]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/cavium-octeon/octeon-memcpy.S
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / arch / mips / cavium-octeon / octeon-memcpy.S
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16 #include <asm/asm.h>
17 #include <asm/asm-offsets.h>
18 #include <asm/regdef.h>
19
20 #define dst a0
21 #define src a1
22 #define len a2
23
24 /*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * arch/mips/include/asm/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50 /*
51 * Implementation
52 */
53
54 /*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73 #define EXC(inst_reg,addr,handler) \
74 9: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79 /*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
82
83 #define LOAD ld
84 #define LOADL ldl
85 #define LOADR ldr
86 #define STOREL sdl
87 #define STORER sdr
88 #define STORE sd
89 #define ADD daddu
90 #define SUB dsubu
91 #define SRL dsrl
92 #define SRA dsra
93 #define SLL dsll
94 #define SLLV dsllv
95 #define SRLV dsrlv
96 #define NBYTES 8
97 #define LOG_NBYTES 3
98
99 /*
100 * As we are sharing code base with the mips32 tree (which use the o32 ABI
101 * register definitions). We need to redefine the register definitions from
102 * the n64 ABI register naming to the o32 ABI register naming.
103 */
104 #undef t0
105 #undef t1
106 #undef t2
107 #undef t3
108 #define t0 $8
109 #define t1 $9
110 #define t2 $10
111 #define t3 $11
112 #define t4 $12
113 #define t5 $13
114 #define t6 $14
115 #define t7 $15
116
117 #ifdef CONFIG_CPU_LITTLE_ENDIAN
118 #define LDFIRST LOADR
119 #define LDREST LOADL
120 #define STFIRST STORER
121 #define STREST STOREL
122 #define SHIFT_DISCARD SLLV
123 #else
124 #define LDFIRST LOADL
125 #define LDREST LOADR
126 #define STFIRST STOREL
127 #define STREST STORER
128 #define SHIFT_DISCARD SRLV
129 #endif
130
131 #define FIRST(unit) ((unit)*NBYTES)
132 #define REST(unit) (FIRST(unit)+NBYTES-1)
133 #define UNIT(unit) FIRST(unit)
134
135 #define ADDRMASK (NBYTES-1)
136
137 .text
138 .set noreorder
139 .set noat
140
141 /*
142 * t7 is used as a flag to note inatomic mode.
143 */
144 LEAF(__copy_user_inatomic)
145 b __copy_user_common
146 li t7, 1
147 END(__copy_user_inatomic)
148
149 /*
150 * A combined memcpy/__copy_user
151 * __copy_user sets len to 0 for success; else to an upper bound of
152 * the number of uncopied bytes.
153 * memcpy sets v0 to dst.
154 */
155 .align 5
156 LEAF(memcpy) /* a0=dst a1=src a2=len */
157 move v0, dst /* return value */
158 __memcpy:
159 FEXPORT(__copy_user)
160 li t7, 0 /* not inatomic */
161 __copy_user_common:
162 /*
163 * Note: dst & src may be unaligned, len may be 0
164 * Temps
165 */
166 #
167 # Octeon doesn't care if the destination is unaligned. The hardware
168 # can fix it faster than we can special case the assembly.
169 #
170 pref 0, 0(src)
171 sltu t0, len, NBYTES # Check if < 1 word
172 bnez t0, copy_bytes_checklen
173 and t0, src, ADDRMASK # Check if src unaligned
174 bnez t0, src_unaligned
175 sltu t0, len, 4*NBYTES # Check if < 4 words
176 bnez t0, less_than_4units
177 sltu t0, len, 8*NBYTES # Check if < 8 words
178 bnez t0, less_than_8units
179 sltu t0, len, 16*NBYTES # Check if < 16 words
180 bnez t0, cleanup_both_aligned
181 sltu t0, len, 128+1 # Check if len < 129
182 bnez t0, 1f # Skip prefetch if len is too short
183 sltu t0, len, 256+1 # Check if len < 257
184 bnez t0, 1f # Skip prefetch if len is too short
185 pref 0, 128(src) # We must not prefetch invalid addresses
186 #
187 # This is where we loop if there is more than 128 bytes left
188 2: pref 0, 256(src) # We must not prefetch invalid addresses
189 #
190 # This is where we loop if we can't prefetch anymore
191 1:
192 EXC( LOAD t0, UNIT(0)(src), l_exc)
193 EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
194 EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
195 EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
196 SUB len, len, 16*NBYTES
197 EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
198 EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
199 EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
200 EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
201 EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
202 EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
203 EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
204 EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
205 EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
206 EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
207 EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
208 ADD src, src, 16*NBYTES
209 EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
210 ADD dst, dst, 16*NBYTES
211 EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
212 EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
213 EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
214 EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
215 EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
216 EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
217 EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
218 EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
219 EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
220 EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
221 EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
222 EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
223 EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
224 EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
225 EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
226 EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
227 sltu t0, len, 256+1 # See if we can prefetch more
228 beqz t0, 2b
229 sltu t0, len, 128 # See if we can loop more time
230 beqz t0, 1b
231 nop
232 #
233 # Jump here if there are less than 16*NBYTES left.
234 #
235 cleanup_both_aligned:
236 beqz len, done
237 sltu t0, len, 8*NBYTES
238 bnez t0, less_than_8units
239 nop
240 EXC( LOAD t0, UNIT(0)(src), l_exc)
241 EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
242 EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
243 EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
244 SUB len, len, 8*NBYTES
245 EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
246 EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
247 EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
248 EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
249 EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
250 EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
251 EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
252 EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
253 EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
254 EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
255 EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
256 EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
257 ADD src, src, 8*NBYTES
258 beqz len, done
259 ADD dst, dst, 8*NBYTES
260 #
261 # Jump here if there are less than 8*NBYTES left.
262 #
263 less_than_8units:
264 sltu t0, len, 4*NBYTES
265 bnez t0, less_than_4units
266 nop
267 EXC( LOAD t0, UNIT(0)(src), l_exc)
268 EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
269 EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
270 EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
271 SUB len, len, 4*NBYTES
272 EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
273 EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
274 EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
275 EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
276 ADD src, src, 4*NBYTES
277 beqz len, done
278 ADD dst, dst, 4*NBYTES
279 #
280 # Jump here if there are less than 4*NBYTES left. This means
281 # we may need to copy up to 3 NBYTES words.
282 #
283 less_than_4units:
284 sltu t0, len, 1*NBYTES
285 bnez t0, copy_bytes_checklen
286 nop
287 #
288 # 1) Copy NBYTES, then check length again
289 #
290 EXC( LOAD t0, 0(src), l_exc)
291 SUB len, len, NBYTES
292 sltu t1, len, 8
293 EXC( STORE t0, 0(dst), s_exc_p1u)
294 ADD src, src, NBYTES
295 bnez t1, copy_bytes_checklen
296 ADD dst, dst, NBYTES
297 #
298 # 2) Copy NBYTES, then check length again
299 #
300 EXC( LOAD t0, 0(src), l_exc)
301 SUB len, len, NBYTES
302 sltu t1, len, 8
303 EXC( STORE t0, 0(dst), s_exc_p1u)
304 ADD src, src, NBYTES
305 bnez t1, copy_bytes_checklen
306 ADD dst, dst, NBYTES
307 #
308 # 3) Copy NBYTES, then check length again
309 #
310 EXC( LOAD t0, 0(src), l_exc)
311 SUB len, len, NBYTES
312 ADD src, src, NBYTES
313 ADD dst, dst, NBYTES
314 b copy_bytes_checklen
315 EXC( STORE t0, -8(dst), s_exc_p1u)
316
317 src_unaligned:
318 #define rem t8
319 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
320 beqz t0, cleanup_src_unaligned
321 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
322 1:
323 /*
324 * Avoid consecutive LD*'s to the same register since some mips
325 * implementations can't issue them in the same cycle.
326 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
327 * are to the same unit (unless src is aligned, but it's not).
328 */
329 EXC( LDFIRST t0, FIRST(0)(src), l_exc)
330 EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
331 SUB len, len, 4*NBYTES
332 EXC( LDREST t0, REST(0)(src), l_exc_copy)
333 EXC( LDREST t1, REST(1)(src), l_exc_copy)
334 EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
335 EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
336 EXC( LDREST t2, REST(2)(src), l_exc_copy)
337 EXC( LDREST t3, REST(3)(src), l_exc_copy)
338 ADD src, src, 4*NBYTES
339 EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
340 EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
341 EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
342 EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
343 bne len, rem, 1b
344 ADD dst, dst, 4*NBYTES
345
346 cleanup_src_unaligned:
347 beqz len, done
348 and rem, len, NBYTES-1 # rem = len % NBYTES
349 beq rem, len, copy_bytes
350 nop
351 1:
352 EXC( LDFIRST t0, FIRST(0)(src), l_exc)
353 EXC( LDREST t0, REST(0)(src), l_exc_copy)
354 SUB len, len, NBYTES
355 EXC( STORE t0, 0(dst), s_exc_p1u)
356 ADD src, src, NBYTES
357 bne len, rem, 1b
358 ADD dst, dst, NBYTES
359
360 copy_bytes_checklen:
361 beqz len, done
362 nop
363 copy_bytes:
364 /* 0 < len < NBYTES */
365 #define COPY_BYTE(N) \
366 EXC( lb t0, N(src), l_exc); \
367 SUB len, len, 1; \
368 beqz len, done; \
369 EXC( sb t0, N(dst), s_exc_p1)
370
371 COPY_BYTE(0)
372 COPY_BYTE(1)
373 COPY_BYTE(2)
374 COPY_BYTE(3)
375 COPY_BYTE(4)
376 COPY_BYTE(5)
377 EXC( lb t0, NBYTES-2(src), l_exc)
378 SUB len, len, 1
379 jr ra
380 EXC( sb t0, NBYTES-2(dst), s_exc_p1)
381 done:
382 jr ra
383 nop
384 END(memcpy)
385
386 l_exc_copy:
387 /*
388 * Copy bytes from src until faulting load address (or until a
389 * lb faults)
390 *
391 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
392 * may be more than a byte beyond the last address.
393 * Hence, the lb below may get an exception.
394 *
395 * Assumes src < THREAD_BUADDR($28)
396 */
397 LOAD t0, TI_TASK($28)
398 LOAD t0, THREAD_BUADDR(t0)
399 1:
400 EXC( lb t1, 0(src), l_exc)
401 ADD src, src, 1
402 sb t1, 0(dst) # can't fault -- we're copy_from_user
403 bne src, t0, 1b
404 ADD dst, dst, 1
405 l_exc:
406 LOAD t0, TI_TASK($28)
407 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
408 SUB len, AT, t0 # len number of uncopied bytes
409 bnez t7, 2f /* Skip the zeroing out part if inatomic */
410 /*
411 * Here's where we rely on src and dst being incremented in tandem,
412 * See (3) above.
413 * dst += (fault addr - src) to put dst at first byte to clear
414 */
415 ADD dst, t0 # compute start address in a1
416 SUB dst, src
417 /*
418 * Clear len bytes starting at dst. Can't call __bzero because it
419 * might modify len. An inefficient loop for these rare times...
420 */
421 beqz len, done
422 SUB src, len, 1
423 1: sb zero, 0(dst)
424 ADD dst, dst, 1
425 bnez src, 1b
426 SUB src, src, 1
427 2: jr ra
428 nop
429
430
431 #define SEXC(n) \
432 s_exc_p ## n ## u: \
433 jr ra; \
434 ADD len, len, n*NBYTES
435
436 SEXC(16)
437 SEXC(15)
438 SEXC(14)
439 SEXC(13)
440 SEXC(12)
441 SEXC(11)
442 SEXC(10)
443 SEXC(9)
444 SEXC(8)
445 SEXC(7)
446 SEXC(6)
447 SEXC(5)
448 SEXC(4)
449 SEXC(3)
450 SEXC(2)
451 SEXC(1)
452
453 s_exc_p1:
454 jr ra
455 ADD len, len, 1
456 s_exc:
457 jr ra
458 nop
459
460 .align 5
461 LEAF(memmove)
462 ADD t0, a0, a2
463 ADD t1, a1, a2
464 sltu t0, a1, t0 # dst + len <= src -> memcpy
465 sltu t1, a0, t1 # dst >= src + len -> memcpy
466 and t0, t1
467 beqz t0, __memcpy
468 move v0, a0 /* return value */
469 beqz a2, r_out
470 END(memmove)
471
472 /* fall through to __rmemcpy */
473 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
474 sltu t0, a1, a0
475 beqz t0, r_end_bytes_up # src >= dst
476 nop
477 ADD a0, a2 # dst = dst + len
478 ADD a1, a2 # src = src + len
479
480 r_end_bytes:
481 lb t0, -1(a1)
482 SUB a2, a2, 0x1
483 sb t0, -1(a0)
484 SUB a1, a1, 0x1
485 bnez a2, r_end_bytes
486 SUB a0, a0, 0x1
487
488 r_out:
489 jr ra
490 move a2, zero
491
492 r_end_bytes_up:
493 lb t0, (a1)
494 SUB a2, a2, 0x1
495 sb t0, (a0)
496 ADD a1, a1, 0x1
497 bnez a2, r_end_bytes_up
498 ADD a0, a0, 0x1
499
500 jr ra
501 move a2, zero
502 END(__rmemcpy)