]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/metag/kernel/smp.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / metag / kernel / smp.c
1 /*
2 * Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/atomic.h>
11 #include <linux/completion.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/spinlock.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/hotplug.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/interrupt.h>
19 #include <linux/cache.h>
20 #include <linux/profile.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/cpu.h>
25 #include <linux/smp.h>
26 #include <linux/seq_file.h>
27 #include <linux/irq.h>
28 #include <linux/bootmem.h>
29
30 #include <asm/cacheflush.h>
31 #include <asm/cachepart.h>
32 #include <asm/core_reg.h>
33 #include <asm/cpu.h>
34 #include <asm/global_lock.h>
35 #include <asm/metag_mem.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/setup.h>
41 #include <asm/tlbflush.h>
42 #include <asm/hwthread.h>
43 #include <asm/traps.h>
44
45 #define SYSC_DCPART(n) (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
46 #define SYSC_ICPART(n) (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
47
48 DECLARE_PER_CPU(PTBI, pTBI);
49
50 void *secondary_data_stack;
51
52 /*
53 * structures for inter-processor calls
54 * - A collection of single bit ipi messages.
55 */
56 struct ipi_data {
57 spinlock_t lock;
58 unsigned long ipi_count;
59 unsigned long bits;
60 };
61
62 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
63 .lock = __SPIN_LOCK_UNLOCKED(ipi_data.lock),
64 };
65
66 static DEFINE_SPINLOCK(boot_lock);
67
68 static DECLARE_COMPLETION(cpu_running);
69
70 /*
71 * "thread" is assumed to be a valid Meta hardware thread ID.
72 */
73 static int boot_secondary(unsigned int thread, struct task_struct *idle)
74 {
75 u32 val;
76
77 /*
78 * set synchronisation state between this boot processor
79 * and the secondary one
80 */
81 spin_lock(&boot_lock);
82
83 core_reg_write(TXUPC_ID, 0, thread, (unsigned int)secondary_startup);
84 core_reg_write(TXUPC_ID, 1, thread, 0);
85
86 /*
87 * Give the thread privilege (PSTAT) and clear potentially problematic
88 * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
89 */
90 core_reg_write(TXUCT_ID, TXSTATUS_REGNUM, thread, TXSTATUS_PSTAT_BIT);
91
92 /* Clear the minim enable bit. */
93 val = core_reg_read(TXUCT_ID, TXPRIVEXT_REGNUM, thread);
94 core_reg_write(TXUCT_ID, TXPRIVEXT_REGNUM, thread, val & ~0x80);
95
96 /*
97 * set the ThreadEnable bit (0x1) in the TXENABLE register
98 * for the specified thread - off it goes!
99 */
100 val = core_reg_read(TXUCT_ID, TXENABLE_REGNUM, thread);
101 core_reg_write(TXUCT_ID, TXENABLE_REGNUM, thread, val | 0x1);
102
103 /*
104 * now the secondary core is starting up let it run its
105 * calibrations, then wait for it to finish
106 */
107 spin_unlock(&boot_lock);
108
109 return 0;
110 }
111
112 /**
113 * describe_cachepart_change: describe a change to cache partitions.
114 * @thread: Hardware thread number.
115 * @label: Label of cache type, e.g. "dcache" or "icache".
116 * @sz: Total size of the cache.
117 * @old: Old cache partition configuration (*CPART* register).
118 * @new: New cache partition configuration (*CPART* register).
119 *
120 * If the cache partition has changed, prints a message to the log describing
121 * those changes.
122 */
123 static void describe_cachepart_change(unsigned int thread, const char *label,
124 unsigned int sz, unsigned int old,
125 unsigned int new)
126 {
127 unsigned int lor1, land1, gor1, gand1;
128 unsigned int lor2, land2, gor2, gand2;
129 unsigned int diff = old ^ new;
130
131 if (!diff)
132 return;
133
134 pr_info("Thread %d: %s partition changed:", thread, label);
135 if (diff & (SYSC_xCPARTL_OR_BITS | SYSC_xCPARTL_AND_BITS)) {
136 lor1 = (old & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S;
137 lor2 = (new & SYSC_xCPARTL_OR_BITS) >> SYSC_xCPARTL_OR_S;
138 land1 = (old & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
139 land2 = (new & SYSC_xCPARTL_AND_BITS) >> SYSC_xCPARTL_AND_S;
140 pr_cont(" L:%#x+%#x->%#x+%#x",
141 (lor1 * sz) >> 4,
142 ((land1 + 1) * sz) >> 4,
143 (lor2 * sz) >> 4,
144 ((land2 + 1) * sz) >> 4);
145 }
146 if (diff & (SYSC_xCPARTG_OR_BITS | SYSC_xCPARTG_AND_BITS)) {
147 gor1 = (old & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S;
148 gor2 = (new & SYSC_xCPARTG_OR_BITS) >> SYSC_xCPARTG_OR_S;
149 gand1 = (old & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
150 gand2 = (new & SYSC_xCPARTG_AND_BITS) >> SYSC_xCPARTG_AND_S;
151 pr_cont(" G:%#x+%#x->%#x+%#x",
152 (gor1 * sz) >> 4,
153 ((gand1 + 1) * sz) >> 4,
154 (gor2 * sz) >> 4,
155 ((gand2 + 1) * sz) >> 4);
156 }
157 if (diff & SYSC_CWRMODE_BIT)
158 pr_cont(" %sWR",
159 (new & SYSC_CWRMODE_BIT) ? "+" : "-");
160 if (diff & SYSC_DCPART_GCON_BIT)
161 pr_cont(" %sGCOn",
162 (new & SYSC_DCPART_GCON_BIT) ? "+" : "-");
163 pr_cont("\n");
164 }
165
166 /**
167 * setup_smp_cache: ensure cache coherency for new SMP thread.
168 * @thread: New hardware thread number.
169 *
170 * Ensures that coherency is enabled and that the threads share the same cache
171 * partitions.
172 */
173 static void setup_smp_cache(unsigned int thread)
174 {
175 unsigned int this_thread, lflags;
176 unsigned int dcsz, dcpart_this, dcpart_old, dcpart_new;
177 unsigned int icsz, icpart_old, icpart_new;
178
179 /*
180 * Copy over the current thread's cache partition configuration to the
181 * new thread so that they share cache partitions.
182 */
183 __global_lock2(lflags);
184 this_thread = hard_processor_id();
185 /* Share dcache partition */
186 dcpart_this = metag_in32(SYSC_DCPART(this_thread));
187 dcpart_old = metag_in32(SYSC_DCPART(thread));
188 dcpart_new = dcpart_this;
189 #if PAGE_OFFSET < LINGLOBAL_BASE
190 /*
191 * For the local data cache to be coherent the threads must also have
192 * GCOn enabled.
193 */
194 dcpart_new |= SYSC_DCPART_GCON_BIT;
195 metag_out32(dcpart_new, SYSC_DCPART(this_thread));
196 #endif
197 metag_out32(dcpart_new, SYSC_DCPART(thread));
198 /* Share icache partition too */
199 icpart_new = metag_in32(SYSC_ICPART(this_thread));
200 icpart_old = metag_in32(SYSC_ICPART(thread));
201 metag_out32(icpart_new, SYSC_ICPART(thread));
202 __global_unlock2(lflags);
203
204 /*
205 * Log if the cache partitions were altered so the user is aware of any
206 * potential unintentional cache wastage.
207 */
208 dcsz = get_dcache_size();
209 icsz = get_dcache_size();
210 describe_cachepart_change(this_thread, "dcache", dcsz,
211 dcpart_this, dcpart_new);
212 describe_cachepart_change(thread, "dcache", dcsz,
213 dcpart_old, dcpart_new);
214 describe_cachepart_change(thread, "icache", icsz,
215 icpart_old, icpart_new);
216 }
217
218 int __cpu_up(unsigned int cpu, struct task_struct *idle)
219 {
220 unsigned int thread = cpu_2_hwthread_id[cpu];
221 int ret;
222
223 load_pgd(swapper_pg_dir, thread);
224
225 flush_tlb_all();
226
227 setup_smp_cache(thread);
228
229 /*
230 * Tell the secondary CPU where to find its idle thread's stack.
231 */
232 secondary_data_stack = task_stack_page(idle);
233
234 wmb();
235
236 /*
237 * Now bring the CPU into our world.
238 */
239 ret = boot_secondary(thread, idle);
240 if (ret == 0) {
241 /*
242 * CPU was successfully started, wait for it
243 * to come online or time out.
244 */
245 wait_for_completion_timeout(&cpu_running,
246 msecs_to_jiffies(1000));
247
248 if (!cpu_online(cpu))
249 ret = -EIO;
250 }
251
252 secondary_data_stack = NULL;
253
254 if (ret) {
255 pr_crit("CPU%u: processor failed to boot\n", cpu);
256
257 /*
258 * FIXME: We need to clean up the new idle thread. --rmk
259 */
260 }
261
262 return ret;
263 }
264
265 #ifdef CONFIG_HOTPLUG_CPU
266
267 /*
268 * __cpu_disable runs on the processor to be shutdown.
269 */
270 int __cpu_disable(void)
271 {
272 unsigned int cpu = smp_processor_id();
273
274 /*
275 * Take this CPU offline. Once we clear this, we can't return,
276 * and we must not schedule until we're ready to give up the cpu.
277 */
278 set_cpu_online(cpu, false);
279
280 /*
281 * OK - migrate IRQs away from this CPU
282 */
283 migrate_irqs();
284
285 /*
286 * Flush user cache and TLB mappings, and then remove this CPU
287 * from the vm mask set of all processes.
288 */
289 flush_cache_all();
290 local_flush_tlb_all();
291
292 clear_tasks_mm_cpumask(cpu);
293
294 return 0;
295 }
296
297 /*
298 * called on the thread which is asking for a CPU to be shutdown -
299 * waits until shutdown has completed, or it is timed out.
300 */
301 void __cpu_die(unsigned int cpu)
302 {
303 if (!cpu_wait_death(cpu, 1))
304 pr_err("CPU%u: unable to kill\n", cpu);
305 }
306
307 /*
308 * Called from the idle thread for the CPU which has been shutdown.
309 *
310 * Note that we do not return from this function. If this cpu is
311 * brought online again it will need to run secondary_startup().
312 */
313 void cpu_die(void)
314 {
315 local_irq_disable();
316 idle_task_exit();
317 irq_ctx_exit(smp_processor_id());
318
319 (void)cpu_report_death();
320
321 asm ("XOR TXENABLE, D0Re0,D0Re0\n");
322 }
323 #endif /* CONFIG_HOTPLUG_CPU */
324
325 /*
326 * Called by both boot and secondaries to move global data into
327 * per-processor storage.
328 */
329 void smp_store_cpu_info(unsigned int cpuid)
330 {
331 struct cpuinfo_metag *cpu_info = &per_cpu(cpu_data, cpuid);
332
333 cpu_info->loops_per_jiffy = loops_per_jiffy;
334 }
335
336 /*
337 * This is the secondary CPU boot entry. We're using this CPUs
338 * idle thread stack and the global page tables.
339 */
340 asmlinkage void secondary_start_kernel(void)
341 {
342 struct mm_struct *mm = &init_mm;
343 unsigned int cpu = smp_processor_id();
344
345 /*
346 * All kernel threads share the same mm context; grab a
347 * reference and switch to it.
348 */
349 mmget(mm);
350 mmgrab(mm);
351 current->active_mm = mm;
352 cpumask_set_cpu(cpu, mm_cpumask(mm));
353 enter_lazy_tlb(mm, current);
354 local_flush_tlb_all();
355
356 /*
357 * TODO: Some day it might be useful for each Linux CPU to
358 * have its own TBI structure. That would allow each Linux CPU
359 * to run different interrupt handlers for the same IRQ
360 * number.
361 *
362 * For now, simply copying the pointer to the boot CPU's TBI
363 * structure is sufficient because we always want to run the
364 * same interrupt handler whatever CPU takes the interrupt.
365 */
366 per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
367
368 if (!per_cpu(pTBI, cpu))
369 panic("No TBI found!");
370
371 per_cpu_trap_init(cpu);
372 irq_ctx_init(cpu);
373
374 preempt_disable();
375
376 setup_priv();
377
378 notify_cpu_starting(cpu);
379
380 pr_info("CPU%u (thread %u): Booted secondary processor\n",
381 cpu, cpu_2_hwthread_id[cpu]);
382
383 calibrate_delay();
384 smp_store_cpu_info(cpu);
385
386 /*
387 * OK, now it's safe to let the boot CPU continue
388 */
389 set_cpu_online(cpu, true);
390 complete(&cpu_running);
391
392 /*
393 * Enable local interrupts.
394 */
395 tbi_startup_interrupt(TBID_SIGNUM_TRT);
396 local_irq_enable();
397
398 /*
399 * OK, it's off to the idle thread for us
400 */
401 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
402 }
403
404 void __init smp_cpus_done(unsigned int max_cpus)
405 {
406 int cpu;
407 unsigned long bogosum = 0;
408
409 for_each_online_cpu(cpu)
410 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
411
412 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
413 num_online_cpus(),
414 bogosum / (500000/HZ),
415 (bogosum / (5000/HZ)) % 100);
416 }
417
418 void __init smp_prepare_cpus(unsigned int max_cpus)
419 {
420 unsigned int cpu = smp_processor_id();
421
422 init_new_context(current, &init_mm);
423 current_thread_info()->cpu = cpu;
424
425 smp_store_cpu_info(cpu);
426 init_cpu_present(cpu_possible_mask);
427 }
428
429 void __init smp_prepare_boot_cpu(void)
430 {
431 unsigned int cpu = smp_processor_id();
432
433 per_cpu(pTBI, cpu) = __TBI(TBID_ISTAT_BIT);
434
435 if (!per_cpu(pTBI, cpu))
436 panic("No TBI found!");
437 }
438
439 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg);
440
441 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
442 {
443 unsigned long flags;
444 unsigned int cpu;
445 cpumask_t map;
446
447 cpumask_clear(&map);
448 local_irq_save(flags);
449
450 for_each_cpu(cpu, mask) {
451 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
452
453 spin_lock(&ipi->lock);
454
455 /*
456 * KICK interrupts are queued in hardware so we'll get
457 * multiple interrupts if we call smp_cross_call()
458 * multiple times for one msg. The problem is that we
459 * only have one bit for each message - we can't queue
460 * them in software.
461 *
462 * The first time through ipi_handler() we'll clear
463 * the msg bit, having done all the work. But when we
464 * return we'll get _another_ interrupt (and another,
465 * and another until we've handled all the queued
466 * KICKs). Running ipi_handler() when there's no work
467 * to do is bad because that's how kick handler
468 * chaining detects who the KICK was intended for.
469 * See arch/metag/kernel/kick.c for more details.
470 *
471 * So only add 'cpu' to 'map' if we haven't already
472 * queued a KICK interrupt for 'msg'.
473 */
474 if (!(ipi->bits & (1 << msg))) {
475 ipi->bits |= 1 << msg;
476 cpumask_set_cpu(cpu, &map);
477 }
478
479 spin_unlock(&ipi->lock);
480 }
481
482 /*
483 * Call the platform specific cross-CPU call function.
484 */
485 smp_cross_call(map, msg);
486
487 local_irq_restore(flags);
488 }
489
490 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
491 {
492 send_ipi_message(mask, IPI_CALL_FUNC);
493 }
494
495 void arch_send_call_function_single_ipi(int cpu)
496 {
497 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
498 }
499
500 void show_ipi_list(struct seq_file *p)
501 {
502 unsigned int cpu;
503
504 seq_puts(p, "IPI:");
505
506 for_each_present_cpu(cpu)
507 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
508
509 seq_putc(p, '\n');
510 }
511
512 static DEFINE_SPINLOCK(stop_lock);
513
514 /*
515 * Main handler for inter-processor interrupts
516 *
517 * For Meta, the ipimask now only identifies a single
518 * category of IPI (Bit 1 IPIs have been replaced by a
519 * different mechanism):
520 *
521 * Bit 0 - Inter-processor function call
522 */
523 static int do_IPI(void)
524 {
525 unsigned int cpu = smp_processor_id();
526 struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
527 unsigned long msgs, nextmsg;
528 int handled = 0;
529
530 ipi->ipi_count++;
531
532 spin_lock(&ipi->lock);
533 msgs = ipi->bits;
534 nextmsg = msgs & -msgs;
535 ipi->bits &= ~nextmsg;
536 spin_unlock(&ipi->lock);
537
538 if (nextmsg) {
539 handled = 1;
540
541 nextmsg = ffz(~nextmsg);
542 switch (nextmsg) {
543 case IPI_RESCHEDULE:
544 scheduler_ipi();
545 break;
546
547 case IPI_CALL_FUNC:
548 generic_smp_call_function_interrupt();
549 break;
550
551 default:
552 pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
553 cpu, nextmsg);
554 break;
555 }
556 }
557
558 return handled;
559 }
560
561 void smp_send_reschedule(int cpu)
562 {
563 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
564 }
565
566 static void stop_this_cpu(void *data)
567 {
568 unsigned int cpu = smp_processor_id();
569
570 if (system_state == SYSTEM_BOOTING ||
571 system_state == SYSTEM_RUNNING) {
572 spin_lock(&stop_lock);
573 pr_crit("CPU%u: stopping\n", cpu);
574 dump_stack();
575 spin_unlock(&stop_lock);
576 }
577
578 set_cpu_online(cpu, false);
579
580 local_irq_disable();
581
582 hard_processor_halt(HALT_OK);
583 }
584
585 void smp_send_stop(void)
586 {
587 smp_call_function(stop_this_cpu, NULL, 0);
588 }
589
590 /*
591 * not supported here
592 */
593 int setup_profiling_timer(unsigned int multiplier)
594 {
595 return -EINVAL;
596 }
597
598 /*
599 * We use KICKs for inter-processor interrupts.
600 *
601 * For every CPU in "callmap" the IPI data must already have been
602 * stored in that CPU's "ipi_data" member prior to calling this
603 * function.
604 */
605 static void kick_raise_softirq(cpumask_t callmap, unsigned int irq)
606 {
607 int cpu;
608
609 for_each_cpu(cpu, &callmap) {
610 unsigned int thread;
611
612 thread = cpu_2_hwthread_id[cpu];
613
614 BUG_ON(thread == BAD_HWTHREAD_ID);
615
616 metag_out32(1, T0KICKI + (thread * TnXKICK_STRIDE));
617 }
618 }
619
620 static TBIRES ipi_handler(TBIRES State, int SigNum, int Triggers,
621 int Inst, PTBI pTBI, int *handled)
622 {
623 *handled = do_IPI();
624
625 return State;
626 }
627
628 static struct kick_irq_handler ipi_irq = {
629 .func = ipi_handler,
630 };
631
632 static void smp_cross_call(cpumask_t callmap, enum ipi_msg_type msg)
633 {
634 kick_raise_softirq(callmap, 1);
635 }
636
637 static inline unsigned int get_core_count(void)
638 {
639 int i;
640 unsigned int ret = 0;
641
642 for (i = 0; i < CONFIG_NR_CPUS; i++) {
643 if (core_reg_read(TXUCT_ID, TXENABLE_REGNUM, i))
644 ret++;
645 }
646
647 return ret;
648 }
649
650 /*
651 * Initialise the CPU possible map early - this describes the CPUs
652 * which may be present or become present in the system.
653 */
654 void __init smp_init_cpus(void)
655 {
656 unsigned int i, ncores = get_core_count();
657
658 /* If no hwthread_map early param was set use default mapping */
659 for (i = 0; i < NR_CPUS; i++)
660 if (cpu_2_hwthread_id[i] == BAD_HWTHREAD_ID) {
661 cpu_2_hwthread_id[i] = i;
662 hwthread_id_2_cpu[i] = i;
663 }
664
665 for (i = 0; i < ncores; i++)
666 set_cpu_possible(i, true);
667
668 kick_register_func(&ipi_irq);
669 }