %a0,%a0
2448 mmu_temp_map %a0,%a1
2449
2450 addw #PAGESIZE,%a0
2451 addw #PAGESIZE,%a1
2452 mmu_temp_map %a0,%a0
2453 mmu_temp_map %a0,%a1
2454 1:
2455 movel %pc@(L(memory_start)),%a3
2456 movel %pc@(L(phys_kernel_start)),%d2
2457
2458 is_not_040_or_060(L(mmu_engage_030))
2459
2460 L(mmu_engage_040):
2461 .chip 68040
2462 nop
2463 cinva %bc
2464 nop
2465 pflusha
2466 nop
2467 movec %a3,%srp
2468 movel #TC_ENABLE+TC_PAGE4K,%d0
2469 movec %d0,%tc /* enable the MMU */
2470 jmp 1f:l
2471 1: nop
2472 movec %a2,%srp
2473 nop
2474 cinva %bc
2475 nop
2476 pflusha
2477 .chip 68k
2478 jra L(mmu_engage_cleanup)
2479
2480 L(mmu_engage_030_temp):
2481 .space 12
2482 L(mmu_engage_030):
2483 .chip 68030
2484 lea %pc@(L(mmu_engage_030_temp)),%a0
2485 movel #0x80000002,%a0@
2486 movel %a3,%a0@(4)
2487 movel #0x0808,%d0
2488 movec %d0,%cacr
2489 pmove %a0@,%srp
2490 pflusha
2491 /*
2492 * enable,super root enable,4096 byte pages,7 bit root index,
2493 * 7 bit pointer index, 6 bit page table index.
2494 */
2495 movel #0x82c07760,%a0@(8)
2496 pmove %a0@(8),%tc /* enable the MMU */
2497 jmp 1f:l
2498 1: movel %a2,%a0@(4)
2499 movel #0x0808,%d0
2500 movec %d0,%cacr
2501 pmove %a0@,%srp
2502 pflusha
2503 .chip 68k
2504
2505 L(mmu_engage_cleanup):
2506 subl #PAGE_OFFSET,%d2
2507 subl %d2,%a2
2508 movel %a2,L(kernel_pgdir_ptr)
2509 subl %d2,%fp
2510 subl %d2,%sp
2511 subl %d2,ARG0
2512
2513 func_return mmu_engage
2514
2515 func_start mmu_get_root_table_entry,%d0/%a1
2516
2517 #if 0
2518 dputs "mmu_get_root_table_entry:"
2519 dputn ARG1
2520 dputs " ="
2521 #endif
2522
2523 movel %pc@(L(kernel_pgdir_ptr)),%a0
2524 tstl %a0
2525 jne 2f
2526
2527 dputs "\nmmu_init:"
2528
2529 /* Find the start of free memory, get_bi_record does this for us,
2530 * as the bootinfo structure is located directly behind the kernel
2531 * and and we simply search for the last entry.
2532 */
2533 get_bi_record BI_LAST
2534 addw #PAGESIZE-1,%a0
2535 movel %a0,%d0
2536 andw #-PAGESIZE,%d0
2537
2538 dputn %d0
2539
2540 lea %pc@(L(memory_start)),%a0
2541 movel %d0,%a0@
2542 lea %pc@(L(kernel_end)),%a0
2543 movel %d0,%a0@
2544
2545 /* we have to return the first page at _stext since the init code
2546 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2547 * page is used for further ptr tables in get_ptr_table.
2548 */
2549 lea %pc@(_stext),%a0
2550 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2551 movel %a0,%a1@
2552 addl #ROOT_TABLE_SIZE*4,%a1@
2553
2554 lea %pc@(L(mmu_num_pointer_tables)),%a1
2555 addql #1,%a1@
2556
2557 /* clear the page
2558 */
2559 movel %a0,%a1
2560 movew #PAGESIZE/4-1,%d0
2561 1:
2562 clrl %a1@+
2563 dbra %d0,1b
2564
2565 lea %pc@(L(kernel_pgdir_ptr)),%a1
2566 movel %a0,%a1@
2567
2568 dputn %a0
2569 dputc '\n'
2570 2:
2571 movel ARG1,%d0
2572 lea %a0@(%d0*4),%a0
2573
2574 #if 0
2575 dputn %a0
2576 dputc '\n'
2577 #endif
2578
2579 func_return mmu_get_root_table_entry
2580
2581
2582
2583 func_start mmu_get_ptr_table_entry,%d0/%a1
2584
2585 #if 0
2586 dputs "mmu_get_ptr_table_entry:"
2587 dputn ARG1
2588 dputn ARG2
2589 dputs " ="
2590 #endif
2591
2592 movel ARG1,%a0
2593 movel %a0@,%d0
2594 jne 2f
2595
2596 /* Keep track of the number of pointer tables we use
2597 */
2598 dputs "\nmmu_get_new_ptr_table:"
2599 lea %pc@(L(mmu_num_pointer_tables)),%a0
2600 movel %a0@,%d0
2601 addql #1,%a0@
2602
2603 /* See if there is a free pointer table in our cache of pointer tables
2604 */
2605 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2606 andw #7,%d0
2607 jne 1f
2608
2609 /* Get a new pointer table page from above the kernel memory
2610 */
2611 get_new_page
2612 movel %a0,%a1@
2613 1:
2614 /* There is an unused pointer table in our cache... use it
2615 */
2616 movel %a1@,%d0
2617 addl #PTR_TABLE_SIZE*4,%a1@
2618
2619 dputn %d0
2620 dputc '\n'
2621
2622 /* Insert the new pointer table into the root table
2623 */
2624 movel ARG1,%a0
2625 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2626 movel %d0,%a0@
2627 2:
2628 /* Extract the pointer table entry
2629 */
2630 andw #-PTR_TABLE_SIZE,%d0
2631 movel %d0,%a0
2632 movel ARG2,%d0
2633 lea %a0@(%d0*4),%a0
2634
2635 #if 0
2636 dputn %a0
2637 dputc '\n'
2638 #endif
2639
2640 func_return mmu_get_ptr_table_entry
2641
2642
2643 func_start mmu_get_page_table_entry,%d0/%a1
2644
2645 #if 0
2646 dputs "mmu_get_page_table_entry:"
2647 dputn ARG1
2648 dputn ARG2
2649 dputs " ="
2650 #endif
2651
2652 movel ARG1,%a0
2653 movel %a0@,%d0
2654 jne 2f
2655
2656 /* If the page table entry doesn't exist, we allocate a complete new
2657 * page and use it as one continues big page table which can cover
2658 * 4MB of memory, nearly almost all mappings have that alignment.
2659 */
2660 get_new_page
2661 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2662
2663 /* align pointer table entry for a page of page tables
2664 */
2665 movel ARG1,%d0
2666 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2667 movel %d0,%a1
2668
2669 /* Insert the page tables into the pointer entries
2670 */
2671 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2672 1:
2673 movel %a0,%a1@+
2674 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2675 dbra %d0,1b
2676
2677 /* Now we can get the initialized pointer table entry
2678 */
2679 movel ARG1,%a0
2680 movel %a0@,%d0
2681 2:
2682 /* Extract the page table entry
2683 */
2684 andw #-PAGE_TABLE_SIZE,%d0
2685 movel %d0,%a0
2686 movel ARG2,%d0
2687 lea %a0@(%d0*4),%a0
2688
2689 #if 0
2690 dputn %a0
2691 dputc '\n'
2692 #endif
2693
2694 func_return mmu_get_page_table_entry
2695
2696 /*
2697 * get_new_page
2698 *
2699 * Return a new page from the memory start and clear it.
2700 */
2701 func_start get_new_page,%d0/%a1
2702
2703 dputs "\nget_new_page:"
2704
2705 /* allocate the page and adjust memory_start
2706 */
2707 lea %pc@(L(memory_start)),%a0
2708 movel %a0@,%a1
2709 addl #PAGESIZE,%a0@
2710
2711 /* clear the new page
2712 */
2713 movel %a1,%a0
2714 movew #PAGESIZE/4-1,%d0
2715 1:
2716 clrl %a1@+
2717 dbra %d0,1b
2718
2719 dputn %a0
2720 dputc '\n'
2721
2722 func_return get_new_page
2723
2724
2725
2726 /*
2727 * Debug output support
2728 * Atarians have a choice between the parallel port, the serial port
2729 * from the MFP or a serial port of the SCC
2730 */
2731
2732 #ifdef CONFIG_MAC
2733 /* You may define either or both of these. */
2734 #define MAC_USE_SCC_A /* Modem port */
2735 #define MAC_USE_SCC_B /* Printer port */
2736
2737 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2738 /* Initialisation table for SCC with 3.6864 MHz PCLK */
2739 L(scc_initable_mac):
2740 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2741 .byte 3,0xc0 /* receiver: 8 bpc */
2742 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2743 .byte 10,0 /* NRZ */
2744 .byte 11,0x50 /* use baud rate generator */
2745 .byte 12,1,13,0 /* 38400 baud */
2746 .byte 14,1 /* Baud rate generator enable */
2747 .byte 3,0xc1 /* enable receiver */
2748 .byte 5,0xea /* enable transmitter */
2749 .byte -1
2750 .even
2751 #endif
2752 #endif /* CONFIG_MAC */
2753
2754 #ifdef CONFIG_ATARI
2755 /* #define USE_PRINTER */
2756 /* #define USE_SCC_B */
2757 /* #define USE_SCC_A */
2758 #define USE_MFP
2759
2760 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2761 /* Initialisation table for SCC with 7.9872 MHz PCLK */
2762 /* PCLK == 8.0539 gives baud == 9680.1 */
2763 L(scc_initable_atari):
2764 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2765 .byte 3,0xc0 /* receiver: 8 bpc */
2766 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2767 .byte 10,0 /* NRZ */
2768 .byte 11,0x50 /* use baud rate generator */
2769 .byte 12,24,13,0 /* 9600 baud */
2770 .byte 14,2,14,3 /* use master clock for BRG, enable */
2771 .byte 3,0xc1 /* enable receiver */
2772 .byte 5,0xea /* enable transmitter */
2773 .byte -1
2774 .even
2775 #endif
2776
2777 #ifdef USE_PRINTER
2778
2779 LPSG_SELECT = 0xff8800
2780 LPSG_READ = 0xff8800
2781 LPSG_WRITE = 0xff8802
2782 LPSG_IO_A = 14
2783 LPSG_IO_B = 15
2784 LPSG_CONTROL = 7
2785 LSTMFP_GPIP = 0xfffa01
2786 LSTMFP_DDR = 0xfffa05
2787 LSTMFP_IERB = 0xfffa09
2788
2789 #elif defined(USE_SCC_B)
2790
2791 LSCC_CTRL = 0xff8c85
2792 LSCC_DATA = 0xff8c87
2793
2794 #elif defined(USE_SCC_A)
2795
2796 LSCC_CTRL = 0xff8c81
2797 LSCC_DATA = 0xff8c83
2798
2799 #elif defined(USE_MFP)
2800
2801 LMFP_UCR = 0xfffa29
2802 LMFP_TDCDR = 0xfffa1d
2803 LMFP_TDDR = 0xfffa25
2804 LMFP_TSR = 0xfffa2d
2805 LMFP_UDR = 0xfffa2f
2806
2807 #endif
2808 #endif /* CONFIG_ATARI */
2809
2810 /*
2811 * Serial port output support.
2812 */
2813
2814 /*
2815 * Initialize serial port hardware
2816 */
2817 func_start serial_init,%d0/%d1/%a0/%a1
2818 /*
2819 * Some of the register usage that follows
2820 * CONFIG_AMIGA
2821 * a0 = pointer to boot info record
2822 * d0 = boot info offset
2823 * CONFIG_ATARI
2824 * a0 = address of SCC
2825 * a1 = Liobase address/address of scc_initable_atari
2826 * d0 = init data for serial port
2827 * CONFIG_MAC
2828 * a0 = address of SCC
2829 * a1 = address of scc_initable_mac
2830 * d0 = init data for serial port
2831 */
2832
2833 #ifdef CONFIG_AMIGA
2834 #define SERIAL_DTR 7
2835 #define SERIAL_CNTRL CIABBASE+C_PRA
2836
2837 is_not_amiga(1f)
2838 lea %pc@(L(custom)),%a0
2839 movel #-ZTWOBASE,%a0@
2840 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841 get_bi_record BI_AMIGA_SERPER
2842 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2844 1:
2845 #endif
2846
2847 #ifdef CONFIG_ATARI
2848 is_not_atari(4f)
2849 movel %pc@(L(iobase)),%a1
2850 #if defined(USE_PRINTER)
2851 bclr #0,%a1@(LSTMFP_IERB)
2852 bclr #0,%a1@(LSTMFP_DDR)
2853 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2854 moveb #0xff,%a1@(LPSG_WRITE)
2855 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2856 clrb %a1@(LPSG_WRITE)
2857 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2858 moveb %a1@(LPSG_READ),%d0
2859 bset #5,%d0
2860 moveb %d0,%a1@(LPSG_WRITE)
2861 #elif defined(USE_SCC_A) || defined(USE_SCC_B)
2862 lea %a1@(LSCC_CTRL),%a0
2863 /* Reset SCC register pointer */
2864 moveb %a0@,%d0
2865 /* Reset SCC device: write register pointer then register value */
2866 moveb #9,%a0@
2867 moveb #0xc0,%a0@
2868 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2869 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2870 movel #32,%d0
2871 2:
2872 subq #1,%d0
2873 jne 2b
2874 /* Initialize channel */
2875 lea %pc@(L(scc_initable_atari)),%a1
2876 2: moveb %a1@+,%d0
2877 jmi 3f
2878 moveb %d0,%a0@
2879 moveb %a1@+,%a0@
2880 jra 2b
2881 3: clrb %a0@
2882 #elif defined(USE_MFP)
2883 bclr #1,%a1@(LMFP_TSR)
2884 moveb #0x88,%a1@(LMFP_UCR)
2885 andb #0x70,%a1@(LMFP_TDCDR)
2886 moveb #2,%a1@(LMFP_TDDR)
2887 orb #1,%a1@(LMFP_TDCDR)
2888 bset #1,%a1@(LMFP_TSR)
2889 #endif
2890 jra L(serial_init_done)
2891 4:
2892 #endif
2893
2894 #ifdef CONFIG_MAC
2895 is_not_mac(L(serial_init_not_mac))
2896 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2897 #define mac_scc_cha_b_ctrl_offset 0x0
2898 #define mac_scc_cha_a_ctrl_offset 0x2
2899 #define mac_scc_cha_b_data_offset 0x4
2900 #define mac_scc_cha_a_data_offset 0x6
2901 movel %pc@(L(mac_sccbase)),%a0
2902 /* Reset SCC register pointer */
2903 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2904 /* Reset SCC device: write register pointer then register value */
2905 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2906 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2907 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2908 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2909 movel #35,%d0
2910 5:
2911 subq #1,%d0
2912 jne 5b
2913 #endif
2914 #ifdef MAC_USE_SCC_A
2915 /* Initialize channel A */
2916 lea %pc@(L(scc_initable_mac)),%a1
2917 5: moveb %a1@+,%d0
2918 jmi 6f
2919 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2920 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2921 jra 5b
2922 6:
2923 #endif /* MAC_USE_SCC_A */
2924 #ifdef MAC_USE_SCC_B
2925 /* Initialize channel B */
2926 lea %pc@(L(scc_initable_mac)),%a1
2927 7: moveb %a1@+,%d0
2928 jmi 8f
2929 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2930 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2931 jra 7b
2932 8:
2933 #endif /* MAC_USE_SCC_B */
2934 jra L(serial_init_done)
2935 L(serial_init_not_mac):
2936 #endif /* CONFIG_MAC */
2937
2938 #ifdef CONFIG_Q40
2939 is_not_q40(2f)
2940 /* debug output goes into SRAM, so we don't do it unless requested
2941 - check for '%LX$' signature in SRAM */
2942 lea %pc@(q40_mem_cptr),%a1
2943 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2944 move.l #0xff020000,%a1
2945 cmp.b #'%',%a1@
2946 bne 2f /*nodbg*/
2947 addq.w #4,%a1
2948 cmp.b #'L',%a1@
2949 bne 2f /*nodbg*/
2950 addq.w #4,%a1
2951 cmp.b #'X',%a1@
2952 bne 2f /*nodbg*/
2953 addq.w #4,%a1
2954 cmp.b #'$',%a1@
2955 bne 2f /*nodbg*/
2956 /* signature OK */
2957 lea %pc@(L(q40_do_debug)),%a1
2958 tas %a1@
2959 /*nodbg: q40_do_debug is 0 by default*/
2960 2:
2961 #endif
2962
2963 #ifdef CONFIG_MVME16x
2964 is_not_mvme16x(L(serial_init_not_mvme16x))
2965 moveb #0x10,M167_PCSCCMICR
2966 moveb #0x10,M167_PCSCCTICR
2967 moveb #0x10,M167_PCSCCRICR
2968 jra L(serial_init_done)
2969 L(serial_init_not_mvme16x):
2970 #endif
2971
2972 #ifdef CONFIG_APOLLO
2973 /* We count on the PROM initializing SIO1 */
2974 #endif
2975
2976 #ifdef CONFIG_HP300
2977 /* We count on the boot loader initialising the UART */
2978 #endif
2979
2980 L(serial_init_done):
2981 func_return serial_init
2982
2983 /*
2984 * Output character on serial port.
2985 */
2986 func_start serial_putc,%d0/%d1/%a0/%a1
2987
2988 movel ARG1,%d0
2989 cmpib #'\n',%d0
2990 jbne 1f
2991
2992 /* A little safe recursion is good for the soul */
2993 serial_putc #'\r'
2994 1:
2995
2996 #ifdef CONFIG_AMIGA
2997 is_not_amiga(2f)
2998 andw #0x00ff,%d0
2999 oriw #0x0100,%d0
3000 movel %pc@(L(custom)),%a0
3001 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3002 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3003 andw #0x2000,%d0
3004 jeq 1b
3005 jra L(serial_putc_done)
3006 2:
3007 #endif
3008
3009 #ifdef CONFIG_MAC
3010 is_not_mac(5f)
3011 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3012 movel %pc@(L(mac_sccbase)),%a1
3013 #endif
3014 #ifdef MAC_USE_SCC_A
3015 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3016 jeq 3b
3017 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3018 #endif /* MAC_USE_SCC_A */
3019 #ifdef MAC_USE_SCC_B
3020 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3021 jeq 4b
3022 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3023 #endif /* MAC_USE_SCC_B */
3024 jra L(serial_putc_done)
3025 5:
3026 #endif /* CONFIG_MAC */
3027
3028 #ifdef CONFIG_ATARI
3029 is_not_atari(4f)
3030 movel %pc@(L(iobase)),%a1
3031 #if defined(USE_PRINTER)
3032 3: btst #0,%a1@(LSTMFP_GPIP)
3033 jne 3b
3034 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3035 moveb %d0,%a1@(LPSG_WRITE)
3036 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3037 moveb %a1@(LPSG_READ),%d0
3038 bclr #5,%d0
3039 moveb %d0,%a1@(LPSG_WRITE)
3040 nop
3041 nop
3042 bset #5,%d0
3043 moveb %d0,%a1@(LPSG_WRITE)
3044 #elif defined(USE_SCC_A) || defined(USE_SCC_B)
3045 3: btst #2,%a1@(LSCC_CTRL)
3046 jeq 3b
3047 moveb %d0,%a1@(LSCC_DATA)
3048 #elif defined(USE_MFP)
3049 3: btst #7,%a1@(LMFP_TSR)
3050 jeq 3b
3051 moveb %d0,%a1@(LMFP_UDR)
3052 #endif
3053 jra L(serial_putc_done)
3054 4:
3055 #endif /* CONFIG_ATARI */
3056
3057 #ifdef CONFIG_MVME147
3058 is_not_mvme147(2f)
3059 1: btst #2,M147_SCC_CTRL_A
3060 jeq 1b
3061 moveb %d0,M147_SCC_DATA_A
3062 jbra L(serial_putc_done)
3063 2:
3064 #endif
3065
3066 #ifdef CONFIG_MVME16x
3067 is_not_mvme16x(2f)
3068 /*
3069 * If the loader gave us a board type then we can use that to
3070 * select an appropriate output routine; otherwise we just use
3071 * the Bug code. If we have to use the Bug that means the Bug
3072 * workspace has to be valid, which means the Bug has to use
3073 * the SRAM, which is non-standard.
3074 */
3075 moveml %d0-%d7/%a2-%a6,%sp@-
3076 movel vme_brdtype,%d1
3077 jeq 1f | No tag - use the Bug
3078 cmpi #VME_TYPE_MVME162,%d1
3079 jeq 6f
3080 cmpi #VME_TYPE_MVME172,%d1
3081 jne 5f
3082 /* 162/172; it's an SCC */
3083 6: btst #2,M162_SCC_CTRL_A
3084 nop
3085 nop
3086 nop
3087 jeq 6b
3088 moveb #8,M162_SCC_CTRL_A
3089 nop
3090 nop
3091 nop
3092 moveb %d0,M162_SCC_CTRL_A
3093 jra 3f
3094 5:
3095 /* 166/167/177; it's a CD2401 */
3096 moveb #0,M167_CYCAR
3097 moveb M167_CYIER,%d2
3098 moveb #0x02,M167_CYIER
3099 7:
3100 btst #5,M167_PCSCCTICR
3101 jeq 7b
3102 moveb M167_PCTPIACKR,%d1
3103 moveb M167_CYLICR,%d1
3104 jeq 8f
3105 moveb #0x08,M167_CYTEOIR
3106 jra 7b
3107 8:
3108 moveb %d0,M167_CYTDR
3109 moveb #0,M167_CYTEOIR
3110 moveb %d2,M167_CYIER
3111 jra 3f
3112 1:
3113 moveb %d0,%sp@-
3114 trap #15
3115 .word 0x0020 /* TRAP 0x020 */
3116 3:
3117 moveml %sp@+,%d0-%d7/%a2-%a6
3118 jbra L(serial_putc_done)
3119 2:
3120 #endif /* CONFIG_MVME16x */
3121
3122 #ifdef CONFIG_BVME6000
3123 is_not_bvme6000(2f)
3124 /*
3125 * The BVME6000 machine has a serial port ...
3126 */
3127 1: btst #2,BVME_SCC_CTRL_A
3128 jeq 1b
3129 moveb %d0,BVME_SCC_DATA_A
3130 jbra L(serial_putc_done)
3131 2:
3132 #endif
3133
3134 #ifdef CONFIG_SUN3X
3135 is_not_sun3x(2f)
3136 movel %d0,-(%sp)
3137 movel 0xFEFE0018,%a1
3138 jbsr (%a1)
3139 addq #4,%sp
3140 jbra L(serial_putc_done)
3141 2:
3142 #endif
3143
3144 #ifdef CONFIG_Q40
3145 is_not_q40(2f)
3146 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3147 beq 2f
3148 lea %pc@(q40_mem_cptr),%a1
3149 move.l %a1@,%a0
3150 move.b %d0,%a0@
3151 addq.l #4,%a0
3152 move.l %a0,%a1@
3153 jbra L(serial_putc_done)
3154 2:
3155 #endif
3156
3157 #ifdef CONFIG_APOLLO
3158 is_not_apollo(2f)
3159 movl %pc@(L(iobase)),%a1
3160 moveb %d0,%a1@(LTHRB0)
3161 1: moveb %a1@(LSRB0),%d0
3162 andb #0x4,%d0
3163 beq 1b
3164 jbra L(serial_putc_done)
3165 2:
3166 #endif
3167
3168 #ifdef CONFIG_HP300
3169 is_not_hp300(3f)
3170 movl %pc@(L(iobase)),%a1
3171 addl %pc@(L(uartbase)),%a1
3172 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3173 jmi 3f /* Unset? Exit */
3174 cmpi #256,%d1 /* APCI scode? */
3175 jeq 2f
3176 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3177 andb #0x20,%d1
3178 beq 1b
3179 moveb %d0,%a1@(DCADATA)
3180 jbra L(serial_putc_done)
3181 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3182 andb #0x20,%d1
3183 beq 2b
3184 moveb %d0,%a1@(APCIDATA)
3185 jbra L(serial_putc_done)
3186 3:
3187 #endif
3188
3189 L(serial_putc_done):
3190 func_return serial_putc
3191
3192 /*
3193 * Output a string.
3194 */
3195 func_start puts,%d0/%a0
3196
3197 movel ARG1,%a0
3198 jra 2f
3199 1:
3200 #ifdef CONSOLE_DEBUG
3201 console_putc %d0
3202 #endif
3203 #ifdef SERIAL_DEBUG
3204 serial_putc %d0
3205 #endif
3206 2: moveb %a0@+,%d0
3207 jne 1b
3208
3209 func_return puts
3210
3211 /*
3212 * Output number in hex notation.
3213 */
3214
3215 func_start putn,%d0-%d2
3216
3217 putc ' '
3218
3219 movel ARG1,%d0
3220 moveq #7,%d1
3221 1: roll #4,%d0
3222 move %d0,%d2
3223 andb #0x0f,%d2
3224 addb #'0',%d2
3225 cmpb #'9',%d2
3226 jls 2f
3227 addb #'A'-('9'+1),%d2
3228 2:
3229 #ifdef CONSOLE_DEBUG
3230 console_putc %d2
3231 #endif
3232 #ifdef SERIAL_DEBUG
3233 serial_putc %d2
3234 #endif
3235 dbra %d1,1b
3236
3237 func_return putn
3238
3239 #ifdef CONFIG_EARLY_PRINTK
3240 /*
3241 * This routine takes its parameters on the stack. It then
3242 * turns around and calls the internal routines. This routine
3243 * is used by the boot console.
3244 *
3245 * The calling parameters are:
3246 * void debug_cons_nputs(const char *str, unsigned length)
3247 *
3248 * This routine does NOT understand variable arguments only
3249 * simple strings!
3250 */
3251 ENTRY(debug_cons_nputs)
3252 moveml %d0/%d1/%a0,%sp@-
3253 movew %sr,%sp@-
3254 ori #0x0700,%sr
3255 movel %sp@(18),%a0 /* fetch parameter */
3256 movel %sp@(22),%d1 /* fetch parameter */
3257 jra 2f
3258 1:
3259 #ifdef CONSOLE_DEBUG
3260 console_putc %d0
3261 #endif
3262 #ifdef SERIAL_DEBUG
3263 serial_putc %d0
3264 #endif
3265 subq #1,%d1
3266 2: jeq 3f
3267 moveb %a0@+,%d0
3268 jne 1b
3269 3:
3270 movew %sp@+,%sr
3271 moveml %sp@+,%d0/%d1/%a0
3272 rts
3273 #endif /* CONFIG_EARLY_PRINTK */
3274
3275 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276 func_start set_leds,%d0/%a0
3277 movel ARG1,%d0
3278 #ifdef CONFIG_HP300
3279 is_not_hp300(1f)
3280 movel %pc@(L(iobase)),%a0
3281 moveb %d0,%a0@(0x1ffff)
3282 jra 2f
3283 #endif
3284 1:
3285 #ifdef CONFIG_APOLLO
3286 movel %pc@(L(iobase)),%a0
3287 lsll #8,%d0
3288 eorw #0xff00,%d0
3289 moveb %d0,%a0@(LCPUCTRL)
3290 #endif
3291 2:
3292 func_return set_leds
3293 #endif
3294
3295 #ifdef CONSOLE_DEBUG
3296 /*
3297 * For continuity, see the data alignment
3298 * to which this structure is tied.
3299 */
3300 #define Lconsole_struct_cur_column 0
3301 #define Lconsole_struct_cur_row 4
3302 #define Lconsole_struct_num_columns 8
3303 #define Lconsole_struct_num_rows 12
3304 #define Lconsole_struct_left_edge 16
3305
3306 func_start console_init,%a0-%a4/%d0-%d7
3307 /*
3308 * Some of the register usage that follows
3309 * a0 = pointer to boot_info
3310 * a1 = pointer to screen
3311 * a2 = pointer to console_globals
3312 * d3 = pixel width of screen
3313 * d4 = pixel height of screen
3314 * (d3,d4) ~= (x,y) of a point just below
3315 * and to the right of the screen
3316 * NOT on the screen!
3317 * d5 = number of bytes per scan line
3318 * d6 = number of bytes on the entire screen
3319 */
3320
3321 lea %pc@(L(console_globals)),%a2
3322 movel %pc@(L(mac_videobase)),%a1
3323 movel %pc@(L(mac_rowbytes)),%d5
3324 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3325 movel %d3,%d4
3326 swap %d4 /* -> high byte */
3327 andl #0xffff,%d3 /* d3 = screen width in pixels */
3328 andl #0xffff,%d4 /* d4 = screen height in pixels */
3329
3330 movel %d5,%d6
3331 | subl #20,%d6
3332 mulul %d4,%d6 /* scan line bytes x num scan lines */
3333 divul #8,%d6 /* we'll clear 8 bytes at a time */
3334 moveq #-1,%d0 /* Mac_black */
3335 subq #1,%d6
3336
3337 L(console_clear_loop):
3338 movel %d0,%a1@+
3339 movel %d0,%a1@+
3340 dbra %d6,L(console_clear_loop)
3341
3342 /* Calculate font size */
3343
3344 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345 lea %pc@(font_vga_8x8),%a0
3346 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347 lea %pc@(font_vga_8x16),%a0
3348 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349 lea %pc@(font_vga_6x11),%a0
3350 #elif defined(CONFIG_FONT_8x8) /* default */
3351 lea %pc@(font_vga_8x8),%a0
3352 #else /* no compiled-in font */
3353 lea 0,%a0
3354 #endif
3355
3356 /*
3357 * At this point we make a shift in register usage
3358 * a1 = address of console_font pointer
3359 */
3360 lea %pc@(L(console_font)),%a1
3361 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3362 tstl %a0
3363 jeq 1f
3364 lea %pc@(L(console_font_data)),%a4
3365 movel %a0@(FONT_DESC_DATA),%d0
3366 subl #L(console_font),%a1
3367 addl %a1,%d0
3368 movel %d0,%a4@
3369
3370 /*
3371 * Calculate global maxs
3372 * Note - we can use either an
3373 * 8 x 16 or 8 x 8 character font
3374 * 6 x 11 also supported
3375 */
3376 /* ASSERT: a0 = contents of Lconsole_font */
3377 movel %d3,%d0 /* screen width in pixels */
3378 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3379
3380 movel %d4,%d1 /* screen height in pixels */
3381 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3382
3383 movel %d0,%a2@(Lconsole_struct_num_columns)
3384 movel %d1,%a2@(Lconsole_struct_num_rows)
3385
3386 /*
3387 * Clear the current row and column
3388 */
3389 clrl %a2@(Lconsole_struct_cur_column)
3390 clrl %a2@(Lconsole_struct_cur_row)
3391 clrl %a2@(Lconsole_struct_left_edge)
3392
3393 /*
3394 * Initialization is complete
3395 */
3396 1:
3397 func_return console_init
3398
3399 #ifdef CONFIG_LOGO
3400 func_start console_put_penguin,%a0-%a1/%d0-%d7
3401 /*
3402 * Get 'that_penguin' onto the screen in the upper right corner
3403 * penguin is 64 x 74 pixels, align against right edge of screen
3404 */
3405 lea %pc@(L(mac_dimensions)),%a0
3406 movel %a0@,%d0
3407 andil #0xffff,%d0
3408 subil #64,%d0 /* snug up against the right edge */
3409 clrl %d1 /* start at the top */
3410 movel #73,%d7
3411 lea %pc@(L(that_penguin)),%a1
3412 L(console_penguin_row):
3413 movel #31,%d6
3414 L(console_penguin_pixel_pair):
3415 moveb %a1@,%d2
3416 lsrb #4,%d2
3417 console_plot_pixel %d0,%d1,%d2
3418 addq #1,%d0
3419 moveb %a1@+,%d2
3420 console_plot_pixel %d0,%d1,%d2
3421 addq #1,%d0
3422 dbra %d6,L(console_penguin_pixel_pair)
3423
3424 subil #64,%d0
3425 addq #1,%d1
3426 dbra %d7,L(console_penguin_row)
3427
3428 func_return console_put_penguin
3429
3430 /* include penguin bitmap */
3431 L(that_penguin):
3432 #include "../mac/mac_penguin.S"
3433 #endif
3434
3435 /*
3436 * Calculate source and destination addresses
3437 * output a1 = dest
3438 * a2 = source
3439 */
3440
3441 func_start console_scroll,%a0-%a4/%d0-%d7
3442 lea %pc@(L(mac_videobase)),%a0
3443 movel %a0@,%a1
3444 movel %a1,%a2
3445 lea %pc@(L(mac_rowbytes)),%a0
3446 movel %a0@,%d5
3447 movel %pc@(L(console_font)),%a0
3448 tstl %a0
3449 jeq 1f
3450 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3451 addal %d5,%a2
3452
3453 /*
3454 * Get dimensions
3455 */
3456 lea %pc@(L(mac_dimensions)),%a0
3457 movel %a0@,%d3
3458 movel %d3,%d4
3459 swap %d4
3460 andl #0xffff,%d3 /* d3 = screen width in pixels */
3461 andl #0xffff,%d4 /* d4 = screen height in pixels */
3462
3463 /*
3464 * Calculate number of bytes to move
3465 */
3466 lea %pc@(L(mac_rowbytes)),%a0
3467 movel %a0@,%d6
3468 movel %pc@(L(console_font)),%a0
3469 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3470 mulul %d4,%d6 /* scan line bytes x num scan lines */
3471 divul #32,%d6 /* we'll move 8 longs at a time */
3472 subq #1,%d6
3473
3474 L(console_scroll_loop):
3475 movel %a2@+,%a1@+
3476 movel %a2@+,%a1@+
3477 movel %a2@+,%a1@+
3478 movel %a2@+,%a1@+
3479 movel %a2@+,%a1@+
3480 movel %a2@+,%a1@+
3481 movel %a2@+,%a1@+
3482 movel %a2@+,%a1@+
3483 dbra %d6,L(console_scroll_loop)
3484
3485 lea %pc@(L(mac_rowbytes)),%a0
3486 movel %a0@,%d6
3487 movel %pc@(L(console_font)),%a0
3488 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3489 divul #32,%d6 /* we'll move 8 words at a time */
3490 subq #1,%d6
3491
3492 moveq #-1,%d0
3493 L(console_scroll_clear_loop):
3494 movel %d0,%a1@+
3495 movel %d0,%a1@+
3496 movel %d0,%a1@+
3497 movel %d0,%a1@+
3498 movel %d0,%a1@+
3499 movel %d0,%a1@+
3500 movel %d0,%a1@+
3501 movel %d0,%a1@+
3502 dbra %d6,L(console_scroll_clear_loop)
3503
3504 1:
3505 func_return console_scroll
3506
3507
3508 func_start console_putc,%a0/%a1/%d0-%d7
3509
3510 is_not_mac(L(console_exit))
3511 tstl %pc@(L(console_font))
3512 jeq L(console_exit)
3513
3514 /* Output character in d7 on console.
3515 */
3516 movel ARG1,%d7
3517 cmpib #'\n',%d7
3518 jbne 1f
3519
3520 /* A little safe recursion is good for the soul */
3521 console_putc #'\r'
3522 1:
3523 lea %pc@(L(console_globals)),%a0
3524
3525 cmpib #10,%d7
3526 jne L(console_not_lf)
3527 movel %a0@(Lconsole_struct_cur_row),%d0
3528 addil #1,%d0
3529 movel %d0,%a0@(Lconsole_struct_cur_row)
3530 movel %a0@(Lconsole_struct_num_rows),%d1
3531 cmpl %d1,%d0
3532 jcs 1f
3533 subil #1,%d0
3534 movel %d0,%a0@(Lconsole_struct_cur_row)
3535 console_scroll
3536 1:
3537 jra L(console_exit)
3538
3539 L(console_not_lf):
3540 cmpib #13,%d7
3541 jne L(console_not_cr)
3542 clrl %a0@(Lconsole_struct_cur_column)
3543 jra L(console_exit)
3544
3545 L(console_not_cr):
3546 cmpib #1,%d7
3547 jne L(console_not_home)
3548 clrl %a0@(Lconsole_struct_cur_row)
3549 clrl %a0@(Lconsole_struct_cur_column)
3550 jra L(console_exit)
3551
3552 /*
3553 * At this point we know that the %d7 character is going to be
3554 * rendered on the screen. Register usage is -
3555 * a0 = pointer to console globals
3556 * a1 = font data
3557 * d0 = cursor column
3558 * d1 = cursor row to draw the character
3559 * d7 = character number
3560 */
3561 L(console_not_home):
3562 movel %a0@(Lconsole_struct_cur_column),%d0
3563 addql #1,%a0@(Lconsole_struct_cur_column)
3564 movel %a0@(Lconsole_struct_num_columns),%d1
3565 cmpl %d1,%d0
3566 jcs 1f
3567 console_putc #'\n' /* recursion is OK! */
3568 1:
3569 movel %a0@(Lconsole_struct_cur_row),%d1
3570
3571 /*
3572 * At this point we make a shift in register usage
3573 * a0 = address of pointer to font data (fbcon_font_desc)
3574 */
3575 movel %pc@(L(console_font)),%a0
3576 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3577 andl #0x000000ff,%d7
3578 /* ASSERT: a0 = contents of Lconsole_font */
3579 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3580 addl %d7,%a1 /* a1 = points to char image */
3581
3582 /*
3583 * At this point we make a shift in register usage
3584 * d0 = pixel coordinate, x
3585 * d1 = pixel coordinate, y
3586 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3587 * d3 = font scan line data (8 pixels)
3588 * d6 = count down for the font's pixel width (8)
3589 * d7 = count down for the font's pixel count in height
3590 */
3591 /* ASSERT: a0 = contents of Lconsole_font */
3592 mulul %a0@(FONT_DESC_WIDTH),%d0
3593 mulul %a0@(FONT_DESC_HEIGHT),%d1
3594 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3595 subq #1,%d7
3596 L(console_read_char_scanline):
3597 moveb %a1@+,%d3
3598
3599 /* ASSERT: a0 = contents of Lconsole_font */
3600 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3601 subql #1,%d6
3602
3603 L(console_do_font_scanline):
3604 lslb #1,%d3
3605 scsb %d2 /* convert 1 bit into a byte */
3606 console_plot_pixel %d0,%d1,%d2
3607 addq #1,%d0
3608 dbra %d6,L(console_do_font_scanline)
3609
3610 /* ASSERT: a0 = contents of Lconsole_font */
3611 subl %a0@(FONT_DESC_WIDTH),%d0
3612 addq #1,%d1
3613 dbra %d7,L(console_read_char_scanline)
3614
3615 L(console_exit):
3616 func_return console_putc
3617
3618 /*
3619 * Input:
3620 * d0 = x coordinate
3621 * d1 = y coordinate
3622 * d2 = (bit 0) 1/0 for white/black (!)
3623 * All registers are preserved
3624 */
3625 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3626
3627 movel %pc@(L(mac_videobase)),%a1
3628 movel %pc@(L(mac_videodepth)),%d3
3629 movel ARG1,%d0
3630 movel ARG2,%d1
3631 mulul %pc@(L(mac_rowbytes)),%d1
3632 movel ARG3,%d2
3633
3634 /*
3635 * Register usage:
3636 * d0 = x coord becomes byte offset into frame buffer
3637 * d1 = y coord
3638 * d2 = black or white (0/1)
3639 * d3 = video depth
3640 * d4 = temp of x (d0) for many bit depths
3641 */
3642 L(test_1bit):
3643 cmpb #1,%d3
3644 jbne L(test_2bit)
3645 movel %d0,%d4 /* we need the low order 3 bits! */
3646 divul #8,%d0
3647 addal %d0,%a1
3648 addal %d1,%a1
3649 andb #7,%d4
3650 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3651 andb #1,%d2
3652 jbne L(white_1)
3653 bsetb %d4,%a1@
3654 jbra L(console_plot_pixel_exit)
3655 L(white_1):
3656 bclrb %d4,%a1@
3657 jbra L(console_plot_pixel_exit)
3658
3659 L(test_2bit):
3660 cmpb #2,%d3
3661 jbne L(test_4bit)
3662 movel %d0,%d4 /* we need the low order 2 bits! */
3663 divul #4,%d0
3664 addal %d0,%a1
3665 addal %d1,%a1
3666 andb #3,%d4
3667 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3668 lsll #1,%d4 /* ! */
3669 andb #1,%d2
3670 jbne L(white_2)
3671 bsetb %d4,%a1@
3672 addq #1,%d4
3673 bsetb %d4,%a1@
3674 jbra L(console_plot_pixel_exit)
3675 L(white_2):
3676 bclrb %d4,%a1@
3677 addq #1,%d4
3678 bclrb %d4,%a1@
3679 jbra L(console_plot_pixel_exit)
3680
3681 L(test_4bit):
3682 cmpb #4,%d3
3683 jbne L(test_8bit)
3684 movel %d0,%d4 /* we need the low order bit! */
3685 divul #2,%d0
3686 addal %d0,%a1
3687 addal %d1,%a1
3688 andb #1,%d4
3689 eorb #1,%d4
3690 lsll #2,%d4 /* ! */
3691 andb #1,%d2
3692 jbne L(white_4)
3693 bsetb %d4,%a1@
3694 addq #1,%d4
3695 bsetb %d4,%a1@
3696 addq #1,%d4
3697 bsetb %d4,%a1@
3698 addq #1,%d4
3699 bsetb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701 L(white_4):
3702 bclrb %d4,%a1@
3703 addq #1,%d4
3704 bclrb %d4,%a1@
3705 addq #1,%d4
3706 bclrb %d4,%a1@
3707 addq #1,%d4
3708 bclrb %d4,%a1@
3709 jbra L(console_plot_pixel_exit)
3710
3711 L(test_8bit):
3712 cmpb #8,%d3
3713 jbne L(test_16bit)
3714 addal %d0,%a1
3715 addal %d1,%a1
3716 andb #1,%d2
3717 jbne L(white_8)
3718 moveb #0xff,%a1@
3719 jbra L(console_plot_pixel_exit)
3720 L(white_8):
3721 clrb %a1@
3722 jbra L(console_plot_pixel_exit)
3723
3724 L(test_16bit):
3725 cmpb #16,%d3
3726 jbne L(console_plot_pixel_exit)
3727 addal %d0,%a1
3728 addal %d0,%a1
3729 addal %d1,%a1
3730 andb #1,%d2
3731 jbne L(white_16)
3732 clrw %a1@
3733 jbra L(console_plot_pixel_exit)
3734 L(white_16):
3735 movew #0x0fff,%a1@
3736 jbra L(console_plot_pixel_exit)
3737
3738 L(console_plot_pixel_exit):
3739 func_return console_plot_pixel
3740 #endif /* CONSOLE_DEBUG */
3741
3742
3743 __INITDATA
3744 .align 4
3745
3746 m68k_init_mapped_size:
3747 .long 0
3748
3749 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3750 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3751 L(custom):
3752 L(iobase):
3753 .long 0
3754 #endif
3755
3756 #ifdef CONSOLE_DEBUG
3757 L(console_globals):
3758 .long 0 /* cursor column */
3759 .long 0 /* cursor row */
3760 .long 0 /* max num columns */
3761 .long 0 /* max num rows */
3762 .long 0 /* left edge */
3763 L(console_font):
3764 .long 0 /* pointer to console font (struct font_desc) */
3765 L(console_font_data):
3766 .long 0 /* pointer to console font data */
3767 #endif /* CONSOLE_DEBUG */
3768
3769 #if defined(MMU_PRINT)
3770 L(mmu_print_data):
3771 .long 0 /* valid flag */
3772 .long 0 /* start logical */
3773 .long 0 /* next logical */
3774 .long 0 /* start physical */
3775 .long 0 /* next physical */
3776 #endif /* MMU_PRINT */
3777
3778 L(cputype):
3779 .long 0
3780 L(mmu_cached_pointer_tables):
3781 .long 0
3782 L(mmu_num_pointer_tables):
3783 .long 0
3784 L(phys_kernel_start):
3785 .long 0
3786 L(kernel_end):
3787 .long 0
3788 L(memory_start):
3789 .long 0
3790 L(kernel_pgdir_ptr):
3791 .long 0
3792 L(temp_mmap_mem):
3793 .long 0
3794
3795 #if defined (CONFIG_MVME147)
3796 M147_SCC_CTRL_A = 0xfffe3002
3797 M147_SCC_DATA_A = 0xfffe3003
3798 #endif
3799
3800 #if defined (CONFIG_MVME16x)
3801 M162_SCC_CTRL_A = 0xfff45005
3802 M167_CYCAR = 0xfff450ee
3803 M167_CYIER = 0xfff45011
3804 M167_CYLICR = 0xfff45026
3805 M167_CYTEOIR = 0xfff45085
3806 M167_CYTDR = 0xfff450f8
3807 M167_PCSCCMICR = 0xfff4201d
3808 M167_PCSCCTICR = 0xfff4201e
3809 M167_PCSCCRICR = 0xfff4201f
3810 M167_PCTPIACKR = 0xfff42025
3811 #endif
3812
3813 #if defined (CONFIG_BVME6000)
3814 BVME_SCC_CTRL_A = 0xffb0000b
3815 BVME_SCC_DATA_A = 0xffb0000f
3816 #endif
3817
3818 #if defined(CONFIG_MAC)
3819 L(mac_videobase):
3820 .long 0
3821 L(mac_videodepth):
3822 .long 0
3823 L(mac_dimensions):
3824 .long 0
3825 L(mac_rowbytes):
3826 .long 0
3827 L(mac_sccbase):
3828 .long 0
3829 #endif /* CONFIG_MAC */
3830
3831 #if defined (CONFIG_APOLLO)
3832 LSRB0 = 0x10412
3833 LTHRB0 = 0x10416
3834 LCPUCTRL = 0x10100
3835 #endif
3836
3837 #if defined(CONFIG_HP300)
3838 DCADATA = 0x11
3839 DCALSR = 0x1b
3840 APCIDATA = 0x00
3841 APCILSR = 0x14
3842 L(uartbase):
3843 .long 0
3844 L(uart_scode):
3845 .long -1
3846 #endif
3847
3848 __FINIT
3849 .data
3850 .align 4
3851
3852 availmem:
3853 .long 0
3854 m68k_pgtable_cachemode:
3855 .long 0
3856 m68k_supervisor_cachemode:
3857 .long 0
3858 #if defined(CONFIG_MVME16x)
3859 mvme_bdid:
3860 .long 0,0,0,0,0,0,0,0
3861 #endif
3862 #if defined(CONFIG_Q40)
3863 q40_mem_cptr:
3864 .long 0
3865 L(q40_do_debug):
3866 .long 0
3867 #endif