]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/cavium-octeon/octeon-platform.c
Merge branch 'parisc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[mirror_ubuntu-zesty-kernel.git] / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2011 Cavium Networks
7 * Copyright (C) 2008 Wind River Systems
8 */
9
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/slab.h>
20 #include <linux/platform_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/of_fdt.h>
23 #include <linux/libfdt.h>
24 #include <linux/usb/ehci_pdriver.h>
25 #include <linux/usb/ohci_pdriver.h>
26
27 #include <asm/octeon/octeon.h>
28 #include <asm/octeon/cvmx-rnm-defs.h>
29 #include <asm/octeon/cvmx-helper.h>
30 #include <asm/octeon/cvmx-helper-board.h>
31 #include <asm/octeon/cvmx-uctlx-defs.h>
32
33 /* Octeon Random Number Generator. */
34 static int __init octeon_rng_device_init(void)
35 {
36 struct platform_device *pd;
37 int ret = 0;
38
39 struct resource rng_resources[] = {
40 {
41 .flags = IORESOURCE_MEM,
42 .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
43 .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
44 }, {
45 .flags = IORESOURCE_MEM,
46 .start = cvmx_build_io_address(8, 0),
47 .end = cvmx_build_io_address(8, 0) + 0x7
48 }
49 };
50
51 pd = platform_device_alloc("octeon_rng", -1);
52 if (!pd) {
53 ret = -ENOMEM;
54 goto out;
55 }
56
57 ret = platform_device_add_resources(pd, rng_resources,
58 ARRAY_SIZE(rng_resources));
59 if (ret)
60 goto fail;
61
62 ret = platform_device_add(pd);
63 if (ret)
64 goto fail;
65
66 return ret;
67 fail:
68 platform_device_put(pd);
69
70 out:
71 return ret;
72 }
73 device_initcall(octeon_rng_device_init);
74
75 #ifdef CONFIG_USB
76
77 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
78
79 static int octeon2_usb_clock_start_cnt;
80
81 static void octeon2_usb_clocks_start(struct device *dev)
82 {
83 u64 div;
84 union cvmx_uctlx_if_ena if_ena;
85 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
86 union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
87 union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
88 int i;
89 unsigned long io_clk_64_to_ns;
90 u32 clock_rate = 12000000;
91 bool is_crystal_clock = false;
92
93
94 mutex_lock(&octeon2_usb_clocks_mutex);
95
96 octeon2_usb_clock_start_cnt++;
97 if (octeon2_usb_clock_start_cnt != 1)
98 goto exit;
99
100 io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
101
102 if (dev->of_node) {
103 struct device_node *uctl_node;
104 const char *clock_type;
105
106 uctl_node = of_get_parent(dev->of_node);
107 if (!uctl_node) {
108 dev_err(dev, "No UCTL device node\n");
109 goto exit;
110 }
111 i = of_property_read_u32(uctl_node,
112 "refclk-frequency", &clock_rate);
113 if (i) {
114 dev_err(dev, "No UCTL \"refclk-frequency\"\n");
115 goto exit;
116 }
117 i = of_property_read_string(uctl_node,
118 "refclk-type", &clock_type);
119
120 if (!i && strcmp("crystal", clock_type) == 0)
121 is_crystal_clock = true;
122 }
123
124 /*
125 * Step 1: Wait for voltages stable. That surely happened
126 * before starting the kernel.
127 *
128 * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
129 */
130 if_ena.u64 = 0;
131 if_ena.s.en = 1;
132 cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
133
134 /* Step 3: Configure the reference clock, PHY, and HCLK */
135 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
136
137 /*
138 * If the UCTL looks like it has already been started, skip
139 * the initialization, otherwise bus errors are obtained.
140 */
141 if (clk_rst_ctl.s.hrst)
142 goto end_clock;
143 /* 3a */
144 clk_rst_ctl.s.p_por = 1;
145 clk_rst_ctl.s.hrst = 0;
146 clk_rst_ctl.s.p_prst = 0;
147 clk_rst_ctl.s.h_clkdiv_rst = 0;
148 clk_rst_ctl.s.o_clkdiv_rst = 0;
149 clk_rst_ctl.s.h_clkdiv_en = 0;
150 clk_rst_ctl.s.o_clkdiv_en = 0;
151 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
152
153 /* 3b */
154 clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
155 switch (clock_rate) {
156 default:
157 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
158 clock_rate);
159 /* Fall through */
160 case 12000000:
161 clk_rst_ctl.s.p_refclk_div = 0;
162 break;
163 case 24000000:
164 clk_rst_ctl.s.p_refclk_div = 1;
165 break;
166 case 48000000:
167 clk_rst_ctl.s.p_refclk_div = 2;
168 break;
169 }
170 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
171
172 /* 3c */
173 div = octeon_get_io_clock_rate() / 130000000ull;
174
175 switch (div) {
176 case 0:
177 div = 1;
178 break;
179 case 1:
180 case 2:
181 case 3:
182 case 4:
183 break;
184 case 5:
185 div = 4;
186 break;
187 case 6:
188 case 7:
189 div = 6;
190 break;
191 case 8:
192 case 9:
193 case 10:
194 case 11:
195 div = 8;
196 break;
197 default:
198 div = 12;
199 break;
200 }
201 clk_rst_ctl.s.h_div = div;
202 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
203 /* Read it back, */
204 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
205 clk_rst_ctl.s.h_clkdiv_en = 1;
206 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
207 /* 3d */
208 clk_rst_ctl.s.h_clkdiv_rst = 1;
209 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
210
211 /* 3e: delay 64 io clocks */
212 ndelay(io_clk_64_to_ns);
213
214 /*
215 * Step 4: Program the power-on reset field in the UCTL
216 * clock-reset-control register.
217 */
218 clk_rst_ctl.s.p_por = 0;
219 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
220
221 /* Step 5: Wait 1 ms for the PHY clock to start. */
222 mdelay(1);
223
224 /*
225 * Step 6: Program the reset input from automatic test
226 * equipment field in the UPHY CSR
227 */
228 uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
229 uphy_ctl_status.s.ate_reset = 1;
230 cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
231
232 /* Step 7: Wait for at least 10ns. */
233 ndelay(10);
234
235 /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
236 uphy_ctl_status.s.ate_reset = 0;
237 cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
238
239 /*
240 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
241 * signals and OHCI_CLK48
242 */
243 ndelay(20);
244
245 /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
246 /* 10a */
247 clk_rst_ctl.s.o_clkdiv_rst = 1;
248 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
249
250 /* 10b */
251 clk_rst_ctl.s.o_clkdiv_en = 1;
252 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
253
254 /* 10c */
255 ndelay(io_clk_64_to_ns);
256
257 /*
258 * Step 11: Program the PHY reset field:
259 * UCTL0_CLK_RST_CTL[P_PRST] = 1
260 */
261 clk_rst_ctl.s.p_prst = 1;
262 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
263
264 /* Step 12: Wait 1 uS. */
265 udelay(1);
266
267 /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
268 clk_rst_ctl.s.hrst = 1;
269 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
270
271 end_clock:
272 /* Now we can set some other registers. */
273
274 for (i = 0; i <= 1; i++) {
275 port_ctl_status.u64 =
276 cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
277 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
278 port_ctl_status.s.txvreftune = 15;
279 port_ctl_status.s.txrisetune = 1;
280 port_ctl_status.s.txpreemphasistune = 1;
281 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
282 port_ctl_status.u64);
283 }
284
285 /* Set uSOF cycle period to 60,000 bits. */
286 cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
287 exit:
288 mutex_unlock(&octeon2_usb_clocks_mutex);
289 }
290
291 static void octeon2_usb_clocks_stop(void)
292 {
293 mutex_lock(&octeon2_usb_clocks_mutex);
294 octeon2_usb_clock_start_cnt--;
295 mutex_unlock(&octeon2_usb_clocks_mutex);
296 }
297
298 static int octeon_ehci_power_on(struct platform_device *pdev)
299 {
300 octeon2_usb_clocks_start(&pdev->dev);
301 return 0;
302 }
303
304 static void octeon_ehci_power_off(struct platform_device *pdev)
305 {
306 octeon2_usb_clocks_stop();
307 }
308
309 static struct usb_ehci_pdata octeon_ehci_pdata = {
310 /* Octeon EHCI matches CPU endianness. */
311 #ifdef __BIG_ENDIAN
312 .big_endian_mmio = 1,
313 #endif
314 .dma_mask_64 = 1,
315 .power_on = octeon_ehci_power_on,
316 .power_off = octeon_ehci_power_off,
317 };
318
319 static void __init octeon_ehci_hw_start(struct device *dev)
320 {
321 union cvmx_uctlx_ehci_ctl ehci_ctl;
322
323 octeon2_usb_clocks_start(dev);
324
325 ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
326 /* Use 64-bit addressing. */
327 ehci_ctl.s.ehci_64b_addr_en = 1;
328 ehci_ctl.s.l2c_addr_msb = 0;
329 #ifdef __BIG_ENDIAN
330 ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
331 ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
332 #else
333 ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
334 ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
335 ehci_ctl.s.inv_reg_a2 = 1;
336 #endif
337 cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
338
339 octeon2_usb_clocks_stop();
340 }
341
342 static int __init octeon_ehci_device_init(void)
343 {
344 struct platform_device *pd;
345 struct device_node *ehci_node;
346 int ret = 0;
347
348 ehci_node = of_find_node_by_name(NULL, "ehci");
349 if (!ehci_node)
350 return 0;
351
352 pd = of_find_device_by_node(ehci_node);
353 if (!pd)
354 return 0;
355
356 pd->dev.platform_data = &octeon_ehci_pdata;
357 octeon_ehci_hw_start(&pd->dev);
358
359 return ret;
360 }
361 device_initcall(octeon_ehci_device_init);
362
363 static int octeon_ohci_power_on(struct platform_device *pdev)
364 {
365 octeon2_usb_clocks_start(&pdev->dev);
366 return 0;
367 }
368
369 static void octeon_ohci_power_off(struct platform_device *pdev)
370 {
371 octeon2_usb_clocks_stop();
372 }
373
374 static struct usb_ohci_pdata octeon_ohci_pdata = {
375 /* Octeon OHCI matches CPU endianness. */
376 #ifdef __BIG_ENDIAN
377 .big_endian_mmio = 1,
378 #endif
379 .power_on = octeon_ohci_power_on,
380 .power_off = octeon_ohci_power_off,
381 };
382
383 static void __init octeon_ohci_hw_start(struct device *dev)
384 {
385 union cvmx_uctlx_ohci_ctl ohci_ctl;
386
387 octeon2_usb_clocks_start(dev);
388
389 ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
390 ohci_ctl.s.l2c_addr_msb = 0;
391 #ifdef __BIG_ENDIAN
392 ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
393 ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
394 #else
395 ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
396 ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
397 ohci_ctl.s.inv_reg_a2 = 1;
398 #endif
399 cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
400
401 octeon2_usb_clocks_stop();
402 }
403
404 static int __init octeon_ohci_device_init(void)
405 {
406 struct platform_device *pd;
407 struct device_node *ohci_node;
408 int ret = 0;
409
410 ohci_node = of_find_node_by_name(NULL, "ohci");
411 if (!ohci_node)
412 return 0;
413
414 pd = of_find_device_by_node(ohci_node);
415 if (!pd)
416 return 0;
417
418 pd->dev.platform_data = &octeon_ohci_pdata;
419 octeon_ohci_hw_start(&pd->dev);
420
421 return ret;
422 }
423 device_initcall(octeon_ohci_device_init);
424
425 #endif /* CONFIG_USB */
426
427
428 static struct of_device_id __initdata octeon_ids[] = {
429 { .compatible = "simple-bus", },
430 { .compatible = "cavium,octeon-6335-uctl", },
431 { .compatible = "cavium,octeon-5750-usbn", },
432 { .compatible = "cavium,octeon-3860-bootbus", },
433 { .compatible = "cavium,mdio-mux", },
434 { .compatible = "gpio-leds", },
435 {},
436 };
437
438 static bool __init octeon_has_88e1145(void)
439 {
440 return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
441 !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
442 !OCTEON_IS_MODEL(OCTEON_CN56XX);
443 }
444
445 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
446 {
447 const __be32 *phy_handle;
448 const __be32 *alt_phy_handle;
449 const __be32 *reg;
450 u32 phandle;
451 int phy;
452 int alt_phy;
453 const char *p;
454 int current_len;
455 char new_name[20];
456
457 phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
458 if (!phy_handle)
459 return;
460
461 phandle = be32_to_cpup(phy_handle);
462 phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
463
464 alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
465 if (alt_phy_handle) {
466 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
467 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
468 } else {
469 alt_phy = -1;
470 }
471
472 if (phy_addr < 0 || phy < 0) {
473 /* Delete the PHY things */
474 fdt_nop_property(initial_boot_params, eth, "phy-handle");
475 /* This one may fail */
476 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
477 if (phy >= 0)
478 fdt_nop_node(initial_boot_params, phy);
479 if (alt_phy >= 0)
480 fdt_nop_node(initial_boot_params, alt_phy);
481 return;
482 }
483
484 if (phy_addr >= 256 && alt_phy > 0) {
485 const struct fdt_property *phy_prop;
486 struct fdt_property *alt_prop;
487 u32 phy_handle_name;
488
489 /* Use the alt phy node instead.*/
490 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
491 phy_handle_name = phy_prop->nameoff;
492 fdt_nop_node(initial_boot_params, phy);
493 fdt_nop_property(initial_boot_params, eth, "phy-handle");
494 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
495 alt_prop->nameoff = phy_handle_name;
496 phy = alt_phy;
497 }
498
499 phy_addr &= 0xff;
500
501 if (octeon_has_88e1145()) {
502 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
503 memset(new_name, 0, sizeof(new_name));
504 strcpy(new_name, "marvell,88e1145");
505 p = fdt_getprop(initial_boot_params, phy, "compatible",
506 &current_len);
507 if (p && current_len >= strlen(new_name))
508 fdt_setprop_inplace(initial_boot_params, phy,
509 "compatible", new_name, current_len);
510 }
511
512 reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
513 if (phy_addr == be32_to_cpup(reg))
514 return;
515
516 fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
517
518 snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
519
520 p = fdt_get_name(initial_boot_params, phy, &current_len);
521 if (p && current_len == strlen(new_name))
522 fdt_set_name(initial_boot_params, phy, new_name);
523 else
524 pr_err("Error: could not rename ethernet phy: <%s>", p);
525 }
526
527 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
528 {
529 const u8 *old_mac;
530 int old_len;
531 u8 new_mac[6];
532 u64 mac = *pmac;
533 int r;
534
535 old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
536 &old_len);
537 if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
538 return;
539
540 new_mac[0] = (mac >> 40) & 0xff;
541 new_mac[1] = (mac >> 32) & 0xff;
542 new_mac[2] = (mac >> 24) & 0xff;
543 new_mac[3] = (mac >> 16) & 0xff;
544 new_mac[4] = (mac >> 8) & 0xff;
545 new_mac[5] = mac & 0xff;
546
547 r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
548 new_mac, sizeof(new_mac));
549
550 if (r) {
551 pr_err("Setting \"local-mac-address\" failed %d", r);
552 return;
553 }
554 *pmac = mac + 1;
555 }
556
557 static void __init octeon_fdt_rm_ethernet(int node)
558 {
559 const __be32 *phy_handle;
560
561 phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
562 if (phy_handle) {
563 u32 ph = be32_to_cpup(phy_handle);
564 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
565 if (p >= 0)
566 fdt_nop_node(initial_boot_params, p);
567 }
568 fdt_nop_node(initial_boot_params, node);
569 }
570
571 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
572 {
573 char name_buffer[20];
574 int eth;
575 int phy_addr;
576 int ipd_port;
577
578 snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
579 eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
580 if (eth < 0)
581 return;
582 if (p > max) {
583 pr_debug("Deleting port %x:%x\n", i, p);
584 octeon_fdt_rm_ethernet(eth);
585 return;
586 }
587 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
588 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
589 else
590 ipd_port = 16 * i + p;
591
592 phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
593 octeon_fdt_set_phy(eth, phy_addr);
594 }
595
596 static void __init octeon_fdt_pip_iface(int pip, int idx)
597 {
598 char name_buffer[20];
599 int iface;
600 int p;
601 int count = 0;
602
603 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
604 iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
605 if (iface < 0)
606 return;
607
608 if (cvmx_helper_interface_enumerate(idx) == 0)
609 count = cvmx_helper_ports_on_interface(idx);
610
611 for (p = 0; p < 16; p++)
612 octeon_fdt_pip_port(iface, idx, p, count - 1);
613 }
614
615 void __init octeon_fill_mac_addresses(void)
616 {
617 const char *alias_prop;
618 char name_buffer[20];
619 u64 mac_addr_base;
620 int aliases;
621 int pip;
622 int i;
623
624 aliases = fdt_path_offset(initial_boot_params, "/aliases");
625 if (aliases < 0)
626 return;
627
628 mac_addr_base =
629 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
630 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
631 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
632 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
633 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
634 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
635
636 for (i = 0; i < 2; i++) {
637 int mgmt;
638
639 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
640 alias_prop = fdt_getprop(initial_boot_params, aliases,
641 name_buffer, NULL);
642 if (!alias_prop)
643 continue;
644 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
645 if (mgmt < 0)
646 continue;
647 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
648 }
649
650 alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
651 if (!alias_prop)
652 return;
653
654 pip = fdt_path_offset(initial_boot_params, alias_prop);
655 if (pip < 0)
656 return;
657
658 for (i = 0; i <= 4; i++) {
659 int iface;
660 int p;
661
662 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
663 iface = fdt_subnode_offset(initial_boot_params, pip,
664 name_buffer);
665 if (iface < 0)
666 continue;
667 for (p = 0; p < 16; p++) {
668 int eth;
669
670 snprintf(name_buffer, sizeof(name_buffer),
671 "ethernet@%x", p);
672 eth = fdt_subnode_offset(initial_boot_params, iface,
673 name_buffer);
674 if (eth < 0)
675 continue;
676 octeon_fdt_set_mac_addr(eth, &mac_addr_base);
677 }
678 }
679 }
680
681 int __init octeon_prune_device_tree(void)
682 {
683 int i, max_port, uart_mask;
684 const char *pip_path;
685 const char *alias_prop;
686 char name_buffer[20];
687 int aliases;
688
689 if (fdt_check_header(initial_boot_params))
690 panic("Corrupt Device Tree.");
691
692 aliases = fdt_path_offset(initial_boot_params, "/aliases");
693 if (aliases < 0) {
694 pr_err("Error: No /aliases node in device tree.");
695 return -EINVAL;
696 }
697
698 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
699 max_port = 2;
700 else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
701 max_port = 1;
702 else
703 max_port = 0;
704
705 if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
706 max_port = 0;
707
708 for (i = 0; i < 2; i++) {
709 int mgmt;
710 snprintf(name_buffer, sizeof(name_buffer),
711 "mix%d", i);
712 alias_prop = fdt_getprop(initial_boot_params, aliases,
713 name_buffer, NULL);
714 if (alias_prop) {
715 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
716 if (mgmt < 0)
717 continue;
718 if (i >= max_port) {
719 pr_debug("Deleting mix%d\n", i);
720 octeon_fdt_rm_ethernet(mgmt);
721 fdt_nop_property(initial_boot_params, aliases,
722 name_buffer);
723 } else {
724 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
725 octeon_fdt_set_phy(mgmt, phy_addr);
726 }
727 }
728 }
729
730 pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
731 if (pip_path) {
732 int pip = fdt_path_offset(initial_boot_params, pip_path);
733 if (pip >= 0)
734 for (i = 0; i <= 4; i++)
735 octeon_fdt_pip_iface(pip, i);
736 }
737
738 /* I2C */
739 if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
740 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
741 OCTEON_IS_MODEL(OCTEON_CN68XX) ||
742 OCTEON_IS_MODEL(OCTEON_CN56XX))
743 max_port = 2;
744 else
745 max_port = 1;
746
747 for (i = 0; i < 2; i++) {
748 int i2c;
749 snprintf(name_buffer, sizeof(name_buffer),
750 "twsi%d", i);
751 alias_prop = fdt_getprop(initial_boot_params, aliases,
752 name_buffer, NULL);
753
754 if (alias_prop) {
755 i2c = fdt_path_offset(initial_boot_params, alias_prop);
756 if (i2c < 0)
757 continue;
758 if (i >= max_port) {
759 pr_debug("Deleting twsi%d\n", i);
760 fdt_nop_node(initial_boot_params, i2c);
761 fdt_nop_property(initial_boot_params, aliases,
762 name_buffer);
763 }
764 }
765 }
766
767 /* SMI/MDIO */
768 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
769 max_port = 4;
770 else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
771 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
772 OCTEON_IS_MODEL(OCTEON_CN56XX))
773 max_port = 2;
774 else
775 max_port = 1;
776
777 for (i = 0; i < 2; i++) {
778 int i2c;
779 snprintf(name_buffer, sizeof(name_buffer),
780 "smi%d", i);
781 alias_prop = fdt_getprop(initial_boot_params, aliases,
782 name_buffer, NULL);
783
784 if (alias_prop) {
785 i2c = fdt_path_offset(initial_boot_params, alias_prop);
786 if (i2c < 0)
787 continue;
788 if (i >= max_port) {
789 pr_debug("Deleting smi%d\n", i);
790 fdt_nop_node(initial_boot_params, i2c);
791 fdt_nop_property(initial_boot_params, aliases,
792 name_buffer);
793 }
794 }
795 }
796
797 /* Serial */
798 uart_mask = 3;
799
800 /* Right now CN52XX is the only chip with a third uart */
801 if (OCTEON_IS_MODEL(OCTEON_CN52XX))
802 uart_mask |= 4; /* uart2 */
803
804 for (i = 0; i < 3; i++) {
805 int uart;
806 snprintf(name_buffer, sizeof(name_buffer),
807 "uart%d", i);
808 alias_prop = fdt_getprop(initial_boot_params, aliases,
809 name_buffer, NULL);
810
811 if (alias_prop) {
812 uart = fdt_path_offset(initial_boot_params, alias_prop);
813 if (uart_mask & (1 << i)) {
814 __be32 f;
815
816 f = cpu_to_be32(octeon_get_io_clock_rate());
817 fdt_setprop_inplace(initial_boot_params,
818 uart, "clock-frequency",
819 &f, sizeof(f));
820 continue;
821 }
822 pr_debug("Deleting uart%d\n", i);
823 fdt_nop_node(initial_boot_params, uart);
824 fdt_nop_property(initial_boot_params, aliases,
825 name_buffer);
826 }
827 }
828
829 /* Compact Flash */
830 alias_prop = fdt_getprop(initial_boot_params, aliases,
831 "cf0", NULL);
832 if (alias_prop) {
833 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
834 unsigned long base_ptr, region_base, region_size;
835 unsigned long region1_base = 0;
836 unsigned long region1_size = 0;
837 int cs, bootbus;
838 bool is_16bit = false;
839 bool is_true_ide = false;
840 __be32 new_reg[6];
841 __be32 *ranges;
842 int len;
843
844 int cf = fdt_path_offset(initial_boot_params, alias_prop);
845 base_ptr = 0;
846 if (octeon_bootinfo->major_version == 1
847 && octeon_bootinfo->minor_version >= 1) {
848 if (octeon_bootinfo->compact_flash_common_base_addr)
849 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
850 } else {
851 base_ptr = 0x1d000800;
852 }
853
854 if (!base_ptr)
855 goto no_cf;
856
857 /* Find CS0 region. */
858 for (cs = 0; cs < 8; cs++) {
859 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
860 region_base = mio_boot_reg_cfg.s.base << 16;
861 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
862 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
863 && base_ptr < region_base + region_size) {
864 is_16bit = mio_boot_reg_cfg.s.width;
865 break;
866 }
867 }
868 if (cs >= 7) {
869 /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
870 goto no_cf;
871 }
872
873 if (!(base_ptr & 0xfffful)) {
874 /*
875 * Boot loader signals availability of DMA (true_ide
876 * mode) by setting low order bits of base_ptr to
877 * zero.
878 */
879
880 /* Asume that CS1 immediately follows. */
881 mio_boot_reg_cfg.u64 =
882 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
883 region1_base = mio_boot_reg_cfg.s.base << 16;
884 region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
885 if (!mio_boot_reg_cfg.s.en)
886 goto no_cf;
887 is_true_ide = true;
888
889 } else {
890 fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
891 fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
892 if (!is_16bit) {
893 __be32 width = cpu_to_be32(8);
894 fdt_setprop_inplace(initial_boot_params, cf,
895 "cavium,bus-width", &width, sizeof(width));
896 }
897 }
898 new_reg[0] = cpu_to_be32(cs);
899 new_reg[1] = cpu_to_be32(0);
900 new_reg[2] = cpu_to_be32(0x10000);
901 new_reg[3] = cpu_to_be32(cs + 1);
902 new_reg[4] = cpu_to_be32(0);
903 new_reg[5] = cpu_to_be32(0x10000);
904 fdt_setprop_inplace(initial_boot_params, cf,
905 "reg", new_reg, sizeof(new_reg));
906
907 bootbus = fdt_parent_offset(initial_boot_params, cf);
908 if (bootbus < 0)
909 goto no_cf;
910 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
911 if (!ranges || len < (5 * 8 * sizeof(__be32)))
912 goto no_cf;
913
914 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
915 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
916 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
917 if (is_true_ide) {
918 cs++;
919 ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
920 ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
921 ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
922 }
923 goto end_cf;
924 no_cf:
925 fdt_nop_node(initial_boot_params, cf);
926
927 end_cf:
928 ;
929 }
930
931 /* 8 char LED */
932 alias_prop = fdt_getprop(initial_boot_params, aliases,
933 "led0", NULL);
934 if (alias_prop) {
935 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
936 unsigned long base_ptr, region_base, region_size;
937 int cs, bootbus;
938 __be32 new_reg[6];
939 __be32 *ranges;
940 int len;
941 int led = fdt_path_offset(initial_boot_params, alias_prop);
942
943 base_ptr = octeon_bootinfo->led_display_base_addr;
944 if (base_ptr == 0)
945 goto no_led;
946 /* Find CS0 region. */
947 for (cs = 0; cs < 8; cs++) {
948 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
949 region_base = mio_boot_reg_cfg.s.base << 16;
950 region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
951 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
952 && base_ptr < region_base + region_size)
953 break;
954 }
955
956 if (cs > 7)
957 goto no_led;
958
959 new_reg[0] = cpu_to_be32(cs);
960 new_reg[1] = cpu_to_be32(0x20);
961 new_reg[2] = cpu_to_be32(0x20);
962 new_reg[3] = cpu_to_be32(cs);
963 new_reg[4] = cpu_to_be32(0);
964 new_reg[5] = cpu_to_be32(0x20);
965 fdt_setprop_inplace(initial_boot_params, led,
966 "reg", new_reg, sizeof(new_reg));
967
968 bootbus = fdt_parent_offset(initial_boot_params, led);
969 if (bootbus < 0)
970 goto no_led;
971 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
972 if (!ranges || len < (5 * 8 * sizeof(__be32)))
973 goto no_led;
974
975 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
976 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
977 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
978 goto end_led;
979
980 no_led:
981 fdt_nop_node(initial_boot_params, led);
982 end_led:
983 ;
984 }
985
986 /* OHCI/UHCI USB */
987 alias_prop = fdt_getprop(initial_boot_params, aliases,
988 "uctl", NULL);
989 if (alias_prop) {
990 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
991
992 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
993 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
994 pr_debug("Deleting uctl\n");
995 fdt_nop_node(initial_boot_params, uctl);
996 fdt_nop_property(initial_boot_params, aliases, "uctl");
997 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
998 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
999 /* Missing "refclk-type" defaults to crystal. */
1000 fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1001 }
1002 }
1003
1004 /* DWC2 USB */
1005 alias_prop = fdt_getprop(initial_boot_params, aliases,
1006 "usbn", NULL);
1007 if (alias_prop) {
1008 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1009
1010 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1011 !octeon_has_feature(OCTEON_FEATURE_USB))) {
1012 pr_debug("Deleting usbn\n");
1013 fdt_nop_node(initial_boot_params, usbn);
1014 fdt_nop_property(initial_boot_params, aliases, "usbn");
1015 } else {
1016 __be32 new_f[1];
1017 enum cvmx_helper_board_usb_clock_types c;
1018 c = __cvmx_helper_board_usb_get_clock_type();
1019 switch (c) {
1020 case USB_CLOCK_TYPE_REF_48:
1021 new_f[0] = cpu_to_be32(48000000);
1022 fdt_setprop_inplace(initial_boot_params, usbn,
1023 "refclk-frequency", new_f, sizeof(new_f));
1024 /* Fall through ...*/
1025 case USB_CLOCK_TYPE_REF_12:
1026 /* Missing "refclk-type" defaults to external. */
1027 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1028 break;
1029 default:
1030 break;
1031 }
1032 }
1033 }
1034
1035 if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
1036 int dsr1000n_leds = fdt_path_offset(initial_boot_params,
1037 "/dsr1000n-leds");
1038 if (dsr1000n_leds >= 0)
1039 fdt_nop_node(initial_boot_params, dsr1000n_leds);
1040 }
1041
1042 return 0;
1043 }
1044
1045 static int __init octeon_publish_devices(void)
1046 {
1047 return of_platform_bus_probe(NULL, octeon_ids, NULL);
1048 }
1049 device_initcall(octeon_publish_devices);
1050
1051 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1052 MODULE_LICENSE("GPL");
1053 MODULE_DESCRIPTION("Platform driver for Octeon SOC");