]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/au1000/common/dbdma.c
Cleaned up AMD Au1200 IDE driver:
[mirror_ubuntu-artful-kernel.git] / arch / mips / au1000 / common / dbdma.c
1 /*
2 *
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
7 *
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 *
31 */
32
33 #include <linux/config.h>
34 #include <linux/kernel.h>
35 #include <linux/errno.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/delay.h>
41 #include <linux/interrupt.h>
42 #include <linux/module.h>
43 #include <asm/mach-au1x00/au1000.h>
44 #include <asm/mach-au1x00/au1xxx_dbdma.h>
45 #include <asm/system.h>
46
47
48 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
49
50 /*
51 * The Descriptor Based DMA supports up to 16 channels.
52 *
53 * There are 32 devices defined. We keep an internal structure
54 * of devices using these channels, along with additional
55 * information.
56 *
57 * We allocate the descriptors and allow access to them through various
58 * functions. The drivers allocate the data buffers and assign them
59 * to the descriptors.
60 */
61 static spinlock_t au1xxx_dbdma_spin_lock = SPIN_LOCK_UNLOCKED;
62
63 /* I couldn't find a macro that did this......
64 */
65 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
66
67 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
68 static int dbdma_initialized=0;
69 static void au1xxx_dbdma_init(void);
70
71 static dbdev_tab_t dbdev_tab[] = {
72 #ifdef CONFIG_SOC_AU1550
73 /* UARTS */
74 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
75 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
76 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
77 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
78
79 /* EXT DMA */
80 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
81 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
82 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
83 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
84
85 /* USB DEV */
86 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
87 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
88 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
89 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
90 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
91 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
92
93 /* PSC 0 */
94 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
95 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
96
97 /* PSC 1 */
98 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
99 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
100
101 /* PSC 2 */
102 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
103 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
104
105 /* PSC 3 */
106 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
107 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
108
109 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
110 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
111
112 /* MAC 0 */
113 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
114 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
115
116 /* MAC 1 */
117 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
118 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
119
120 #endif /* CONFIG_SOC_AU1550 */
121
122 #ifdef CONFIG_SOC_AU1200
123 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
124 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
125 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
126 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
127
128 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
129 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
130
131 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
132 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
133 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
134 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
135
136 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
137 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
138 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
139 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
140
141 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
142 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
143
144 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
145 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
146 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
147
148 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
149 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
150 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
151
152 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
153 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
154 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
155 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156
157 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
158
159 #endif // CONFIG_SOC_AU1200
160
161 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
162 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
163
164 /* Provide 16 user definable device types */
165 { 0, 0, 0, 0, 0, 0, 0 },
166 { 0, 0, 0, 0, 0, 0, 0 },
167 { 0, 0, 0, 0, 0, 0, 0 },
168 { 0, 0, 0, 0, 0, 0, 0 },
169 { 0, 0, 0, 0, 0, 0, 0 },
170 { 0, 0, 0, 0, 0, 0, 0 },
171 { 0, 0, 0, 0, 0, 0, 0 },
172 { 0, 0, 0, 0, 0, 0, 0 },
173 { 0, 0, 0, 0, 0, 0, 0 },
174 { 0, 0, 0, 0, 0, 0, 0 },
175 { 0, 0, 0, 0, 0, 0, 0 },
176 { 0, 0, 0, 0, 0, 0, 0 },
177 { 0, 0, 0, 0, 0, 0, 0 },
178 { 0, 0, 0, 0, 0, 0, 0 },
179 { 0, 0, 0, 0, 0, 0, 0 },
180 { 0, 0, 0, 0, 0, 0, 0 },
181 };
182
183 #define DBDEV_TAB_SIZE (sizeof(dbdev_tab) / sizeof(dbdev_tab_t))
184
185 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
186
187 static dbdev_tab_t *
188 find_dbdev_id (u32 id)
189 {
190 int i;
191 dbdev_tab_t *p;
192 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
193 p = &dbdev_tab[i];
194 if (p->dev_id == id)
195 return p;
196 }
197 return NULL;
198 }
199
200 void * au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
201 {
202 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
203 }
204 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
205
206 u32
207 au1xxx_ddma_add_device(dbdev_tab_t *dev)
208 {
209 u32 ret = 0;
210 dbdev_tab_t *p=NULL;
211 static u16 new_id=0x1000;
212
213 p = find_dbdev_id(0);
214 if ( NULL != p )
215 {
216 memcpy(p, dev, sizeof(dbdev_tab_t));
217 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id,dev->dev_id);
218 ret = p->dev_id;
219 new_id++;
220 #if 0
221 printk("add_device: id:%x flags:%x padd:%x\n",
222 p->dev_id, p->dev_flags, p->dev_physaddr );
223 #endif
224 }
225
226 return ret;
227 }
228 EXPORT_SYMBOL(au1xxx_ddma_add_device);
229
230 /* Allocate a channel and return a non-zero descriptor if successful.
231 */
232 u32
233 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
234 void (*callback)(int, void *, struct pt_regs *), void *callparam)
235 {
236 unsigned long flags;
237 u32 used, chan, rv;
238 u32 dcp;
239 int i;
240 dbdev_tab_t *stp, *dtp;
241 chan_tab_t *ctp;
242 au1x_dma_chan_t *cp;
243
244 /* We do the intialization on the first channel allocation.
245 * We have to wait because of the interrupt handler initialization
246 * which can't be done successfully during board set up.
247 */
248 if (!dbdma_initialized)
249 au1xxx_dbdma_init();
250 dbdma_initialized = 1;
251
252 if ((stp = find_dbdev_id(srcid)) == NULL) return 0;
253 if ((dtp = find_dbdev_id(destid)) == NULL) return 0;
254
255 used = 0;
256 rv = 0;
257
258 /* Check to see if we can get both channels.
259 */
260 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
261 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
262 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
263 /* Got source */
264 stp->dev_flags |= DEV_FLAGS_INUSE;
265 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
266 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
267 /* Got destination */
268 dtp->dev_flags |= DEV_FLAGS_INUSE;
269 }
270 else {
271 /* Can't get dest. Release src.
272 */
273 stp->dev_flags &= ~DEV_FLAGS_INUSE;
274 used++;
275 }
276 }
277 else {
278 used++;
279 }
280 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
281
282 if (!used) {
283 /* Let's see if we can allocate a channel for it.
284 */
285 ctp = NULL;
286 chan = 0;
287 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
288 for (i=0; i<NUM_DBDMA_CHANS; i++) {
289 if (chan_tab_ptr[i] == NULL) {
290 /* If kmalloc fails, it is caught below same
291 * as a channel not available.
292 */
293 ctp = (chan_tab_t *)
294 kmalloc(sizeof(chan_tab_t), GFP_KERNEL);
295 chan_tab_ptr[i] = ctp;
296 break;
297 }
298 }
299 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
300
301 if (ctp != NULL) {
302 memset(ctp, 0, sizeof(chan_tab_t));
303 ctp->chan_index = chan = i;
304 dcp = DDMA_CHANNEL_BASE;
305 dcp += (0x0100 * chan);
306 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
307 cp = (au1x_dma_chan_t *)dcp;
308 ctp->chan_src = stp;
309 ctp->chan_dest = dtp;
310 ctp->chan_callback = callback;
311 ctp->chan_callparam = callparam;
312
313 /* Initialize channel configuration.
314 */
315 i = 0;
316 if (stp->dev_intlevel)
317 i |= DDMA_CFG_SED;
318 if (stp->dev_intpolarity)
319 i |= DDMA_CFG_SP;
320 if (dtp->dev_intlevel)
321 i |= DDMA_CFG_DED;
322 if (dtp->dev_intpolarity)
323 i |= DDMA_CFG_DP;
324 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
325 (dtp->dev_flags & DEV_FLAGS_SYNC))
326 i |= DDMA_CFG_SYNC;
327 cp->ddma_cfg = i;
328 au_sync();
329
330 /* Return a non-zero value that can be used to
331 * find the channel information in subsequent
332 * operations.
333 */
334 rv = (u32)(&chan_tab_ptr[chan]);
335 }
336 else {
337 /* Release devices */
338 stp->dev_flags &= ~DEV_FLAGS_INUSE;
339 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
340 }
341 }
342 return rv;
343 }
344 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
345
346 /* Set the device width if source or destination is a FIFO.
347 * Should be 8, 16, or 32 bits.
348 */
349 u32
350 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
351 {
352 u32 rv;
353 chan_tab_t *ctp;
354 dbdev_tab_t *stp, *dtp;
355
356 ctp = *((chan_tab_t **)chanid);
357 stp = ctp->chan_src;
358 dtp = ctp->chan_dest;
359 rv = 0;
360
361 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
362 rv = stp->dev_devwidth;
363 stp->dev_devwidth = bits;
364 }
365 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
366 rv = dtp->dev_devwidth;
367 dtp->dev_devwidth = bits;
368 }
369
370 return rv;
371 }
372 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
373
374 /* Allocate a descriptor ring, initializing as much as possible.
375 */
376 u32
377 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
378 {
379 int i;
380 u32 desc_base, srcid, destid;
381 u32 cmd0, cmd1, src1, dest1;
382 u32 src0, dest0;
383 chan_tab_t *ctp;
384 dbdev_tab_t *stp, *dtp;
385 au1x_ddma_desc_t *dp;
386
387 /* I guess we could check this to be within the
388 * range of the table......
389 */
390 ctp = *((chan_tab_t **)chanid);
391 stp = ctp->chan_src;
392 dtp = ctp->chan_dest;
393
394 /* The descriptors must be 32-byte aligned. There is a
395 * possibility the allocation will give us such an address,
396 * and if we try that first we are likely to not waste larger
397 * slabs of memory.
398 */
399 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
400 GFP_KERNEL|GFP_DMA);
401 if (desc_base == 0)
402 return 0;
403
404 if (desc_base & 0x1f) {
405 /* Lost....do it again, allocate extra, and round
406 * the address base.
407 */
408 kfree((const void *)desc_base);
409 i = entries * sizeof(au1x_ddma_desc_t);
410 i += (sizeof(au1x_ddma_desc_t) - 1);
411 if ((desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA)) == 0)
412 return 0;
413
414 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
415 }
416 dp = (au1x_ddma_desc_t *)desc_base;
417
418 /* Keep track of the base descriptor.
419 */
420 ctp->chan_desc_base = dp;
421
422 /* Initialize the rings with as much information as we know.
423 */
424 srcid = stp->dev_id;
425 destid = dtp->dev_id;
426
427 cmd0 = cmd1 = src1 = dest1 = 0;
428 src0 = dest0 = 0;
429
430 cmd0 |= DSCR_CMD0_SID(srcid);
431 cmd0 |= DSCR_CMD0_DID(destid);
432 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
433 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_CURRENT);
434
435 switch (stp->dev_devwidth) {
436 case 8:
437 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
438 break;
439 case 16:
440 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
441 break;
442 case 32:
443 default:
444 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
445 break;
446 }
447
448 switch (dtp->dev_devwidth) {
449 case 8:
450 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
451 break;
452 case 16:
453 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
454 break;
455 case 32:
456 default:
457 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
458 break;
459 }
460
461 /* If the device is marked as an in/out FIFO, ensure it is
462 * set non-coherent.
463 */
464 if (stp->dev_flags & DEV_FLAGS_IN)
465 cmd0 |= DSCR_CMD0_SN; /* Source in fifo */
466 if (dtp->dev_flags & DEV_FLAGS_OUT)
467 cmd0 |= DSCR_CMD0_DN; /* Destination out fifo */
468
469 /* Set up source1. For now, assume no stride and increment.
470 * A channel attribute update can change this later.
471 */
472 switch (stp->dev_tsize) {
473 case 1:
474 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
475 break;
476 case 2:
477 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
478 break;
479 case 4:
480 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
481 break;
482 case 8:
483 default:
484 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
485 break;
486 }
487
488 /* If source input is fifo, set static address.
489 */
490 if (stp->dev_flags & DEV_FLAGS_IN) {
491 if ( stp->dev_flags & DEV_FLAGS_BURSTABLE )
492 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
493 else
494 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
495
496 }
497 if (stp->dev_physaddr)
498 src0 = stp->dev_physaddr;
499
500 /* Set up dest1. For now, assume no stride and increment.
501 * A channel attribute update can change this later.
502 */
503 switch (dtp->dev_tsize) {
504 case 1:
505 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
506 break;
507 case 2:
508 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
509 break;
510 case 4:
511 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
512 break;
513 case 8:
514 default:
515 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
516 break;
517 }
518
519 /* If destination output is fifo, set static address.
520 */
521 if (dtp->dev_flags & DEV_FLAGS_OUT) {
522 if ( dtp->dev_flags & DEV_FLAGS_BURSTABLE )
523 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
524 else
525 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
526 }
527 if (dtp->dev_physaddr)
528 dest0 = dtp->dev_physaddr;
529
530 #if 0
531 printk("did:%x sid:%x cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
532 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1 );
533 #endif
534 for (i=0; i<entries; i++) {
535 dp->dscr_cmd0 = cmd0;
536 dp->dscr_cmd1 = cmd1;
537 dp->dscr_source0 = src0;
538 dp->dscr_source1 = src1;
539 dp->dscr_dest0 = dest0;
540 dp->dscr_dest1 = dest1;
541 dp->dscr_stat = 0;
542 dp->sw_context = dp->sw_status = 0;
543 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
544 dp++;
545 }
546
547 /* Make last descrptor point to the first.
548 */
549 dp--;
550 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
551 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
552
553 return (u32)(ctp->chan_desc_base);
554 }
555 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
556
557 /* Put a source buffer into the DMA ring.
558 * This updates the source pointer and byte count. Normally used
559 * for memory to fifo transfers.
560 */
561 u32
562 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
563 {
564 chan_tab_t *ctp;
565 au1x_ddma_desc_t *dp;
566
567 /* I guess we could check this to be within the
568 * range of the table......
569 */
570 ctp = *((chan_tab_t **)chanid);
571
572 /* We should have multiple callers for a particular channel,
573 * an interrupt doesn't affect this pointer nor the descriptor,
574 * so no locking should be needed.
575 */
576 dp = ctp->put_ptr;
577
578 /* If the descriptor is valid, we are way ahead of the DMA
579 * engine, so just return an error condition.
580 */
581 if (dp->dscr_cmd0 & DSCR_CMD0_V) {
582 return 0;
583 }
584
585 /* Load up buffer address and byte count.
586 */
587 dp->dscr_source0 = virt_to_phys(buf);
588 dp->dscr_cmd1 = nbytes;
589 /* Check flags */
590 if (flags & DDMA_FLAGS_IE)
591 dp->dscr_cmd0 |= DSCR_CMD0_IE;
592 if (flags & DDMA_FLAGS_NOIE)
593 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
594 /* Get next descriptor pointer.
595 */
596 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
597
598 /*
599 * There is an errata on the Au1200/Au1550 parts that could result
600 * in "stale" data being DMA'd. It has to do with the snoop logic on
601 * the dache eviction buffer. NONCOHERENT_IO is on by default for
602 * these parts. If it is fixedin the future, these dma_cache_inv will
603 * just be nothing more than empty macros. See io.h.
604 * */
605 dma_cache_wback_inv((unsigned long)buf, nbytes);
606 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
607 au_sync();
608 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
609 ctp->chan_ptr->ddma_dbell = 0;
610
611 /* return something not zero.
612 */
613 return nbytes;
614 }
615 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
616
617 /* Put a destination buffer into the DMA ring.
618 * This updates the destination pointer and byte count. Normally used
619 * to place an empty buffer into the ring for fifo to memory transfers.
620 */
621 u32
622 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
623 {
624 chan_tab_t *ctp;
625 au1x_ddma_desc_t *dp;
626
627 /* I guess we could check this to be within the
628 * range of the table......
629 */
630 ctp = *((chan_tab_t **)chanid);
631
632 /* We should have multiple callers for a particular channel,
633 * an interrupt doesn't affect this pointer nor the descriptor,
634 * so no locking should be needed.
635 */
636 dp = ctp->put_ptr;
637
638 /* If the descriptor is valid, we are way ahead of the DMA
639 * engine, so just return an error condition.
640 */
641 if (dp->dscr_cmd0 & DSCR_CMD0_V)
642 return 0;
643
644 /* Load up buffer address and byte count */
645
646 /* Check flags */
647 if (flags & DDMA_FLAGS_IE)
648 dp->dscr_cmd0 |= DSCR_CMD0_IE;
649 if (flags & DDMA_FLAGS_NOIE)
650 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
651
652 dp->dscr_dest0 = virt_to_phys(buf);
653 dp->dscr_cmd1 = nbytes;
654 #if 0
655 printk("cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
656 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
657 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1 );
658 #endif
659 /*
660 * There is an errata on the Au1200/Au1550 parts that could result in
661 * "stale" data being DMA'd. It has to do with the snoop logic on the
662 * dache eviction buffer. NONCOHERENT_IO is on by default for these
663 * parts. If it is fixedin the future, these dma_cache_inv will just
664 * be nothing more than empty macros. See io.h.
665 * */
666 dma_cache_inv((unsigned long)buf,nbytes);
667 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
668 au_sync();
669 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
670 ctp->chan_ptr->ddma_dbell = 0;
671
672 /* Get next descriptor pointer.
673 */
674 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
675
676 /* return something not zero.
677 */
678 return nbytes;
679 }
680 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
681
682 /* Get a destination buffer into the DMA ring.
683 * Normally used to get a full buffer from the ring during fifo
684 * to memory transfers. This does not set the valid bit, you will
685 * have to put another destination buffer to keep the DMA going.
686 */
687 u32
688 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
689 {
690 chan_tab_t *ctp;
691 au1x_ddma_desc_t *dp;
692 u32 rv;
693
694 /* I guess we could check this to be within the
695 * range of the table......
696 */
697 ctp = *((chan_tab_t **)chanid);
698
699 /* We should have multiple callers for a particular channel,
700 * an interrupt doesn't affect this pointer nor the descriptor,
701 * so no locking should be needed.
702 */
703 dp = ctp->get_ptr;
704
705 /* If the descriptor is valid, we are way ahead of the DMA
706 * engine, so just return an error condition.
707 */
708 if (dp->dscr_cmd0 & DSCR_CMD0_V)
709 return 0;
710
711 /* Return buffer address and byte count.
712 */
713 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
714 *nbytes = dp->dscr_cmd1;
715 rv = dp->dscr_stat;
716
717 /* Get next descriptor pointer.
718 */
719 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
720
721 /* return something not zero.
722 */
723 return rv;
724 }
725
726 void
727 au1xxx_dbdma_stop(u32 chanid)
728 {
729 chan_tab_t *ctp;
730 au1x_dma_chan_t *cp;
731 int halt_timeout = 0;
732
733 ctp = *((chan_tab_t **)chanid);
734
735 cp = ctp->chan_ptr;
736 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
737 au_sync();
738 while (!(cp->ddma_stat & DDMA_STAT_H)) {
739 udelay(1);
740 halt_timeout++;
741 if (halt_timeout > 100) {
742 printk("warning: DMA channel won't halt\n");
743 break;
744 }
745 }
746 /* clear current desc valid and doorbell */
747 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
748 au_sync();
749 }
750 EXPORT_SYMBOL(au1xxx_dbdma_stop);
751
752 /* Start using the current descriptor pointer. If the dbdma encounters
753 * a not valid descriptor, it will stop. In this case, we can just
754 * continue by adding a buffer to the list and starting again.
755 */
756 void
757 au1xxx_dbdma_start(u32 chanid)
758 {
759 chan_tab_t *ctp;
760 au1x_dma_chan_t *cp;
761
762 ctp = *((chan_tab_t **)chanid);
763 cp = ctp->chan_ptr;
764 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
765 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
766 au_sync();
767 cp->ddma_dbell = 0;
768 au_sync();
769 }
770 EXPORT_SYMBOL(au1xxx_dbdma_start);
771
772 void
773 au1xxx_dbdma_reset(u32 chanid)
774 {
775 chan_tab_t *ctp;
776 au1x_ddma_desc_t *dp;
777
778 au1xxx_dbdma_stop(chanid);
779
780 ctp = *((chan_tab_t **)chanid);
781 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
782
783 /* Run through the descriptors and reset the valid indicator.
784 */
785 dp = ctp->chan_desc_base;
786
787 do {
788 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
789 /* reset our SW status -- this is used to determine
790 * if a descriptor is in use by upper level SW. Since
791 * posting can reset 'V' bit.
792 */
793 dp->sw_status = 0;
794 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
795 } while (dp != ctp->chan_desc_base);
796 }
797 EXPORT_SYMBOL(au1xxx_dbdma_reset);
798
799 u32
800 au1xxx_get_dma_residue(u32 chanid)
801 {
802 chan_tab_t *ctp;
803 au1x_dma_chan_t *cp;
804 u32 rv;
805
806 ctp = *((chan_tab_t **)chanid);
807 cp = ctp->chan_ptr;
808
809 /* This is only valid if the channel is stopped.
810 */
811 rv = cp->ddma_bytecnt;
812 au_sync();
813
814 return rv;
815 }
816
817 void
818 au1xxx_dbdma_chan_free(u32 chanid)
819 {
820 chan_tab_t *ctp;
821 dbdev_tab_t *stp, *dtp;
822
823 ctp = *((chan_tab_t **)chanid);
824 stp = ctp->chan_src;
825 dtp = ctp->chan_dest;
826
827 au1xxx_dbdma_stop(chanid);
828
829 kfree((void *)ctp->chan_desc_base);
830
831 stp->dev_flags &= ~DEV_FLAGS_INUSE;
832 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
833 chan_tab_ptr[ctp->chan_index] = NULL;
834
835 kfree(ctp);
836 }
837 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
838
839 static irqreturn_t
840 dbdma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
841 {
842 u32 intstat;
843 u32 chan_index;
844 chan_tab_t *ctp;
845 au1x_ddma_desc_t *dp;
846 au1x_dma_chan_t *cp;
847
848 intstat = dbdma_gptr->ddma_intstat;
849 au_sync();
850 chan_index = au_ffs(intstat) - 1;
851
852 ctp = chan_tab_ptr[chan_index];
853 cp = ctp->chan_ptr;
854 dp = ctp->cur_ptr;
855
856 /* Reset interrupt.
857 */
858 cp->ddma_irq = 0;
859 au_sync();
860
861 if (ctp->chan_callback)
862 (ctp->chan_callback)(irq, ctp->chan_callparam, regs);
863
864 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
865 return IRQ_RETVAL(1);
866 }
867
868 static void au1xxx_dbdma_init(void)
869 {
870 int irq_nr;
871
872 dbdma_gptr->ddma_config = 0;
873 dbdma_gptr->ddma_throttle = 0;
874 dbdma_gptr->ddma_inten = 0xffff;
875 au_sync();
876
877 #if defined(CONFIG_SOC_AU1550)
878 irq_nr = AU1550_DDMA_INT;
879 #elif defined(CONFIG_SOC_AU1200)
880 irq_nr = AU1200_DDMA_INT;
881 #else
882 #error Unknown Au1x00 SOC
883 #endif
884
885 if (request_irq(irq_nr, dbdma_interrupt, SA_INTERRUPT,
886 "Au1xxx dbdma", (void *)dbdma_gptr))
887 printk("Can't get 1550 dbdma irq");
888 }
889
890 void
891 au1xxx_dbdma_dump(u32 chanid)
892 {
893 chan_tab_t *ctp;
894 au1x_ddma_desc_t *dp;
895 dbdev_tab_t *stp, *dtp;
896 au1x_dma_chan_t *cp;
897 u32 i = 0;
898
899 ctp = *((chan_tab_t **)chanid);
900 stp = ctp->chan_src;
901 dtp = ctp->chan_dest;
902 cp = ctp->chan_ptr;
903
904 printk("Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
905 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab);
906 printk("desc base %x, get %x, put %x, cur %x\n",
907 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
908 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
909
910 printk("dbdma chan %x\n", (u32)cp);
911 printk("cfg %08x, desptr %08x, statptr %08x\n",
912 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
913 printk("dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
914 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt);
915
916
917 /* Run through the descriptors
918 */
919 dp = ctp->chan_desc_base;
920
921 do {
922 printk("Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
923 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
924 printk("src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
925 dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
926 printk("stat %08x, nxtptr %08x\n",
927 dp->dscr_stat, dp->dscr_nxtptr);
928 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
929 } while (dp != ctp->chan_desc_base);
930 }
931
932 /* Put a descriptor into the DMA ring.
933 * This updates the source/destination pointers and byte count.
934 */
935 u32
936 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr )
937 {
938 chan_tab_t *ctp;
939 au1x_ddma_desc_t *dp;
940 u32 nbytes=0;
941
942 /* I guess we could check this to be within the
943 * range of the table......
944 */
945 ctp = *((chan_tab_t **)chanid);
946
947 /* We should have multiple callers for a particular channel,
948 * an interrupt doesn't affect this pointer nor the descriptor,
949 * so no locking should be needed.
950 */
951 dp = ctp->put_ptr;
952
953 /* If the descriptor is valid, we are way ahead of the DMA
954 * engine, so just return an error condition.
955 */
956 if (dp->dscr_cmd0 & DSCR_CMD0_V)
957 return 0;
958
959 /* Load up buffer addresses and byte count.
960 */
961 dp->dscr_dest0 = dscr->dscr_dest0;
962 dp->dscr_source0 = dscr->dscr_source0;
963 dp->dscr_dest1 = dscr->dscr_dest1;
964 dp->dscr_source1 = dscr->dscr_source1;
965 dp->dscr_cmd1 = dscr->dscr_cmd1;
966 nbytes = dscr->dscr_cmd1;
967 /* Allow the caller to specifiy if an interrupt is generated */
968 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
969 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
970 ctp->chan_ptr->ddma_dbell = 0;
971
972 /* Get next descriptor pointer.
973 */
974 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
975
976 /* return something not zero.
977 */
978 return nbytes;
979 }
980
981 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
982