]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/alchemy/common/dbdma.c
MIPS: Alchemy: Simplify DMA channel allocation code.
[mirror_ubuntu-bionic-kernel.git] / arch / mips / alchemy / common / dbdma.c
1 /*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
7 *
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <asm/mach-au1x00/au1000.h>
40 #include <asm/mach-au1x00/au1xxx_dbdma.h>
41
42 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
43
44 /*
45 * The Descriptor Based DMA supports up to 16 channels.
46 *
47 * There are 32 devices defined. We keep an internal structure
48 * of devices using these channels, along with additional
49 * information.
50 *
51 * We allocate the descriptors and allow access to them through various
52 * functions. The drivers allocate the data buffers and assign them
53 * to the descriptors.
54 */
55 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
56
57 /* I couldn't find a macro that did this... */
58 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59
60 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
61 static int dbdma_initialized;
62
63 static dbdev_tab_t dbdev_tab[] = {
64 #ifdef CONFIG_SOC_AU1550
65 /* UARTS */
66 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
67 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
68 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
69 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
70
71 /* EXT DMA */
72 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
76
77 /* USB DEV */
78 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
79 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
82 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
84
85 /* PSC 0 */
86 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
87 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
88
89 /* PSC 1 */
90 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92
93 /* PSC 2 */
94 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
96
97 /* PSC 3 */
98 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
100
101 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
102 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
103
104 /* MAC 0 */
105 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107
108 /* MAC 1 */
109 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
111
112 #endif /* CONFIG_SOC_AU1550 */
113
114 #ifdef CONFIG_SOC_AU1200
115 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
116 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
117 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
118 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
119
120 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
122
123 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127
128 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
129 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
130 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
132
133 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
134 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
135
136 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
137 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139
140 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
141 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
143
144 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
145 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
146 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
147 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148
149 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
150
151 #endif /* CONFIG_SOC_AU1200 */
152
153 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
154 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
155
156 /* Provide 16 user definable device types */
157 { ~0, 0, 0, 0, 0, 0, 0 },
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173 };
174
175 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
176
177 #ifdef CONFIG_PM
178 static u32 au1xxx_dbdma_pm_regs[NUM_DBDMA_CHANS + 1][6];
179 #endif
180
181
182 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
183
184 static dbdev_tab_t *find_dbdev_id(u32 id)
185 {
186 int i;
187 dbdev_tab_t *p;
188 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
189 p = &dbdev_tab[i];
190 if (p->dev_id == id)
191 return p;
192 }
193 return NULL;
194 }
195
196 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
197 {
198 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
199 }
200 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
201
202 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
203 {
204 u32 ret = 0;
205 dbdev_tab_t *p;
206 static u16 new_id = 0x1000;
207
208 p = find_dbdev_id(~0);
209 if (NULL != p) {
210 memcpy(p, dev, sizeof(dbdev_tab_t));
211 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
212 ret = p->dev_id;
213 new_id++;
214 #if 0
215 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
216 p->dev_id, p->dev_flags, p->dev_physaddr);
217 #endif
218 }
219
220 return ret;
221 }
222 EXPORT_SYMBOL(au1xxx_ddma_add_device);
223
224 void au1xxx_ddma_del_device(u32 devid)
225 {
226 dbdev_tab_t *p = find_dbdev_id(devid);
227
228 if (p != NULL) {
229 memset(p, 0, sizeof(dbdev_tab_t));
230 p->dev_id = ~0;
231 }
232 }
233 EXPORT_SYMBOL(au1xxx_ddma_del_device);
234
235 /* Allocate a channel and return a non-zero descriptor if successful. */
236 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
237 void (*callback)(int, void *), void *callparam)
238 {
239 unsigned long flags;
240 u32 used, chan;
241 u32 dcp;
242 int i;
243 dbdev_tab_t *stp, *dtp;
244 chan_tab_t *ctp;
245 au1x_dma_chan_t *cp;
246
247 /*
248 * We do the intialization on the first channel allocation.
249 * We have to wait because of the interrupt handler initialization
250 * which can't be done successfully during board set up.
251 */
252 if (!dbdma_initialized)
253 return 0;
254
255 stp = find_dbdev_id(srcid);
256 if (stp == NULL)
257 return 0;
258 dtp = find_dbdev_id(destid);
259 if (dtp == NULL)
260 return 0;
261
262 used = 0;
263
264 /* Check to see if we can get both channels. */
265 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
266 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
267 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
268 /* Got source */
269 stp->dev_flags |= DEV_FLAGS_INUSE;
270 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
271 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
272 /* Got destination */
273 dtp->dev_flags |= DEV_FLAGS_INUSE;
274 } else {
275 /* Can't get dest. Release src. */
276 stp->dev_flags &= ~DEV_FLAGS_INUSE;
277 used++;
278 }
279 } else
280 used++;
281 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
282
283 if (used)
284 return 0;
285
286 /* Let's see if we can allocate a channel for it. */
287 ctp = NULL;
288 chan = 0;
289 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
290 for (i = 0; i < NUM_DBDMA_CHANS; i++)
291 if (chan_tab_ptr[i] == NULL) {
292 /*
293 * If kmalloc fails, it is caught below same
294 * as a channel not available.
295 */
296 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
297 chan_tab_ptr[i] = ctp;
298 break;
299 }
300 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
301
302 if (ctp != NULL) {
303 memset(ctp, 0, sizeof(chan_tab_t));
304 ctp->chan_index = chan = i;
305 dcp = DDMA_CHANNEL_BASE;
306 dcp += (0x0100 * chan);
307 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
308 cp = (au1x_dma_chan_t *)dcp;
309 ctp->chan_src = stp;
310 ctp->chan_dest = dtp;
311 ctp->chan_callback = callback;
312 ctp->chan_callparam = callparam;
313
314 /* Initialize channel configuration. */
315 i = 0;
316 if (stp->dev_intlevel)
317 i |= DDMA_CFG_SED;
318 if (stp->dev_intpolarity)
319 i |= DDMA_CFG_SP;
320 if (dtp->dev_intlevel)
321 i |= DDMA_CFG_DED;
322 if (dtp->dev_intpolarity)
323 i |= DDMA_CFG_DP;
324 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
325 (dtp->dev_flags & DEV_FLAGS_SYNC))
326 i |= DDMA_CFG_SYNC;
327 cp->ddma_cfg = i;
328 au_sync();
329
330 /*
331 * Return a non-zero value that can be used to find the channel
332 * information in subsequent operations.
333 */
334 return (u32)(&chan_tab_ptr[chan]);
335 }
336
337 /* Release devices */
338 stp->dev_flags &= ~DEV_FLAGS_INUSE;
339 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
340
341 return 0;
342 }
343 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
344
345 /*
346 * Set the device width if source or destination is a FIFO.
347 * Should be 8, 16, or 32 bits.
348 */
349 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
350 {
351 u32 rv;
352 chan_tab_t *ctp;
353 dbdev_tab_t *stp, *dtp;
354
355 ctp = *((chan_tab_t **)chanid);
356 stp = ctp->chan_src;
357 dtp = ctp->chan_dest;
358 rv = 0;
359
360 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
361 rv = stp->dev_devwidth;
362 stp->dev_devwidth = bits;
363 }
364 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
365 rv = dtp->dev_devwidth;
366 dtp->dev_devwidth = bits;
367 }
368
369 return rv;
370 }
371 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
372
373 /* Allocate a descriptor ring, initializing as much as possible. */
374 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
375 {
376 int i;
377 u32 desc_base, srcid, destid;
378 u32 cmd0, cmd1, src1, dest1;
379 u32 src0, dest0;
380 chan_tab_t *ctp;
381 dbdev_tab_t *stp, *dtp;
382 au1x_ddma_desc_t *dp;
383
384 /*
385 * I guess we could check this to be within the
386 * range of the table......
387 */
388 ctp = *((chan_tab_t **)chanid);
389 stp = ctp->chan_src;
390 dtp = ctp->chan_dest;
391
392 /*
393 * The descriptors must be 32-byte aligned. There is a
394 * possibility the allocation will give us such an address,
395 * and if we try that first we are likely to not waste larger
396 * slabs of memory.
397 */
398 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
399 GFP_KERNEL|GFP_DMA);
400 if (desc_base == 0)
401 return 0;
402
403 if (desc_base & 0x1f) {
404 /*
405 * Lost....do it again, allocate extra, and round
406 * the address base.
407 */
408 kfree((const void *)desc_base);
409 i = entries * sizeof(au1x_ddma_desc_t);
410 i += (sizeof(au1x_ddma_desc_t) - 1);
411 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
412 if (desc_base == 0)
413 return 0;
414
415 ctp->cdb_membase = desc_base;
416 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
417 } else
418 ctp->cdb_membase = desc_base;
419
420 dp = (au1x_ddma_desc_t *)desc_base;
421
422 /* Keep track of the base descriptor. */
423 ctp->chan_desc_base = dp;
424
425 /* Initialize the rings with as much information as we know. */
426 srcid = stp->dev_id;
427 destid = dtp->dev_id;
428
429 cmd0 = cmd1 = src1 = dest1 = 0;
430 src0 = dest0 = 0;
431
432 cmd0 |= DSCR_CMD0_SID(srcid);
433 cmd0 |= DSCR_CMD0_DID(destid);
434 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
435 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
436
437 /* Is it mem to mem transfer? */
438 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
439 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
440 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
441 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
442 cmd0 |= DSCR_CMD0_MEM;
443
444 switch (stp->dev_devwidth) {
445 case 8:
446 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
447 break;
448 case 16:
449 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
450 break;
451 case 32:
452 default:
453 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
454 break;
455 }
456
457 switch (dtp->dev_devwidth) {
458 case 8:
459 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
460 break;
461 case 16:
462 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
463 break;
464 case 32:
465 default:
466 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
467 break;
468 }
469
470 /*
471 * If the device is marked as an in/out FIFO, ensure it is
472 * set non-coherent.
473 */
474 if (stp->dev_flags & DEV_FLAGS_IN)
475 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
476 if (dtp->dev_flags & DEV_FLAGS_OUT)
477 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
478
479 /*
480 * Set up source1. For now, assume no stride and increment.
481 * A channel attribute update can change this later.
482 */
483 switch (stp->dev_tsize) {
484 case 1:
485 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
486 break;
487 case 2:
488 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
489 break;
490 case 4:
491 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
492 break;
493 case 8:
494 default:
495 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
496 break;
497 }
498
499 /* If source input is FIFO, set static address. */
500 if (stp->dev_flags & DEV_FLAGS_IN) {
501 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
502 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
503 else
504 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
505 }
506
507 if (stp->dev_physaddr)
508 src0 = stp->dev_physaddr;
509
510 /*
511 * Set up dest1. For now, assume no stride and increment.
512 * A channel attribute update can change this later.
513 */
514 switch (dtp->dev_tsize) {
515 case 1:
516 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
517 break;
518 case 2:
519 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
520 break;
521 case 4:
522 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
523 break;
524 case 8:
525 default:
526 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
527 break;
528 }
529
530 /* If destination output is FIFO, set static address. */
531 if (dtp->dev_flags & DEV_FLAGS_OUT) {
532 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
533 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
534 else
535 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
536 }
537
538 if (dtp->dev_physaddr)
539 dest0 = dtp->dev_physaddr;
540
541 #if 0
542 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
543 "source1:%x dest0:%x dest1:%x\n",
544 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
545 src1, dest0, dest1);
546 #endif
547 for (i = 0; i < entries; i++) {
548 dp->dscr_cmd0 = cmd0;
549 dp->dscr_cmd1 = cmd1;
550 dp->dscr_source0 = src0;
551 dp->dscr_source1 = src1;
552 dp->dscr_dest0 = dest0;
553 dp->dscr_dest1 = dest1;
554 dp->dscr_stat = 0;
555 dp->sw_context = 0;
556 dp->sw_status = 0;
557 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
558 dp++;
559 }
560
561 /* Make last descrptor point to the first. */
562 dp--;
563 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
564 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
565
566 return (u32)ctp->chan_desc_base;
567 }
568 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
569
570 /*
571 * Put a source buffer into the DMA ring.
572 * This updates the source pointer and byte count. Normally used
573 * for memory to fifo transfers.
574 */
575 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
576 {
577 chan_tab_t *ctp;
578 au1x_ddma_desc_t *dp;
579
580 /*
581 * I guess we could check this to be within the
582 * range of the table......
583 */
584 ctp = *(chan_tab_t **)chanid;
585
586 /*
587 * We should have multiple callers for a particular channel,
588 * an interrupt doesn't affect this pointer nor the descriptor,
589 * so no locking should be needed.
590 */
591 dp = ctp->put_ptr;
592
593 /*
594 * If the descriptor is valid, we are way ahead of the DMA
595 * engine, so just return an error condition.
596 */
597 if (dp->dscr_cmd0 & DSCR_CMD0_V)
598 return 0;
599
600 /* Load up buffer address and byte count. */
601 dp->dscr_source0 = buf & ~0UL;
602 dp->dscr_cmd1 = nbytes;
603 /* Check flags */
604 if (flags & DDMA_FLAGS_IE)
605 dp->dscr_cmd0 |= DSCR_CMD0_IE;
606 if (flags & DDMA_FLAGS_NOIE)
607 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
608
609 /*
610 * There is an errata on the Au1200/Au1550 parts that could result
611 * in "stale" data being DMA'ed. It has to do with the snoop logic on
612 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
613 * these parts. If it is fixed in the future, these dma_cache_inv will
614 * just be nothing more than empty macros. See io.h.
615 */
616 dma_cache_wback_inv((unsigned long)buf, nbytes);
617 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
618 au_sync();
619 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
620 ctp->chan_ptr->ddma_dbell = 0;
621
622 /* Get next descriptor pointer. */
623 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
624
625 /* Return something non-zero. */
626 return nbytes;
627 }
628 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
629
630 /* Put a destination buffer into the DMA ring.
631 * This updates the destination pointer and byte count. Normally used
632 * to place an empty buffer into the ring for fifo to memory transfers.
633 */
634 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
635 {
636 chan_tab_t *ctp;
637 au1x_ddma_desc_t *dp;
638
639 /* I guess we could check this to be within the
640 * range of the table......
641 */
642 ctp = *((chan_tab_t **)chanid);
643
644 /* We should have multiple callers for a particular channel,
645 * an interrupt doesn't affect this pointer nor the descriptor,
646 * so no locking should be needed.
647 */
648 dp = ctp->put_ptr;
649
650 /* If the descriptor is valid, we are way ahead of the DMA
651 * engine, so just return an error condition.
652 */
653 if (dp->dscr_cmd0 & DSCR_CMD0_V)
654 return 0;
655
656 /* Load up buffer address and byte count */
657
658 /* Check flags */
659 if (flags & DDMA_FLAGS_IE)
660 dp->dscr_cmd0 |= DSCR_CMD0_IE;
661 if (flags & DDMA_FLAGS_NOIE)
662 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
663
664 dp->dscr_dest0 = buf & ~0UL;
665 dp->dscr_cmd1 = nbytes;
666 #if 0
667 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
668 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
669 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
670 #endif
671 /*
672 * There is an errata on the Au1200/Au1550 parts that could result in
673 * "stale" data being DMA'ed. It has to do with the snoop logic on the
674 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
675 * parts. If it is fixed in the future, these dma_cache_inv will just
676 * be nothing more than empty macros. See io.h.
677 */
678 dma_cache_inv((unsigned long)buf, nbytes);
679 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
680 au_sync();
681 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
682 ctp->chan_ptr->ddma_dbell = 0;
683
684 /* Get next descriptor pointer. */
685 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
686
687 /* Return something non-zero. */
688 return nbytes;
689 }
690 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
691
692 /*
693 * Get a destination buffer into the DMA ring.
694 * Normally used to get a full buffer from the ring during fifo
695 * to memory transfers. This does not set the valid bit, you will
696 * have to put another destination buffer to keep the DMA going.
697 */
698 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
699 {
700 chan_tab_t *ctp;
701 au1x_ddma_desc_t *dp;
702 u32 rv;
703
704 /*
705 * I guess we could check this to be within the
706 * range of the table......
707 */
708 ctp = *((chan_tab_t **)chanid);
709
710 /*
711 * We should have multiple callers for a particular channel,
712 * an interrupt doesn't affect this pointer nor the descriptor,
713 * so no locking should be needed.
714 */
715 dp = ctp->get_ptr;
716
717 /*
718 * If the descriptor is valid, we are way ahead of the DMA
719 * engine, so just return an error condition.
720 */
721 if (dp->dscr_cmd0 & DSCR_CMD0_V)
722 return 0;
723
724 /* Return buffer address and byte count. */
725 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
726 *nbytes = dp->dscr_cmd1;
727 rv = dp->dscr_stat;
728
729 /* Get next descriptor pointer. */
730 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
731
732 /* Return something non-zero. */
733 return rv;
734 }
735 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
736
737 void au1xxx_dbdma_stop(u32 chanid)
738 {
739 chan_tab_t *ctp;
740 au1x_dma_chan_t *cp;
741 int halt_timeout = 0;
742
743 ctp = *((chan_tab_t **)chanid);
744
745 cp = ctp->chan_ptr;
746 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
747 au_sync();
748 while (!(cp->ddma_stat & DDMA_STAT_H)) {
749 udelay(1);
750 halt_timeout++;
751 if (halt_timeout > 100) {
752 printk(KERN_WARNING "warning: DMA channel won't halt\n");
753 break;
754 }
755 }
756 /* clear current desc valid and doorbell */
757 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
758 au_sync();
759 }
760 EXPORT_SYMBOL(au1xxx_dbdma_stop);
761
762 /*
763 * Start using the current descriptor pointer. If the DBDMA encounters
764 * a non-valid descriptor, it will stop. In this case, we can just
765 * continue by adding a buffer to the list and starting again.
766 */
767 void au1xxx_dbdma_start(u32 chanid)
768 {
769 chan_tab_t *ctp;
770 au1x_dma_chan_t *cp;
771
772 ctp = *((chan_tab_t **)chanid);
773 cp = ctp->chan_ptr;
774 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
775 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
776 au_sync();
777 cp->ddma_dbell = 0;
778 au_sync();
779 }
780 EXPORT_SYMBOL(au1xxx_dbdma_start);
781
782 void au1xxx_dbdma_reset(u32 chanid)
783 {
784 chan_tab_t *ctp;
785 au1x_ddma_desc_t *dp;
786
787 au1xxx_dbdma_stop(chanid);
788
789 ctp = *((chan_tab_t **)chanid);
790 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
791
792 /* Run through the descriptors and reset the valid indicator. */
793 dp = ctp->chan_desc_base;
794
795 do {
796 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
797 /*
798 * Reset our software status -- this is used to determine
799 * if a descriptor is in use by upper level software. Since
800 * posting can reset 'V' bit.
801 */
802 dp->sw_status = 0;
803 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
804 } while (dp != ctp->chan_desc_base);
805 }
806 EXPORT_SYMBOL(au1xxx_dbdma_reset);
807
808 u32 au1xxx_get_dma_residue(u32 chanid)
809 {
810 chan_tab_t *ctp;
811 au1x_dma_chan_t *cp;
812 u32 rv;
813
814 ctp = *((chan_tab_t **)chanid);
815 cp = ctp->chan_ptr;
816
817 /* This is only valid if the channel is stopped. */
818 rv = cp->ddma_bytecnt;
819 au_sync();
820
821 return rv;
822 }
823 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
824
825 void au1xxx_dbdma_chan_free(u32 chanid)
826 {
827 chan_tab_t *ctp;
828 dbdev_tab_t *stp, *dtp;
829
830 ctp = *((chan_tab_t **)chanid);
831 stp = ctp->chan_src;
832 dtp = ctp->chan_dest;
833
834 au1xxx_dbdma_stop(chanid);
835
836 kfree((void *)ctp->cdb_membase);
837
838 stp->dev_flags &= ~DEV_FLAGS_INUSE;
839 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
840 chan_tab_ptr[ctp->chan_index] = NULL;
841
842 kfree(ctp);
843 }
844 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
845
846 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
847 {
848 u32 intstat;
849 u32 chan_index;
850 chan_tab_t *ctp;
851 au1x_ddma_desc_t *dp;
852 au1x_dma_chan_t *cp;
853
854 intstat = dbdma_gptr->ddma_intstat;
855 au_sync();
856 chan_index = __ffs(intstat);
857
858 ctp = chan_tab_ptr[chan_index];
859 cp = ctp->chan_ptr;
860 dp = ctp->cur_ptr;
861
862 /* Reset interrupt. */
863 cp->ddma_irq = 0;
864 au_sync();
865
866 if (ctp->chan_callback)
867 ctp->chan_callback(irq, ctp->chan_callparam);
868
869 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
870 return IRQ_RETVAL(1);
871 }
872
873 void au1xxx_dbdma_dump(u32 chanid)
874 {
875 chan_tab_t *ctp;
876 au1x_ddma_desc_t *dp;
877 dbdev_tab_t *stp, *dtp;
878 au1x_dma_chan_t *cp;
879 u32 i = 0;
880
881 ctp = *((chan_tab_t **)chanid);
882 stp = ctp->chan_src;
883 dtp = ctp->chan_dest;
884 cp = ctp->chan_ptr;
885
886 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
887 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
888 dtp - dbdev_tab);
889 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
890 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
891 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
892
893 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
894 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
895 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
896 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
897 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
898 cp->ddma_bytecnt);
899
900 /* Run through the descriptors */
901 dp = ctp->chan_desc_base;
902
903 do {
904 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
905 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
906 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
907 dp->dscr_source0, dp->dscr_source1,
908 dp->dscr_dest0, dp->dscr_dest1);
909 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
910 dp->dscr_stat, dp->dscr_nxtptr);
911 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
912 } while (dp != ctp->chan_desc_base);
913 }
914
915 /* Put a descriptor into the DMA ring.
916 * This updates the source/destination pointers and byte count.
917 */
918 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
919 {
920 chan_tab_t *ctp;
921 au1x_ddma_desc_t *dp;
922 u32 nbytes = 0;
923
924 /*
925 * I guess we could check this to be within the
926 * range of the table......
927 */
928 ctp = *((chan_tab_t **)chanid);
929
930 /*
931 * We should have multiple callers for a particular channel,
932 * an interrupt doesn't affect this pointer nor the descriptor,
933 * so no locking should be needed.
934 */
935 dp = ctp->put_ptr;
936
937 /*
938 * If the descriptor is valid, we are way ahead of the DMA
939 * engine, so just return an error condition.
940 */
941 if (dp->dscr_cmd0 & DSCR_CMD0_V)
942 return 0;
943
944 /* Load up buffer addresses and byte count. */
945 dp->dscr_dest0 = dscr->dscr_dest0;
946 dp->dscr_source0 = dscr->dscr_source0;
947 dp->dscr_dest1 = dscr->dscr_dest1;
948 dp->dscr_source1 = dscr->dscr_source1;
949 dp->dscr_cmd1 = dscr->dscr_cmd1;
950 nbytes = dscr->dscr_cmd1;
951 /* Allow the caller to specifiy if an interrupt is generated */
952 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
953 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
954 ctp->chan_ptr->ddma_dbell = 0;
955
956 /* Get next descriptor pointer. */
957 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
958
959 /* Return something non-zero. */
960 return nbytes;
961 }
962
963 #ifdef CONFIG_PM
964 void au1xxx_dbdma_suspend(void)
965 {
966 int i;
967 u32 addr;
968
969 addr = DDMA_GLOBAL_BASE;
970 au1xxx_dbdma_pm_regs[0][0] = au_readl(addr + 0x00);
971 au1xxx_dbdma_pm_regs[0][1] = au_readl(addr + 0x04);
972 au1xxx_dbdma_pm_regs[0][2] = au_readl(addr + 0x08);
973 au1xxx_dbdma_pm_regs[0][3] = au_readl(addr + 0x0c);
974
975 /* save channel configurations */
976 for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) {
977 au1xxx_dbdma_pm_regs[i][0] = au_readl(addr + 0x00);
978 au1xxx_dbdma_pm_regs[i][1] = au_readl(addr + 0x04);
979 au1xxx_dbdma_pm_regs[i][2] = au_readl(addr + 0x08);
980 au1xxx_dbdma_pm_regs[i][3] = au_readl(addr + 0x0c);
981 au1xxx_dbdma_pm_regs[i][4] = au_readl(addr + 0x10);
982 au1xxx_dbdma_pm_regs[i][5] = au_readl(addr + 0x14);
983
984 /* halt channel */
985 au_writel(au1xxx_dbdma_pm_regs[i][0] & ~1, addr + 0x00);
986 au_sync();
987 while (!(au_readl(addr + 0x14) & 1))
988 au_sync();
989
990 addr += 0x100; /* next channel base */
991 }
992 /* disable channel interrupts */
993 au_writel(0, DDMA_GLOBAL_BASE + 0x0c);
994 au_sync();
995 }
996
997 void au1xxx_dbdma_resume(void)
998 {
999 int i;
1000 u32 addr;
1001
1002 addr = DDMA_GLOBAL_BASE;
1003 au_writel(au1xxx_dbdma_pm_regs[0][0], addr + 0x00);
1004 au_writel(au1xxx_dbdma_pm_regs[0][1], addr + 0x04);
1005 au_writel(au1xxx_dbdma_pm_regs[0][2], addr + 0x08);
1006 au_writel(au1xxx_dbdma_pm_regs[0][3], addr + 0x0c);
1007
1008 /* restore channel configurations */
1009 for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) {
1010 au_writel(au1xxx_dbdma_pm_regs[i][0], addr + 0x00);
1011 au_writel(au1xxx_dbdma_pm_regs[i][1], addr + 0x04);
1012 au_writel(au1xxx_dbdma_pm_regs[i][2], addr + 0x08);
1013 au_writel(au1xxx_dbdma_pm_regs[i][3], addr + 0x0c);
1014 au_writel(au1xxx_dbdma_pm_regs[i][4], addr + 0x10);
1015 au_writel(au1xxx_dbdma_pm_regs[i][5], addr + 0x14);
1016 au_sync();
1017 addr += 0x100; /* next channel base */
1018 }
1019 }
1020 #endif /* CONFIG_PM */
1021
1022 static int __init au1xxx_dbdma_init(void)
1023 {
1024 int irq_nr, ret;
1025
1026 dbdma_gptr->ddma_config = 0;
1027 dbdma_gptr->ddma_throttle = 0;
1028 dbdma_gptr->ddma_inten = 0xffff;
1029 au_sync();
1030
1031 switch (alchemy_get_cputype()) {
1032 case ALCHEMY_CPU_AU1550:
1033 irq_nr = AU1550_DDMA_INT;
1034 break;
1035 case ALCHEMY_CPU_AU1200:
1036 irq_nr = AU1200_DDMA_INT;
1037 break;
1038 default:
1039 return -ENODEV;
1040 }
1041
1042 ret = request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
1043 "Au1xxx dbdma", (void *)dbdma_gptr);
1044 if (ret)
1045 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1046 else {
1047 dbdma_initialized = 1;
1048 printk(KERN_INFO "Alchemy DBDMA initialized\n");
1049 }
1050
1051 return ret;
1052 }
1053 subsys_initcall(au1xxx_dbdma_init);
1054
1055 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */