]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/cavium-octeon/setup.c
MIPS: OCTEON: Update octeon-model.h code for new SoCs.
[mirror_ubuntu-artful-kernel.git] / arch / mips / cavium-octeon / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
44
45 extern struct plat_smp_ops octeon_smp_ops;
46
47 #ifdef CONFIG_PCI
48 extern void pci_console_init(const char *arg);
49 #endif
50
51 static unsigned long long MAX_MEMORY = 512ull << 20;
52
53 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
54
55 struct cvmx_bootinfo *octeon_bootinfo;
56 EXPORT_SYMBOL(octeon_bootinfo);
57
58 static unsigned long long RESERVE_LOW_MEM = 0ull;
59 #ifdef CONFIG_KEXEC
60 #ifdef CONFIG_SMP
61 /*
62 * Wait for relocation code is prepared and send
63 * secondary CPUs to spin until kernel is relocated.
64 */
65 static void octeon_kexec_smp_down(void *ignored)
66 {
67 int cpu = smp_processor_id();
68
69 local_irq_disable();
70 set_cpu_online(cpu, false);
71 while (!atomic_read(&kexec_ready_to_reboot))
72 cpu_relax();
73
74 asm volatile (
75 " sync \n"
76 " synci ($0) \n");
77
78 relocated_kexec_smp_wait(NULL);
79 }
80 #endif
81
82 #define OCTEON_DDR0_BASE (0x0ULL)
83 #define OCTEON_DDR0_SIZE (0x010000000ULL)
84 #define OCTEON_DDR1_BASE (0x410000000ULL)
85 #define OCTEON_DDR1_SIZE (0x010000000ULL)
86 #define OCTEON_DDR2_BASE (0x020000000ULL)
87 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
88 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
89
90 static struct kimage *kimage_ptr;
91
92 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
93 {
94 int64_t addr;
95 struct cvmx_bootmem_desc *bootmem_desc;
96
97 bootmem_desc = cvmx_bootmem_get_desc();
98
99 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
100 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
101 pr_err("Error: requested memory too large,"
102 "truncating to maximum size\n");
103 }
104
105 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
106 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
107
108 addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
109 bootmem_desc->head_addr = 0;
110
111 if (mem_size <= OCTEON_DDR0_SIZE) {
112 __cvmx_bootmem_phy_free(addr,
113 mem_size - RESERVE_LOW_MEM -
114 low_reserved_bytes, 0);
115 return;
116 }
117
118 __cvmx_bootmem_phy_free(addr,
119 OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
120 low_reserved_bytes, 0);
121
122 mem_size -= OCTEON_DDR0_SIZE;
123
124 if (mem_size > OCTEON_DDR1_SIZE) {
125 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
126 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
127 mem_size - OCTEON_DDR1_SIZE, 0);
128 } else
129 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
130 }
131
132 static int octeon_kexec_prepare(struct kimage *image)
133 {
134 int i;
135 char *bootloader = "kexec";
136
137 octeon_boot_desc_ptr->argc = 0;
138 for (i = 0; i < image->nr_segments; i++) {
139 if (!strncmp(bootloader, (char *)image->segment[i].buf,
140 strlen(bootloader))) {
141 /*
142 * convert command line string to array
143 * of parameters (as bootloader does).
144 */
145 int argc = 0, offt;
146 char *str = (char *)image->segment[i].buf;
147 char *ptr = strchr(str, ' ');
148 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
149 *ptr = '\0';
150 if (ptr[1] != ' ') {
151 offt = (int)(ptr - str + 1);
152 octeon_boot_desc_ptr->argv[argc] =
153 image->segment[i].mem + offt;
154 argc++;
155 }
156 ptr = strchr(ptr + 1, ' ');
157 }
158 octeon_boot_desc_ptr->argc = argc;
159 break;
160 }
161 }
162
163 /*
164 * Information about segments will be needed during pre-boot memory
165 * initialization.
166 */
167 kimage_ptr = image;
168 return 0;
169 }
170
171 static void octeon_generic_shutdown(void)
172 {
173 int i;
174 #ifdef CONFIG_SMP
175 int cpu;
176 #endif
177 struct cvmx_bootmem_desc *bootmem_desc;
178 void *named_block_array_ptr;
179
180 bootmem_desc = cvmx_bootmem_get_desc();
181 named_block_array_ptr =
182 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
183
184 #ifdef CONFIG_SMP
185 /* disable watchdogs */
186 for_each_online_cpu(cpu)
187 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
188 #else
189 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
190 #endif
191 if (kimage_ptr != kexec_crash_image) {
192 memset(named_block_array_ptr,
193 0x0,
194 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
195 sizeof(struct cvmx_bootmem_named_block_desc));
196 /*
197 * Mark all memory (except low 0x100000 bytes) as free.
198 * It is the same thing that bootloader does.
199 */
200 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
201 0x100000);
202 /*
203 * Allocate all segments to avoid their corruption during boot.
204 */
205 for (i = 0; i < kimage_ptr->nr_segments; i++)
206 cvmx_bootmem_alloc_address(
207 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
208 kimage_ptr->segment[i].mem - PAGE_SIZE,
209 PAGE_SIZE);
210 } else {
211 /*
212 * Do not mark all memory as free. Free only named sections
213 * leaving the rest of memory unchanged.
214 */
215 struct cvmx_bootmem_named_block_desc *ptr =
216 (struct cvmx_bootmem_named_block_desc *)
217 named_block_array_ptr;
218
219 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
220 if (ptr[i].size)
221 cvmx_bootmem_free_named(ptr[i].name);
222 }
223 kexec_args[2] = 1UL; /* running on octeon_main_processor */
224 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
225 #ifdef CONFIG_SMP
226 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
227 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
228 #endif
229 }
230
231 static void octeon_shutdown(void)
232 {
233 octeon_generic_shutdown();
234 #ifdef CONFIG_SMP
235 smp_call_function(octeon_kexec_smp_down, NULL, 0);
236 smp_wmb();
237 while (num_online_cpus() > 1) {
238 cpu_relax();
239 mdelay(1);
240 }
241 #endif
242 }
243
244 static void octeon_crash_shutdown(struct pt_regs *regs)
245 {
246 octeon_generic_shutdown();
247 default_machine_crash_shutdown(regs);
248 }
249
250 #endif /* CONFIG_KEXEC */
251
252 #ifdef CONFIG_CAVIUM_RESERVE32
253 uint64_t octeon_reserve32_memory;
254 EXPORT_SYMBOL(octeon_reserve32_memory);
255 #endif
256
257 #ifdef CONFIG_KEXEC
258 /* crashkernel cmdline parameter is parsed _after_ memory setup
259 * we also parse it here (workaround for EHB5200) */
260 static uint64_t crashk_size, crashk_base;
261 #endif
262
263 static int octeon_uart;
264
265 extern asmlinkage void handle_int(void);
266
267 /**
268 * Return non zero if we are currently running in the Octeon simulator
269 *
270 * Returns
271 */
272 int octeon_is_simulation(void)
273 {
274 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
275 }
276 EXPORT_SYMBOL(octeon_is_simulation);
277
278 /**
279 * Return true if Octeon is in PCI Host mode. This means
280 * Linux can control the PCI bus.
281 *
282 * Returns Non zero if Octeon in host mode.
283 */
284 int octeon_is_pci_host(void)
285 {
286 #ifdef CONFIG_PCI
287 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
288 #else
289 return 0;
290 #endif
291 }
292
293 /**
294 * Get the clock rate of Octeon
295 *
296 * Returns Clock rate in HZ
297 */
298 uint64_t octeon_get_clock_rate(void)
299 {
300 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
301
302 return sysinfo->cpu_clock_hz;
303 }
304 EXPORT_SYMBOL(octeon_get_clock_rate);
305
306 static u64 octeon_io_clock_rate;
307
308 u64 octeon_get_io_clock_rate(void)
309 {
310 return octeon_io_clock_rate;
311 }
312 EXPORT_SYMBOL(octeon_get_io_clock_rate);
313
314
315 /**
316 * Write to the LCD display connected to the bootbus. This display
317 * exists on most Cavium evaluation boards. If it doesn't exist, then
318 * this function doesn't do anything.
319 *
320 * @s: String to write
321 */
322 void octeon_write_lcd(const char *s)
323 {
324 if (octeon_bootinfo->led_display_base_addr) {
325 void __iomem *lcd_address =
326 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
327 8);
328 int i;
329 for (i = 0; i < 8; i++, s++) {
330 if (*s)
331 iowrite8(*s, lcd_address + i);
332 else
333 iowrite8(' ', lcd_address + i);
334 }
335 iounmap(lcd_address);
336 }
337 }
338
339 /**
340 * Return the console uart passed by the bootloader
341 *
342 * Returns uart (0 or 1)
343 */
344 int octeon_get_boot_uart(void)
345 {
346 int uart;
347 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
348 uart = 1;
349 #else
350 uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
351 1 : 0;
352 #endif
353 return uart;
354 }
355
356 /**
357 * Get the coremask Linux was booted on.
358 *
359 * Returns Core mask
360 */
361 int octeon_get_boot_coremask(void)
362 {
363 return octeon_boot_desc_ptr->core_mask;
364 }
365
366 /**
367 * Check the hardware BIST results for a CPU
368 */
369 void octeon_check_cpu_bist(void)
370 {
371 const int coreid = cvmx_get_core_num();
372 unsigned long long mask;
373 unsigned long long bist_val;
374
375 /* Check BIST results for COP0 registers */
376 mask = 0x1f00000000ull;
377 bist_val = read_octeon_c0_icacheerr();
378 if (bist_val & mask)
379 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
380 coreid, bist_val);
381
382 bist_val = read_octeon_c0_dcacheerr();
383 if (bist_val & 1)
384 pr_err("Core%d L1 Dcache parity error: "
385 "CacheErr(dcache) = 0x%llx\n",
386 coreid, bist_val);
387
388 mask = 0xfc00000000000000ull;
389 bist_val = read_c0_cvmmemctl();
390 if (bist_val & mask)
391 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
392 coreid, bist_val);
393
394 write_octeon_c0_dcacheerr(0);
395 }
396
397 /**
398 * Reboot Octeon
399 *
400 * @command: Command to pass to the bootloader. Currently ignored.
401 */
402 static void octeon_restart(char *command)
403 {
404 /* Disable all watchdogs before soft reset. They don't get cleared */
405 #ifdef CONFIG_SMP
406 int cpu;
407 for_each_online_cpu(cpu)
408 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
409 #else
410 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
411 #endif
412
413 mb();
414 while (1)
415 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
416 }
417
418
419 /**
420 * Permanently stop a core.
421 *
422 * @arg: Ignored.
423 */
424 static void octeon_kill_core(void *arg)
425 {
426 if (octeon_is_simulation())
427 /* A break instruction causes the simulator stop a core */
428 asm volatile ("break" ::: "memory");
429
430 local_irq_disable();
431 /* Disable watchdog on this core. */
432 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
433 /* Spin in a low power mode. */
434 while (true)
435 asm volatile ("wait" ::: "memory");
436 }
437
438
439 /**
440 * Halt the system
441 */
442 static void octeon_halt(void)
443 {
444 smp_call_function(octeon_kill_core, NULL, 0);
445
446 switch (octeon_bootinfo->board_type) {
447 case CVMX_BOARD_TYPE_NAO38:
448 /* Driving a 1 to GPIO 12 shuts off this board */
449 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
450 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
451 break;
452 default:
453 octeon_write_lcd("PowerOff");
454 break;
455 }
456
457 octeon_kill_core(NULL);
458 }
459
460 static char __read_mostly octeon_system_type[80];
461
462 static int __init init_octeon_system_type(void)
463 {
464 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
465 cvmx_board_type_to_string(octeon_bootinfo->board_type),
466 octeon_model_get_string(read_c0_prid()));
467
468 return 0;
469 }
470 early_initcall(init_octeon_system_type);
471
472 /**
473 * Return a string representing the system type
474 *
475 * Returns
476 */
477 const char *octeon_board_type_string(void)
478 {
479 return octeon_system_type;
480 }
481
482 const char *get_system_type(void)
483 __attribute__ ((alias("octeon_board_type_string")));
484
485 void octeon_user_io_init(void)
486 {
487 union octeon_cvmemctl cvmmemctl;
488 union cvmx_iob_fau_timeout fau_timeout;
489 union cvmx_pow_nw_tim nm_tim;
490
491 /* Get the current settings for CP0_CVMMEMCTL_REG */
492 cvmmemctl.u64 = read_c0_cvmmemctl();
493 /* R/W If set, marked write-buffer entries time out the same
494 * as as other entries; if clear, marked write-buffer entries
495 * use the maximum timeout. */
496 cvmmemctl.s.dismarkwblongto = 1;
497 /* R/W If set, a merged store does not clear the write-buffer
498 * entry timeout state. */
499 cvmmemctl.s.dismrgclrwbto = 0;
500 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
501 * word location for an IOBDMA. The other 8 bits come from the
502 * SCRADDR field of the IOBDMA. */
503 cvmmemctl.s.iobdmascrmsb = 0;
504 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
505 * clear, SYNCWS and SYNCS only order unmarked
506 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
507 * set. */
508 cvmmemctl.s.syncwsmarked = 0;
509 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
510 cvmmemctl.s.dissyncws = 0;
511 /* R/W If set, no stall happens on write buffer full. */
512 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
513 cvmmemctl.s.diswbfst = 1;
514 else
515 cvmmemctl.s.diswbfst = 0;
516 /* R/W If set (and SX set), supervisor-level loads/stores can
517 * use XKPHYS addresses with <48>==0 */
518 cvmmemctl.s.xkmemenas = 0;
519
520 /* R/W If set (and UX set), user-level loads/stores can use
521 * XKPHYS addresses with VA<48>==0 */
522 cvmmemctl.s.xkmemenau = 0;
523
524 /* R/W If set (and SX set), supervisor-level loads/stores can
525 * use XKPHYS addresses with VA<48>==1 */
526 cvmmemctl.s.xkioenas = 0;
527
528 /* R/W If set (and UX set), user-level loads/stores can use
529 * XKPHYS addresses with VA<48>==1 */
530 cvmmemctl.s.xkioenau = 0;
531
532 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
533 * when this is set) RW, reset to 0. */
534 cvmmemctl.s.allsyncw = 0;
535
536 /* R/W If set, no stores merge, and all stores reach the
537 * coherent bus in order. */
538 cvmmemctl.s.nomerge = 0;
539 /* R/W Selects the bit in the counter used for DID time-outs 0
540 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
541 * between 1x and 2x this interval. For example, with
542 * DIDTTO=3, expiration interval is between 16K and 32K. */
543 cvmmemctl.s.didtto = 0;
544 /* R/W If set, the (mem) CSR clock never turns off. */
545 cvmmemctl.s.csrckalwys = 0;
546 /* R/W If set, mclk never turns off. */
547 cvmmemctl.s.mclkalwys = 0;
548 /* R/W Selects the bit in the counter used for write buffer
549 * flush time-outs (WBFLT+11) is the bit position in an
550 * internal counter used to determine expiration. The write
551 * buffer expires between 1x and 2x this interval. For
552 * example, with WBFLT = 0, a write buffer expires between 2K
553 * and 4K cycles after the write buffer entry is allocated. */
554 cvmmemctl.s.wbfltime = 0;
555 /* R/W If set, do not put Istream in the L2 cache. */
556 cvmmemctl.s.istrnol2 = 0;
557
558 /*
559 * R/W The write buffer threshold. As per erratum Core-14752
560 * for CN63XX, a sc/scd might fail if the write buffer is
561 * full. Lowering WBTHRESH greatly lowers the chances of the
562 * write buffer ever being full and triggering the erratum.
563 */
564 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
565 cvmmemctl.s.wbthresh = 4;
566 else
567 cvmmemctl.s.wbthresh = 10;
568
569 /* R/W If set, CVMSEG is available for loads/stores in
570 * kernel/debug mode. */
571 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
572 cvmmemctl.s.cvmsegenak = 1;
573 #else
574 cvmmemctl.s.cvmsegenak = 0;
575 #endif
576 /* R/W If set, CVMSEG is available for loads/stores in
577 * supervisor mode. */
578 cvmmemctl.s.cvmsegenas = 0;
579 /* R/W If set, CVMSEG is available for loads/stores in user
580 * mode. */
581 cvmmemctl.s.cvmsegenau = 0;
582 /* R/W Size of local memory in cache blocks, 54 (6912 bytes)
583 * is max legal value. */
584 cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
585
586 write_c0_cvmmemctl(cvmmemctl.u64);
587
588 if (smp_processor_id() == 0)
589 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
590 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
591 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
592
593 /* Set a default for the hardware timeouts */
594 fau_timeout.u64 = 0;
595 fau_timeout.s.tout_val = 0xfff;
596 /* Disable tagwait FAU timeout */
597 fau_timeout.s.tout_enb = 0;
598 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
599
600 nm_tim.u64 = 0;
601 /* 4096 cycles */
602 nm_tim.s.nw_tim = 3;
603 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
604
605 write_octeon_c0_icacheerr(0);
606 write_c0_derraddr1(0);
607 }
608
609 /**
610 * Early entry point for arch setup
611 */
612 void __init prom_init(void)
613 {
614 struct cvmx_sysinfo *sysinfo;
615 const char *arg;
616 char *p;
617 int i;
618 u64 t;
619 int argc;
620 #ifdef CONFIG_CAVIUM_RESERVE32
621 int64_t addr = -1;
622 #endif
623 /*
624 * The bootloader passes a pointer to the boot descriptor in
625 * $a3, this is available as fw_arg3.
626 */
627 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
628 octeon_bootinfo =
629 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
630 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
631
632 sysinfo = cvmx_sysinfo_get();
633 memset(sysinfo, 0, sizeof(*sysinfo));
634 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
635 sysinfo->phy_mem_desc_ptr =
636 cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
637 sysinfo->core_mask = octeon_bootinfo->core_mask;
638 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
639 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
640 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
641 sysinfo->board_type = octeon_bootinfo->board_type;
642 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
643 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
644 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
645 sizeof(sysinfo->mac_addr_base));
646 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
647 memcpy(sysinfo->board_serial_number,
648 octeon_bootinfo->board_serial_number,
649 sizeof(sysinfo->board_serial_number));
650 sysinfo->compact_flash_common_base_addr =
651 octeon_bootinfo->compact_flash_common_base_addr;
652 sysinfo->compact_flash_attribute_base_addr =
653 octeon_bootinfo->compact_flash_attribute_base_addr;
654 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
655 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
656 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
657
658 if (OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) {
659 /* I/O clock runs at a different rate than the CPU. */
660 union cvmx_mio_rst_boot rst_boot;
661 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
662 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
663 } else {
664 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
665 }
666
667 t = read_c0_cvmctl();
668 if ((t & (1ull << 27)) == 0) {
669 /*
670 * Setup the multiplier save/restore code if
671 * CvmCtl[NOMUL] clear.
672 */
673 void *save;
674 void *save_end;
675 void *restore;
676 void *restore_end;
677 int save_len;
678 int restore_len;
679 int save_max = (char *)octeon_mult_save_end -
680 (char *)octeon_mult_save;
681 int restore_max = (char *)octeon_mult_restore_end -
682 (char *)octeon_mult_restore;
683 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
684 save = octeon_mult_save3;
685 save_end = octeon_mult_save3_end;
686 restore = octeon_mult_restore3;
687 restore_end = octeon_mult_restore3_end;
688 } else {
689 save = octeon_mult_save2;
690 save_end = octeon_mult_save2_end;
691 restore = octeon_mult_restore2;
692 restore_end = octeon_mult_restore2_end;
693 }
694 save_len = (char *)save_end - (char *)save;
695 restore_len = (char *)restore_end - (char *)restore;
696 if (!WARN_ON(save_len > save_max ||
697 restore_len > restore_max)) {
698 memcpy(octeon_mult_save, save, save_len);
699 memcpy(octeon_mult_restore, restore, restore_len);
700 }
701 }
702
703 /*
704 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
705 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
706 */
707 if (!octeon_is_simulation() &&
708 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
709 cvmx_write_csr(CVMX_LED_EN, 0);
710 cvmx_write_csr(CVMX_LED_PRT, 0);
711 cvmx_write_csr(CVMX_LED_DBG, 0);
712 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
713 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
714 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
715 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
716 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
717 cvmx_write_csr(CVMX_LED_EN, 1);
718 }
719 #ifdef CONFIG_CAVIUM_RESERVE32
720 /*
721 * We need to temporarily allocate all memory in the reserve32
722 * region. This makes sure the kernel doesn't allocate this
723 * memory when it is getting memory from the
724 * bootloader. Later, after the memory allocations are
725 * complete, the reserve32 will be freed.
726 *
727 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
728 * is in case we later use hugetlb entries with it.
729 */
730 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
731 0, 0, 2 << 20,
732 "CAVIUM_RESERVE32", 0);
733 if (addr < 0)
734 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
735 else
736 octeon_reserve32_memory = addr;
737 #endif
738
739 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
740 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
741 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
742 } else {
743 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
744 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
745 /* TLB refill */
746 cvmx_l2c_lock_mem_region(ebase, 0x100);
747 #endif
748 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
749 /* General exception */
750 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
751 #endif
752 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
753 /* Interrupt handler */
754 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
755 #endif
756 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
757 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
758 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
759 #endif
760 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
761 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
762 #endif
763 }
764 #endif
765
766 octeon_check_cpu_bist();
767
768 octeon_uart = octeon_get_boot_uart();
769
770 #ifdef CONFIG_SMP
771 octeon_write_lcd("LinuxSMP");
772 #else
773 octeon_write_lcd("Linux");
774 #endif
775
776 octeon_setup_delays();
777
778 /*
779 * BIST should always be enabled when doing a soft reset. L2
780 * Cache locking for instance is not cleared unless BIST is
781 * enabled. Unfortunately due to a chip errata G-200 for
782 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
783 */
784 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
785 OCTEON_IS_MODEL(OCTEON_CN31XX))
786 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
787 else
788 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
789
790 /* Default to 64MB in the simulator to speed things up */
791 if (octeon_is_simulation())
792 MAX_MEMORY = 64ull << 20;
793
794 arg = strstr(arcs_cmdline, "mem=");
795 if (arg) {
796 MAX_MEMORY = memparse(arg + 4, &p);
797 if (MAX_MEMORY == 0)
798 MAX_MEMORY = 32ull << 30;
799 if (*p == '@')
800 RESERVE_LOW_MEM = memparse(p + 1, &p);
801 }
802
803 arcs_cmdline[0] = 0;
804 argc = octeon_boot_desc_ptr->argc;
805 for (i = 0; i < argc; i++) {
806 const char *arg =
807 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
808 if ((strncmp(arg, "MEM=", 4) == 0) ||
809 (strncmp(arg, "mem=", 4) == 0)) {
810 MAX_MEMORY = memparse(arg + 4, &p);
811 if (MAX_MEMORY == 0)
812 MAX_MEMORY = 32ull << 30;
813 if (*p == '@')
814 RESERVE_LOW_MEM = memparse(p + 1, &p);
815 #ifdef CONFIG_KEXEC
816 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
817 crashk_size = memparse(arg+12, &p);
818 if (*p == '@')
819 crashk_base = memparse(p+1, &p);
820 strcat(arcs_cmdline, " ");
821 strcat(arcs_cmdline, arg);
822 /*
823 * To do: switch parsing to new style, something like:
824 * parse_crashkernel(arg, sysinfo->system_dram_size,
825 * &crashk_size, &crashk_base);
826 */
827 #endif
828 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
829 sizeof(arcs_cmdline) - 1) {
830 strcat(arcs_cmdline, " ");
831 strcat(arcs_cmdline, arg);
832 }
833 }
834
835 if (strstr(arcs_cmdline, "console=") == NULL) {
836 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
837 strcat(arcs_cmdline, " console=ttyS0,115200");
838 #else
839 if (octeon_uart == 1)
840 strcat(arcs_cmdline, " console=ttyS1,115200");
841 else
842 strcat(arcs_cmdline, " console=ttyS0,115200");
843 #endif
844 }
845
846 mips_hpt_frequency = octeon_get_clock_rate();
847
848 octeon_init_cvmcount();
849
850 _machine_restart = octeon_restart;
851 _machine_halt = octeon_halt;
852
853 #ifdef CONFIG_KEXEC
854 _machine_kexec_shutdown = octeon_shutdown;
855 _machine_crash_shutdown = octeon_crash_shutdown;
856 _machine_kexec_prepare = octeon_kexec_prepare;
857 #endif
858
859 octeon_user_io_init();
860 register_smp_ops(&octeon_smp_ops);
861 }
862
863 /* Exclude a single page from the regions obtained in plat_mem_setup. */
864 #ifndef CONFIG_CRASH_DUMP
865 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
866 {
867 if (addr > *mem && addr < *mem + *size) {
868 u64 inc = addr - *mem;
869 add_memory_region(*mem, inc, BOOT_MEM_RAM);
870 *mem += inc;
871 *size -= inc;
872 }
873
874 if (addr == *mem && *size > PAGE_SIZE) {
875 *mem += PAGE_SIZE;
876 *size -= PAGE_SIZE;
877 }
878 }
879 #endif /* CONFIG_CRASH_DUMP */
880
881 void __init plat_mem_setup(void)
882 {
883 uint64_t mem_alloc_size;
884 uint64_t total;
885 uint64_t crashk_end;
886 #ifndef CONFIG_CRASH_DUMP
887 int64_t memory;
888 uint64_t kernel_start;
889 uint64_t kernel_size;
890 #endif
891
892 total = 0;
893 crashk_end = 0;
894
895 /*
896 * The Mips memory init uses the first memory location for
897 * some memory vectors. When SPARSEMEM is in use, it doesn't
898 * verify that the size is big enough for the final
899 * vectors. Making the smallest chuck 4MB seems to be enough
900 * to consistently work.
901 */
902 mem_alloc_size = 4 << 20;
903 if (mem_alloc_size > MAX_MEMORY)
904 mem_alloc_size = MAX_MEMORY;
905
906 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
907 #ifdef CONFIG_CRASH_DUMP
908 add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
909 total += MAX_MEMORY;
910 #else
911 #ifdef CONFIG_KEXEC
912 if (crashk_size > 0) {
913 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
914 crashk_end = crashk_base + crashk_size;
915 }
916 #endif
917 /*
918 * When allocating memory, we want incrementing addresses from
919 * bootmem_alloc so the code in add_memory_region can merge
920 * regions next to each other.
921 */
922 cvmx_bootmem_lock();
923 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
924 && (total < MAX_MEMORY)) {
925 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
926 __pa_symbol(&__init_end), -1,
927 0x100000,
928 CVMX_BOOTMEM_FLAG_NO_LOCKING);
929 if (memory >= 0) {
930 u64 size = mem_alloc_size;
931 #ifdef CONFIG_KEXEC
932 uint64_t end;
933 #endif
934
935 /*
936 * exclude a page at the beginning and end of
937 * the 256MB PCIe 'hole' so the kernel will not
938 * try to allocate multi-page buffers that
939 * span the discontinuity.
940 */
941 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
942 &memory, &size);
943 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
944 CVMX_PCIE_BAR1_PHYS_SIZE,
945 &memory, &size);
946 #ifdef CONFIG_KEXEC
947 end = memory + mem_alloc_size;
948
949 /*
950 * This function automatically merges address regions
951 * next to each other if they are received in
952 * incrementing order
953 */
954 if (memory < crashk_base && end > crashk_end) {
955 /* region is fully in */
956 add_memory_region(memory,
957 crashk_base - memory,
958 BOOT_MEM_RAM);
959 total += crashk_base - memory;
960 add_memory_region(crashk_end,
961 end - crashk_end,
962 BOOT_MEM_RAM);
963 total += end - crashk_end;
964 continue;
965 }
966
967 if (memory >= crashk_base && end <= crashk_end)
968 /*
969 * Entire memory region is within the new
970 * kernel's memory, ignore it.
971 */
972 continue;
973
974 if (memory > crashk_base && memory < crashk_end &&
975 end > crashk_end) {
976 /*
977 * Overlap with the beginning of the region,
978 * reserve the beginning.
979 */
980 mem_alloc_size -= crashk_end - memory;
981 memory = crashk_end;
982 } else if (memory < crashk_base && end > crashk_base &&
983 end < crashk_end)
984 /*
985 * Overlap with the beginning of the region,
986 * chop of end.
987 */
988 mem_alloc_size -= end - crashk_base;
989 #endif
990 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
991 total += mem_alloc_size;
992 /* Recovering mem_alloc_size */
993 mem_alloc_size = 4 << 20;
994 } else {
995 break;
996 }
997 }
998 cvmx_bootmem_unlock();
999 /* Add the memory region for the kernel. */
1000 kernel_start = (unsigned long) _text;
1001 kernel_size = _end - _text;
1002
1003 /* Adjust for physical offset. */
1004 kernel_start &= ~0xffffffff80000000ULL;
1005 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1006 #endif /* CONFIG_CRASH_DUMP */
1007
1008 #ifdef CONFIG_CAVIUM_RESERVE32
1009 /*
1010 * Now that we've allocated the kernel memory it is safe to
1011 * free the reserved region. We free it here so that builtin
1012 * drivers can use the memory.
1013 */
1014 if (octeon_reserve32_memory)
1015 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1016 #endif /* CONFIG_CAVIUM_RESERVE32 */
1017
1018 if (total == 0)
1019 panic("Unable to allocate memory from "
1020 "cvmx_bootmem_phy_alloc");
1021 }
1022
1023 /*
1024 * Emit one character to the boot UART. Exported for use by the
1025 * watchdog timer.
1026 */
1027 int prom_putchar(char c)
1028 {
1029 uint64_t lsrval;
1030
1031 /* Spin until there is room */
1032 do {
1033 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1034 } while ((lsrval & 0x20) == 0);
1035
1036 /* Write the byte */
1037 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1038 return 1;
1039 }
1040 EXPORT_SYMBOL(prom_putchar);
1041
1042 void prom_free_prom_memory(void)
1043 {
1044 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1045 /* Check for presence of Core-14449 fix. */
1046 u32 insn;
1047 u32 *foo;
1048
1049 foo = &insn;
1050
1051 asm volatile("# before" : : : "memory");
1052 prefetch(foo);
1053 asm volatile(
1054 ".set push\n\t"
1055 ".set noreorder\n\t"
1056 "bal 1f\n\t"
1057 "nop\n"
1058 "1:\tlw %0,-12($31)\n\t"
1059 ".set pop\n\t"
1060 : "=r" (insn) : : "$31", "memory");
1061
1062 if ((insn >> 26) != 0x33)
1063 panic("No PREF instruction at Core-14449 probe point.");
1064
1065 if (((insn >> 16) & 0x1f) != 28)
1066 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1067 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1068 insn);
1069 }
1070 }
1071
1072 int octeon_prune_device_tree(void);
1073
1074 extern const char __dtb_octeon_3xxx_begin;
1075 extern const char __dtb_octeon_68xx_begin;
1076 void __init device_tree_init(void)
1077 {
1078 const void *fdt;
1079 bool do_prune;
1080
1081 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1082 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1083 if (fdt_check_header(fdt))
1084 panic("Corrupt Device Tree passed to kernel.");
1085 do_prune = false;
1086 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1087 fdt = &__dtb_octeon_68xx_begin;
1088 do_prune = true;
1089 } else {
1090 fdt = &__dtb_octeon_3xxx_begin;
1091 do_prune = true;
1092 }
1093
1094 initial_boot_params = (void *)fdt;
1095
1096 if (do_prune) {
1097 octeon_prune_device_tree();
1098 pr_info("Using internal Device Tree.\n");
1099 } else {
1100 pr_info("Using passed Device Tree.\n");
1101 }
1102 unflatten_and_copy_device_tree();
1103 }
1104
1105 static int __initdata disable_octeon_edac_p;
1106
1107 static int __init disable_octeon_edac(char *str)
1108 {
1109 disable_octeon_edac_p = 1;
1110 return 0;
1111 }
1112 early_param("disable_octeon_edac", disable_octeon_edac);
1113
1114 static char *edac_device_names[] = {
1115 "octeon_l2c_edac",
1116 "octeon_pc_edac",
1117 };
1118
1119 static int __init edac_devinit(void)
1120 {
1121 struct platform_device *dev;
1122 int i, err = 0;
1123 int num_lmc;
1124 char *name;
1125
1126 if (disable_octeon_edac_p)
1127 return 0;
1128
1129 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1130 name = edac_device_names[i];
1131 dev = platform_device_register_simple(name, -1, NULL, 0);
1132 if (IS_ERR(dev)) {
1133 pr_err("Registration of %s failed!\n", name);
1134 err = PTR_ERR(dev);
1135 }
1136 }
1137
1138 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1139 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1140 for (i = 0; i < num_lmc; i++) {
1141 dev = platform_device_register_simple("octeon_lmc_edac",
1142 i, NULL, 0);
1143 if (IS_ERR(dev)) {
1144 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1145 err = PTR_ERR(dev);
1146 }
1147 }
1148
1149 return err;
1150 }
1151 device_initcall(edac_devinit);
1152
1153 static void __initdata *octeon_dummy_iospace;
1154
1155 static int __init octeon_no_pci_init(void)
1156 {
1157 /*
1158 * Initially assume there is no PCI. The PCI/PCIe platform code will
1159 * later re-initialize these to correct values if they are present.
1160 */
1161 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1162 set_io_port_base((unsigned long)octeon_dummy_iospace);
1163 ioport_resource.start = MAX_RESOURCE;
1164 ioport_resource.end = 0;
1165 return 0;
1166 }
1167 core_initcall(octeon_no_pci_init);
1168
1169 static int __init octeon_no_pci_release(void)
1170 {
1171 /*
1172 * Release the allocated memory if a real IO space is there.
1173 */
1174 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1175 vfree(octeon_dummy_iospace);
1176 return 0;
1177 }
1178 late_initcall(octeon_no_pci_release);