]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/kernel/cpu-probe.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / arch / mips / kernel / cpu-probe.c
1 /*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/ptrace.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/export.h>
20
21 #include <asm/bugs.h>
22 #include <asm/cpu.h>
23 #include <asm/cpu-features.h>
24 #include <asm/cpu-type.h>
25 #include <asm/fpu.h>
26 #include <asm/mipsregs.h>
27 #include <asm/mipsmtregs.h>
28 #include <asm/msa.h>
29 #include <asm/watch.h>
30 #include <asm/elf.h>
31 #include <asm/pgtable-bits.h>
32 #include <asm/spram.h>
33 #include <linux/uaccess.h>
34
35 /* Hardware capabilities */
36 unsigned int elf_hwcap __read_mostly;
37
38 /*
39 * Get the FPU Implementation/Revision.
40 */
41 static inline unsigned long cpu_get_fpu_id(void)
42 {
43 unsigned long tmp, fpu_id;
44
45 tmp = read_c0_status();
46 __enable_fpu(FPU_AS_IS);
47 fpu_id = read_32bit_cp1_register(CP1_REVISION);
48 write_c0_status(tmp);
49 return fpu_id;
50 }
51
52 /*
53 * Check if the CPU has an external FPU.
54 */
55 static inline int __cpu_has_fpu(void)
56 {
57 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
58 }
59
60 static inline unsigned long cpu_get_msa_id(void)
61 {
62 unsigned long status, msa_id;
63
64 status = read_c0_status();
65 __enable_fpu(FPU_64BIT);
66 enable_msa();
67 msa_id = read_msa_ir();
68 disable_msa();
69 write_c0_status(status);
70 return msa_id;
71 }
72
73 /*
74 * Determine the FCSR mask for FPU hardware.
75 */
76 static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
77 {
78 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
79
80 fcsr = c->fpu_csr31;
81 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
82
83 sr = read_c0_status();
84 __enable_fpu(FPU_AS_IS);
85
86 fcsr0 = fcsr & mask;
87 write_32bit_cp1_register(CP1_STATUS, fcsr0);
88 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
89
90 fcsr1 = fcsr | ~mask;
91 write_32bit_cp1_register(CP1_STATUS, fcsr1);
92 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
93
94 write_32bit_cp1_register(CP1_STATUS, fcsr);
95
96 write_c0_status(sr);
97
98 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
99 }
100
101 /*
102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
103 * supported by FPU hardware.
104 */
105 static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
106 {
107 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
108 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
109 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
110 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
111
112 sr = read_c0_status();
113 __enable_fpu(FPU_AS_IS);
114
115 fir = read_32bit_cp1_register(CP1_REVISION);
116 if (fir & MIPS_FPIR_HAS2008) {
117 fcsr = read_32bit_cp1_register(CP1_STATUS);
118
119 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
120 write_32bit_cp1_register(CP1_STATUS, fcsr0);
121 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
122
123 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
124 write_32bit_cp1_register(CP1_STATUS, fcsr1);
125 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
126
127 write_32bit_cp1_register(CP1_STATUS, fcsr);
128
129 if (!(fcsr0 & FPU_CSR_NAN2008))
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 if (fcsr1 & FPU_CSR_NAN2008)
132 c->options |= MIPS_CPU_NAN_2008;
133
134 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
135 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
136 else
137 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
138
139 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
140 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
141 else
142 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
143 } else {
144 c->options |= MIPS_CPU_NAN_LEGACY;
145 }
146
147 write_c0_status(sr);
148 } else {
149 c->options |= MIPS_CPU_NAN_LEGACY;
150 }
151 }
152
153 /*
154 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
155 * ABS.fmt/NEG.fmt execution mode.
156 */
157 static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
158
159 /*
160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
161 * to support by the FPU emulator according to the IEEE 754 conformance
162 * mode selected. Note that "relaxed" straps the emulator so that it
163 * allows 2008-NaN binaries even for legacy processors.
164 */
165 static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
166 {
167 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
168 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
169 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170
171 switch (ieee754) {
172 case STRICT:
173 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
174 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
175 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
176 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
177 } else {
178 c->options |= MIPS_CPU_NAN_LEGACY;
179 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
180 }
181 break;
182 case LEGACY:
183 c->options |= MIPS_CPU_NAN_LEGACY;
184 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
185 break;
186 case STD2008:
187 c->options |= MIPS_CPU_NAN_2008;
188 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 break;
191 case RELAXED:
192 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
193 break;
194 }
195 }
196
197 /*
198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
199 * according to the "ieee754=" parameter.
200 */
201 static void cpu_set_nan_2008(struct cpuinfo_mips *c)
202 {
203 switch (ieee754) {
204 case STRICT:
205 mips_use_nan_legacy = !!cpu_has_nan_legacy;
206 mips_use_nan_2008 = !!cpu_has_nan_2008;
207 break;
208 case LEGACY:
209 mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 mips_use_nan_2008 = !cpu_has_nan_legacy;
211 break;
212 case STD2008:
213 mips_use_nan_legacy = !cpu_has_nan_2008;
214 mips_use_nan_2008 = !!cpu_has_nan_2008;
215 break;
216 case RELAXED:
217 mips_use_nan_legacy = true;
218 mips_use_nan_2008 = true;
219 break;
220 }
221 }
222
223 /*
224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
225 * settings:
226 *
227 * strict: accept binaries that request a NaN encoding supported by the FPU
228 * legacy: only accept legacy-NaN binaries
229 * 2008: only accept 2008-NaN binaries
230 * relaxed: accept any binaries regardless of whether supported by the FPU
231 */
232 static int __init ieee754_setup(char *s)
233 {
234 if (!s)
235 return -1;
236 else if (!strcmp(s, "strict"))
237 ieee754 = STRICT;
238 else if (!strcmp(s, "legacy"))
239 ieee754 = LEGACY;
240 else if (!strcmp(s, "2008"))
241 ieee754 = STD2008;
242 else if (!strcmp(s, "relaxed"))
243 ieee754 = RELAXED;
244 else
245 return -1;
246
247 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
248 cpu_set_nofpu_2008(&boot_cpu_data);
249 cpu_set_nan_2008(&boot_cpu_data);
250
251 return 0;
252 }
253
254 early_param("ieee754", ieee754_setup);
255
256 /*
257 * Set the FIR feature flags for the FPU emulator.
258 */
259 static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
260 {
261 u32 value;
262
263 value = 0;
264 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
265 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
266 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
267 value |= MIPS_FPIR_D | MIPS_FPIR_S;
268 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
269 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
270 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
271 if (c->options & MIPS_CPU_NAN_2008)
272 value |= MIPS_FPIR_HAS2008;
273 c->fpu_id = value;
274 }
275
276 /* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
277 static unsigned int mips_nofpu_msk31;
278
279 /*
280 * Set options for FPU hardware.
281 */
282 static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
283 {
284 c->fpu_id = cpu_get_fpu_id();
285 mips_nofpu_msk31 = c->fpu_msk31;
286
287 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
288 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
289 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
290 if (c->fpu_id & MIPS_FPIR_3D)
291 c->ases |= MIPS_ASE_MIPS3D;
292 if (c->fpu_id & MIPS_FPIR_FREP)
293 c->options |= MIPS_CPU_FRE;
294 }
295
296 cpu_set_fpu_fcsr_mask(c);
297 cpu_set_fpu_2008(c);
298 cpu_set_nan_2008(c);
299 }
300
301 /*
302 * Set options for the FPU emulator.
303 */
304 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
305 {
306 c->options &= ~MIPS_CPU_FPU;
307 c->fpu_msk31 = mips_nofpu_msk31;
308
309 cpu_set_nofpu_2008(c);
310 cpu_set_nan_2008(c);
311 cpu_set_nofpu_id(c);
312 }
313
314 static int mips_fpu_disabled;
315
316 static int __init fpu_disable(char *s)
317 {
318 cpu_set_nofpu_opts(&boot_cpu_data);
319 mips_fpu_disabled = 1;
320
321 return 1;
322 }
323
324 __setup("nofpu", fpu_disable);
325
326 int mips_dsp_disabled;
327
328 static int __init dsp_disable(char *s)
329 {
330 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
331 mips_dsp_disabled = 1;
332
333 return 1;
334 }
335
336 __setup("nodsp", dsp_disable);
337
338 static int mips_htw_disabled;
339
340 static int __init htw_disable(char *s)
341 {
342 mips_htw_disabled = 1;
343 cpu_data[0].options &= ~MIPS_CPU_HTW;
344 write_c0_pwctl(read_c0_pwctl() &
345 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
346
347 return 1;
348 }
349
350 __setup("nohtw", htw_disable);
351
352 static int mips_ftlb_disabled;
353 static int mips_has_ftlb_configured;
354
355 enum ftlb_flags {
356 FTLB_EN = 1 << 0,
357 FTLB_SET_PROB = 1 << 1,
358 };
359
360 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
361
362 static int __init ftlb_disable(char *s)
363 {
364 unsigned int config4, mmuextdef;
365
366 /*
367 * If the core hasn't done any FTLB configuration, there is nothing
368 * for us to do here.
369 */
370 if (!mips_has_ftlb_configured)
371 return 1;
372
373 /* Disable it in the boot cpu */
374 if (set_ftlb_enable(&cpu_data[0], 0)) {
375 pr_warn("Can't turn FTLB off\n");
376 return 1;
377 }
378
379 config4 = read_c0_config4();
380
381 /* Check that FTLB has been disabled */
382 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
383 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
384 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
385 /* This should never happen */
386 pr_warn("FTLB could not be disabled!\n");
387 return 1;
388 }
389
390 mips_ftlb_disabled = 1;
391 mips_has_ftlb_configured = 0;
392
393 /*
394 * noftlb is mainly used for debug purposes so print
395 * an informative message instead of using pr_debug()
396 */
397 pr_info("FTLB has been disabled\n");
398
399 /*
400 * Some of these bits are duplicated in the decode_config4.
401 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
402 * once FTLB has been disabled so undo what decode_config4 did.
403 */
404 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
405 cpu_data[0].tlbsizeftlbsets;
406 cpu_data[0].tlbsizeftlbsets = 0;
407 cpu_data[0].tlbsizeftlbways = 0;
408
409 return 1;
410 }
411
412 __setup("noftlb", ftlb_disable);
413
414
415 static inline void check_errata(void)
416 {
417 struct cpuinfo_mips *c = &current_cpu_data;
418
419 switch (current_cpu_type()) {
420 case CPU_34K:
421 /*
422 * Erratum "RPS May Cause Incorrect Instruction Execution"
423 * This code only handles VPE0, any SMP/RTOS code
424 * making use of VPE1 will be responsable for that VPE.
425 */
426 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
427 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
428 break;
429 default:
430 break;
431 }
432 }
433
434 void __init check_bugs32(void)
435 {
436 check_errata();
437 }
438
439 /*
440 * Probe whether cpu has config register by trying to play with
441 * alternate cache bit and see whether it matters.
442 * It's used by cpu_probe to distinguish between R3000A and R3081.
443 */
444 static inline int cpu_has_confreg(void)
445 {
446 #ifdef CONFIG_CPU_R3000
447 extern unsigned long r3k_cache_size(unsigned long);
448 unsigned long size1, size2;
449 unsigned long cfg = read_c0_conf();
450
451 size1 = r3k_cache_size(ST0_ISC);
452 write_c0_conf(cfg ^ R30XX_CONF_AC);
453 size2 = r3k_cache_size(ST0_ISC);
454 write_c0_conf(cfg);
455 return size1 != size2;
456 #else
457 return 0;
458 #endif
459 }
460
461 static inline void set_elf_platform(int cpu, const char *plat)
462 {
463 if (cpu == 0)
464 __elf_platform = plat;
465 }
466
467 static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
468 {
469 #ifdef __NEED_VMBITS_PROBE
470 write_c0_entryhi(0x3fffffffffffe000ULL);
471 back_to_back_c0_hazard();
472 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
473 #endif
474 }
475
476 static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
477 {
478 switch (isa) {
479 case MIPS_CPU_ISA_M64R2:
480 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
481 case MIPS_CPU_ISA_M64R1:
482 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
483 case MIPS_CPU_ISA_V:
484 c->isa_level |= MIPS_CPU_ISA_V;
485 case MIPS_CPU_ISA_IV:
486 c->isa_level |= MIPS_CPU_ISA_IV;
487 case MIPS_CPU_ISA_III:
488 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
489 break;
490
491 /* R6 incompatible with everything else */
492 case MIPS_CPU_ISA_M64R6:
493 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
494 case MIPS_CPU_ISA_M32R6:
495 c->isa_level |= MIPS_CPU_ISA_M32R6;
496 /* Break here so we don't add incompatible ISAs */
497 break;
498 case MIPS_CPU_ISA_M32R2:
499 c->isa_level |= MIPS_CPU_ISA_M32R2;
500 case MIPS_CPU_ISA_M32R1:
501 c->isa_level |= MIPS_CPU_ISA_M32R1;
502 case MIPS_CPU_ISA_II:
503 c->isa_level |= MIPS_CPU_ISA_II;
504 break;
505 }
506 }
507
508 static char unknown_isa[] = KERN_ERR \
509 "Unsupported ISA type, c0.config0: %d.";
510
511 static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
512 {
513
514 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
515
516 /*
517 * 0 = All TLBWR instructions go to FTLB
518 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
519 * FTLB and 1 goes to the VTLB.
520 * 2 = 7:1: As above with 7:1 ratio.
521 * 3 = 3:1: As above with 3:1 ratio.
522 *
523 * Use the linear midpoint as the probability threshold.
524 */
525 if (probability >= 12)
526 return 1;
527 else if (probability >= 6)
528 return 2;
529 else
530 /*
531 * So FTLB is less than 4 times bigger than VTLB.
532 * A 3:1 ratio can still be useful though.
533 */
534 return 3;
535 }
536
537 static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
538 {
539 unsigned int config;
540
541 /* It's implementation dependent how the FTLB can be enabled */
542 switch (c->cputype) {
543 case CPU_PROAPTIV:
544 case CPU_P5600:
545 case CPU_P6600:
546 /* proAptiv & related cores use Config6 to enable the FTLB */
547 config = read_c0_config6();
548
549 if (flags & FTLB_EN)
550 config |= MIPS_CONF6_FTLBEN;
551 else
552 config &= ~MIPS_CONF6_FTLBEN;
553
554 if (flags & FTLB_SET_PROB) {
555 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
556 config |= calculate_ftlb_probability(c)
557 << MIPS_CONF6_FTLBP_SHIFT;
558 }
559
560 write_c0_config6(config);
561 back_to_back_c0_hazard();
562 break;
563 case CPU_I6400:
564 /* There's no way to disable the FTLB */
565 if (!(flags & FTLB_EN))
566 return 1;
567 return 0;
568 case CPU_LOONGSON3:
569 /* Flush ITLB, DTLB, VTLB and FTLB */
570 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
571 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
572 /* Loongson-3 cores use Config6 to enable the FTLB */
573 config = read_c0_config6();
574 if (flags & FTLB_EN)
575 /* Enable FTLB */
576 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
577 else
578 /* Disable FTLB */
579 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
580 break;
581 default:
582 return 1;
583 }
584
585 return 0;
586 }
587
588 static inline unsigned int decode_config0(struct cpuinfo_mips *c)
589 {
590 unsigned int config0;
591 int isa, mt;
592
593 config0 = read_c0_config();
594
595 /*
596 * Look for Standard TLB or Dual VTLB and FTLB
597 */
598 mt = config0 & MIPS_CONF_MT;
599 if (mt == MIPS_CONF_MT_TLB)
600 c->options |= MIPS_CPU_TLB;
601 else if (mt == MIPS_CONF_MT_FTLB)
602 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
603
604 isa = (config0 & MIPS_CONF_AT) >> 13;
605 switch (isa) {
606 case 0:
607 switch ((config0 & MIPS_CONF_AR) >> 10) {
608 case 0:
609 set_isa(c, MIPS_CPU_ISA_M32R1);
610 break;
611 case 1:
612 set_isa(c, MIPS_CPU_ISA_M32R2);
613 break;
614 case 2:
615 set_isa(c, MIPS_CPU_ISA_M32R6);
616 break;
617 default:
618 goto unknown;
619 }
620 break;
621 case 2:
622 switch ((config0 & MIPS_CONF_AR) >> 10) {
623 case 0:
624 set_isa(c, MIPS_CPU_ISA_M64R1);
625 break;
626 case 1:
627 set_isa(c, MIPS_CPU_ISA_M64R2);
628 break;
629 case 2:
630 set_isa(c, MIPS_CPU_ISA_M64R6);
631 break;
632 default:
633 goto unknown;
634 }
635 break;
636 default:
637 goto unknown;
638 }
639
640 return config0 & MIPS_CONF_M;
641
642 unknown:
643 panic(unknown_isa, config0);
644 }
645
646 static inline unsigned int decode_config1(struct cpuinfo_mips *c)
647 {
648 unsigned int config1;
649
650 config1 = read_c0_config1();
651
652 if (config1 & MIPS_CONF1_MD)
653 c->ases |= MIPS_ASE_MDMX;
654 if (config1 & MIPS_CONF1_PC)
655 c->options |= MIPS_CPU_PERF;
656 if (config1 & MIPS_CONF1_WR)
657 c->options |= MIPS_CPU_WATCH;
658 if (config1 & MIPS_CONF1_CA)
659 c->ases |= MIPS_ASE_MIPS16;
660 if (config1 & MIPS_CONF1_EP)
661 c->options |= MIPS_CPU_EJTAG;
662 if (config1 & MIPS_CONF1_FP) {
663 c->options |= MIPS_CPU_FPU;
664 c->options |= MIPS_CPU_32FPR;
665 }
666 if (cpu_has_tlb) {
667 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
668 c->tlbsizevtlb = c->tlbsize;
669 c->tlbsizeftlbsets = 0;
670 }
671
672 return config1 & MIPS_CONF_M;
673 }
674
675 static inline unsigned int decode_config2(struct cpuinfo_mips *c)
676 {
677 unsigned int config2;
678
679 config2 = read_c0_config2();
680
681 if (config2 & MIPS_CONF2_SL)
682 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
683
684 return config2 & MIPS_CONF_M;
685 }
686
687 static inline unsigned int decode_config3(struct cpuinfo_mips *c)
688 {
689 unsigned int config3;
690
691 config3 = read_c0_config3();
692
693 if (config3 & MIPS_CONF3_SM) {
694 c->ases |= MIPS_ASE_SMARTMIPS;
695 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
696 }
697 if (config3 & MIPS_CONF3_RXI)
698 c->options |= MIPS_CPU_RIXI;
699 if (config3 & MIPS_CONF3_CTXTC)
700 c->options |= MIPS_CPU_CTXTC;
701 if (config3 & MIPS_CONF3_DSP)
702 c->ases |= MIPS_ASE_DSP;
703 if (config3 & MIPS_CONF3_DSP2P) {
704 c->ases |= MIPS_ASE_DSP2P;
705 if (cpu_has_mips_r6)
706 c->ases |= MIPS_ASE_DSP3;
707 }
708 if (config3 & MIPS_CONF3_VINT)
709 c->options |= MIPS_CPU_VINT;
710 if (config3 & MIPS_CONF3_VEIC)
711 c->options |= MIPS_CPU_VEIC;
712 if (config3 & MIPS_CONF3_LPA)
713 c->options |= MIPS_CPU_LPA;
714 if (config3 & MIPS_CONF3_MT)
715 c->ases |= MIPS_ASE_MIPSMT;
716 if (config3 & MIPS_CONF3_ULRI)
717 c->options |= MIPS_CPU_ULRI;
718 if (config3 & MIPS_CONF3_ISA)
719 c->options |= MIPS_CPU_MICROMIPS;
720 if (config3 & MIPS_CONF3_VZ)
721 c->ases |= MIPS_ASE_VZ;
722 if (config3 & MIPS_CONF3_SC)
723 c->options |= MIPS_CPU_SEGMENTS;
724 if (config3 & MIPS_CONF3_BI)
725 c->options |= MIPS_CPU_BADINSTR;
726 if (config3 & MIPS_CONF3_BP)
727 c->options |= MIPS_CPU_BADINSTRP;
728 if (config3 & MIPS_CONF3_MSA)
729 c->ases |= MIPS_ASE_MSA;
730 if (config3 & MIPS_CONF3_PW) {
731 c->htw_seq = 0;
732 c->options |= MIPS_CPU_HTW;
733 }
734 if (config3 & MIPS_CONF3_CDMM)
735 c->options |= MIPS_CPU_CDMM;
736 if (config3 & MIPS_CONF3_SP)
737 c->options |= MIPS_CPU_SP;
738
739 return config3 & MIPS_CONF_M;
740 }
741
742 static inline unsigned int decode_config4(struct cpuinfo_mips *c)
743 {
744 unsigned int config4;
745 unsigned int newcf4;
746 unsigned int mmuextdef;
747 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
748 unsigned long asid_mask;
749
750 config4 = read_c0_config4();
751
752 if (cpu_has_tlb) {
753 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
754 c->options |= MIPS_CPU_TLBINV;
755
756 /*
757 * R6 has dropped the MMUExtDef field from config4.
758 * On R6 the fields always describe the FTLB, and only if it is
759 * present according to Config.MT.
760 */
761 if (!cpu_has_mips_r6)
762 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
763 else if (cpu_has_ftlb)
764 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
765 else
766 mmuextdef = 0;
767
768 switch (mmuextdef) {
769 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
770 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
771 c->tlbsizevtlb = c->tlbsize;
772 break;
773 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
774 c->tlbsizevtlb +=
775 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
776 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
777 c->tlbsize = c->tlbsizevtlb;
778 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
779 /* fall through */
780 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
781 if (mips_ftlb_disabled)
782 break;
783 newcf4 = (config4 & ~ftlb_page) |
784 (page_size_ftlb(mmuextdef) <<
785 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
786 write_c0_config4(newcf4);
787 back_to_back_c0_hazard();
788 config4 = read_c0_config4();
789 if (config4 != newcf4) {
790 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
791 PAGE_SIZE, config4);
792 /* Switch FTLB off */
793 set_ftlb_enable(c, 0);
794 mips_ftlb_disabled = 1;
795 break;
796 }
797 c->tlbsizeftlbsets = 1 <<
798 ((config4 & MIPS_CONF4_FTLBSETS) >>
799 MIPS_CONF4_FTLBSETS_SHIFT);
800 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
801 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
802 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
803 mips_has_ftlb_configured = 1;
804 break;
805 }
806 }
807
808 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
809 >> MIPS_CONF4_KSCREXIST_SHIFT;
810
811 asid_mask = MIPS_ENTRYHI_ASID;
812 if (config4 & MIPS_CONF4_AE)
813 asid_mask |= MIPS_ENTRYHI_ASIDX;
814 set_cpu_asid_mask(c, asid_mask);
815
816 /*
817 * Warn if the computed ASID mask doesn't match the mask the kernel
818 * is built for. This may indicate either a serious problem or an
819 * easy optimisation opportunity, but either way should be addressed.
820 */
821 WARN_ON(asid_mask != cpu_asid_mask(c));
822
823 return config4 & MIPS_CONF_M;
824 }
825
826 static inline unsigned int decode_config5(struct cpuinfo_mips *c)
827 {
828 unsigned int config5;
829
830 config5 = read_c0_config5();
831 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
832 write_c0_config5(config5);
833
834 if (config5 & MIPS_CONF5_EVA)
835 c->options |= MIPS_CPU_EVA;
836 if (config5 & MIPS_CONF5_MRP)
837 c->options |= MIPS_CPU_MAAR;
838 if (config5 & MIPS_CONF5_LLB)
839 c->options |= MIPS_CPU_RW_LLB;
840 if (config5 & MIPS_CONF5_MVH)
841 c->options |= MIPS_CPU_MVH;
842 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
843 c->options |= MIPS_CPU_VP;
844
845 return config5 & MIPS_CONF_M;
846 }
847
848 static void decode_configs(struct cpuinfo_mips *c)
849 {
850 int ok;
851
852 /* MIPS32 or MIPS64 compliant CPU. */
853 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
854 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
855
856 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
857
858 /* Enable FTLB if present and not disabled */
859 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
860
861 ok = decode_config0(c); /* Read Config registers. */
862 BUG_ON(!ok); /* Arch spec violation! */
863 if (ok)
864 ok = decode_config1(c);
865 if (ok)
866 ok = decode_config2(c);
867 if (ok)
868 ok = decode_config3(c);
869 if (ok)
870 ok = decode_config4(c);
871 if (ok)
872 ok = decode_config5(c);
873
874 /* Probe the EBase.WG bit */
875 if (cpu_has_mips_r2_r6) {
876 u64 ebase;
877 unsigned int status;
878
879 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
880 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
881 : (s32)read_c0_ebase();
882 if (ebase & MIPS_EBASE_WG) {
883 /* WG bit already set, we can avoid the clumsy probe */
884 c->options |= MIPS_CPU_EBASE_WG;
885 } else {
886 /* Its UNDEFINED to change EBase while BEV=0 */
887 status = read_c0_status();
888 write_c0_status(status | ST0_BEV);
889 irq_enable_hazard();
890 /*
891 * On pre-r6 cores, this may well clobber the upper bits
892 * of EBase. This is hard to avoid without potentially
893 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
894 */
895 if (cpu_has_mips64r6)
896 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
897 else
898 write_c0_ebase(ebase | MIPS_EBASE_WG);
899 back_to_back_c0_hazard();
900 /* Restore BEV */
901 write_c0_status(status);
902 if (read_c0_ebase() & MIPS_EBASE_WG) {
903 c->options |= MIPS_CPU_EBASE_WG;
904 write_c0_ebase(ebase);
905 }
906 }
907 }
908
909 /* configure the FTLB write probability */
910 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
911
912 mips_probe_watch_registers(c);
913
914 #ifndef CONFIG_MIPS_CPS
915 if (cpu_has_mips_r2_r6) {
916 c->core = get_ebase_cpunum();
917 if (cpu_has_mipsmt)
918 c->core >>= fls(core_nvpes()) - 1;
919 }
920 #endif
921 }
922
923 /*
924 * Probe for certain guest capabilities by writing config bits and reading back.
925 * Finally write back the original value.
926 */
927 #define probe_gc0_config(name, maxconf, bits) \
928 do { \
929 unsigned int tmp; \
930 tmp = read_gc0_##name(); \
931 write_gc0_##name(tmp | (bits)); \
932 back_to_back_c0_hazard(); \
933 maxconf = read_gc0_##name(); \
934 write_gc0_##name(tmp); \
935 } while (0)
936
937 /*
938 * Probe for dynamic guest capabilities by changing certain config bits and
939 * reading back to see if they change. Finally write back the original value.
940 */
941 #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
942 do { \
943 maxconf = read_gc0_##name(); \
944 write_gc0_##name(maxconf ^ (bits)); \
945 back_to_back_c0_hazard(); \
946 dynconf = maxconf ^ read_gc0_##name(); \
947 write_gc0_##name(maxconf); \
948 maxconf |= dynconf; \
949 } while (0)
950
951 static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
952 {
953 unsigned int config0;
954
955 probe_gc0_config(config, config0, MIPS_CONF_M);
956
957 if (config0 & MIPS_CONF_M)
958 c->guest.conf |= BIT(1);
959 return config0 & MIPS_CONF_M;
960 }
961
962 static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
963 {
964 unsigned int config1, config1_dyn;
965
966 probe_gc0_config_dyn(config1, config1, config1_dyn,
967 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
968 MIPS_CONF1_FP);
969
970 if (config1 & MIPS_CONF1_FP)
971 c->guest.options |= MIPS_CPU_FPU;
972 if (config1_dyn & MIPS_CONF1_FP)
973 c->guest.options_dyn |= MIPS_CPU_FPU;
974
975 if (config1 & MIPS_CONF1_WR)
976 c->guest.options |= MIPS_CPU_WATCH;
977 if (config1_dyn & MIPS_CONF1_WR)
978 c->guest.options_dyn |= MIPS_CPU_WATCH;
979
980 if (config1 & MIPS_CONF1_PC)
981 c->guest.options |= MIPS_CPU_PERF;
982 if (config1_dyn & MIPS_CONF1_PC)
983 c->guest.options_dyn |= MIPS_CPU_PERF;
984
985 if (config1 & MIPS_CONF_M)
986 c->guest.conf |= BIT(2);
987 return config1 & MIPS_CONF_M;
988 }
989
990 static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
991 {
992 unsigned int config2;
993
994 probe_gc0_config(config2, config2, MIPS_CONF_M);
995
996 if (config2 & MIPS_CONF_M)
997 c->guest.conf |= BIT(3);
998 return config2 & MIPS_CONF_M;
999 }
1000
1001 static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1002 {
1003 unsigned int config3, config3_dyn;
1004
1005 probe_gc0_config_dyn(config3, config3, config3_dyn,
1006 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_CTXTC);
1007
1008 if (config3 & MIPS_CONF3_CTXTC)
1009 c->guest.options |= MIPS_CPU_CTXTC;
1010 if (config3_dyn & MIPS_CONF3_CTXTC)
1011 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1012
1013 if (config3 & MIPS_CONF3_PW)
1014 c->guest.options |= MIPS_CPU_HTW;
1015
1016 if (config3 & MIPS_CONF3_SC)
1017 c->guest.options |= MIPS_CPU_SEGMENTS;
1018
1019 if (config3 & MIPS_CONF3_BI)
1020 c->guest.options |= MIPS_CPU_BADINSTR;
1021 if (config3 & MIPS_CONF3_BP)
1022 c->guest.options |= MIPS_CPU_BADINSTRP;
1023
1024 if (config3 & MIPS_CONF3_MSA)
1025 c->guest.ases |= MIPS_ASE_MSA;
1026 if (config3_dyn & MIPS_CONF3_MSA)
1027 c->guest.ases_dyn |= MIPS_ASE_MSA;
1028
1029 if (config3 & MIPS_CONF_M)
1030 c->guest.conf |= BIT(4);
1031 return config3 & MIPS_CONF_M;
1032 }
1033
1034 static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1035 {
1036 unsigned int config4;
1037
1038 probe_gc0_config(config4, config4,
1039 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1040
1041 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1042 >> MIPS_CONF4_KSCREXIST_SHIFT;
1043
1044 if (config4 & MIPS_CONF_M)
1045 c->guest.conf |= BIT(5);
1046 return config4 & MIPS_CONF_M;
1047 }
1048
1049 static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1050 {
1051 unsigned int config5, config5_dyn;
1052
1053 probe_gc0_config_dyn(config5, config5, config5_dyn,
1054 MIPS_CONF_M | MIPS_CONF5_MRP);
1055
1056 if (config5 & MIPS_CONF5_MRP)
1057 c->guest.options |= MIPS_CPU_MAAR;
1058 if (config5_dyn & MIPS_CONF5_MRP)
1059 c->guest.options_dyn |= MIPS_CPU_MAAR;
1060
1061 if (config5 & MIPS_CONF5_LLB)
1062 c->guest.options |= MIPS_CPU_RW_LLB;
1063
1064 if (config5 & MIPS_CONF_M)
1065 c->guest.conf |= BIT(6);
1066 return config5 & MIPS_CONF_M;
1067 }
1068
1069 static inline void decode_guest_configs(struct cpuinfo_mips *c)
1070 {
1071 unsigned int ok;
1072
1073 ok = decode_guest_config0(c);
1074 if (ok)
1075 ok = decode_guest_config1(c);
1076 if (ok)
1077 ok = decode_guest_config2(c);
1078 if (ok)
1079 ok = decode_guest_config3(c);
1080 if (ok)
1081 ok = decode_guest_config4(c);
1082 if (ok)
1083 decode_guest_config5(c);
1084 }
1085
1086 static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1087 {
1088 unsigned int guestctl0, temp;
1089
1090 guestctl0 = read_c0_guestctl0();
1091
1092 if (guestctl0 & MIPS_GCTL0_G0E)
1093 c->options |= MIPS_CPU_GUESTCTL0EXT;
1094 if (guestctl0 & MIPS_GCTL0_G1)
1095 c->options |= MIPS_CPU_GUESTCTL1;
1096 if (guestctl0 & MIPS_GCTL0_G2)
1097 c->options |= MIPS_CPU_GUESTCTL2;
1098 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1099 c->options |= MIPS_CPU_GUESTID;
1100
1101 /*
1102 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1103 * first, otherwise all data accesses will be fully virtualised
1104 * as if they were performed by guest mode.
1105 */
1106 write_c0_guestctl1(0);
1107 tlbw_use_hazard();
1108
1109 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1110 back_to_back_c0_hazard();
1111 temp = read_c0_guestctl0();
1112
1113 if (temp & MIPS_GCTL0_DRG) {
1114 write_c0_guestctl0(guestctl0);
1115 c->options |= MIPS_CPU_DRG;
1116 }
1117 }
1118 }
1119
1120 static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1121 {
1122 if (cpu_has_guestid) {
1123 /* determine the number of bits of GuestID available */
1124 write_c0_guestctl1(MIPS_GCTL1_ID);
1125 back_to_back_c0_hazard();
1126 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1127 >> MIPS_GCTL1_ID_SHIFT;
1128 write_c0_guestctl1(0);
1129 }
1130 }
1131
1132 static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1133 {
1134 /* determine the number of bits of GTOffset available */
1135 write_c0_gtoffset(0xffffffff);
1136 back_to_back_c0_hazard();
1137 c->gtoffset_mask = read_c0_gtoffset();
1138 write_c0_gtoffset(0);
1139 }
1140
1141 static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1142 {
1143 cpu_probe_guestctl0(c);
1144 if (cpu_has_guestctl1)
1145 cpu_probe_guestctl1(c);
1146
1147 cpu_probe_gtoffset(c);
1148
1149 decode_guest_configs(c);
1150 }
1151
1152 #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1153 | MIPS_CPU_COUNTER)
1154
1155 static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1156 {
1157 switch (c->processor_id & PRID_IMP_MASK) {
1158 case PRID_IMP_R2000:
1159 c->cputype = CPU_R2000;
1160 __cpu_name[cpu] = "R2000";
1161 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1162 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1163 MIPS_CPU_NOFPUEX;
1164 if (__cpu_has_fpu())
1165 c->options |= MIPS_CPU_FPU;
1166 c->tlbsize = 64;
1167 break;
1168 case PRID_IMP_R3000:
1169 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1170 if (cpu_has_confreg()) {
1171 c->cputype = CPU_R3081E;
1172 __cpu_name[cpu] = "R3081";
1173 } else {
1174 c->cputype = CPU_R3000A;
1175 __cpu_name[cpu] = "R3000A";
1176 }
1177 } else {
1178 c->cputype = CPU_R3000;
1179 __cpu_name[cpu] = "R3000";
1180 }
1181 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1182 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1183 MIPS_CPU_NOFPUEX;
1184 if (__cpu_has_fpu())
1185 c->options |= MIPS_CPU_FPU;
1186 c->tlbsize = 64;
1187 break;
1188 case PRID_IMP_R4000:
1189 if (read_c0_config() & CONF_SC) {
1190 if ((c->processor_id & PRID_REV_MASK) >=
1191 PRID_REV_R4400) {
1192 c->cputype = CPU_R4400PC;
1193 __cpu_name[cpu] = "R4400PC";
1194 } else {
1195 c->cputype = CPU_R4000PC;
1196 __cpu_name[cpu] = "R4000PC";
1197 }
1198 } else {
1199 int cca = read_c0_config() & CONF_CM_CMASK;
1200 int mc;
1201
1202 /*
1203 * SC and MC versions can't be reliably told apart,
1204 * but only the latter support coherent caching
1205 * modes so assume the firmware has set the KSEG0
1206 * coherency attribute reasonably (if uncached, we
1207 * assume SC).
1208 */
1209 switch (cca) {
1210 case CONF_CM_CACHABLE_CE:
1211 case CONF_CM_CACHABLE_COW:
1212 case CONF_CM_CACHABLE_CUW:
1213 mc = 1;
1214 break;
1215 default:
1216 mc = 0;
1217 break;
1218 }
1219 if ((c->processor_id & PRID_REV_MASK) >=
1220 PRID_REV_R4400) {
1221 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1222 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1223 } else {
1224 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1225 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1226 }
1227 }
1228
1229 set_isa(c, MIPS_CPU_ISA_III);
1230 c->fpu_msk31 |= FPU_CSR_CONDX;
1231 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1232 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1233 MIPS_CPU_LLSC;
1234 c->tlbsize = 48;
1235 break;
1236 case PRID_IMP_VR41XX:
1237 set_isa(c, MIPS_CPU_ISA_III);
1238 c->fpu_msk31 |= FPU_CSR_CONDX;
1239 c->options = R4K_OPTS;
1240 c->tlbsize = 32;
1241 switch (c->processor_id & 0xf0) {
1242 case PRID_REV_VR4111:
1243 c->cputype = CPU_VR4111;
1244 __cpu_name[cpu] = "NEC VR4111";
1245 break;
1246 case PRID_REV_VR4121:
1247 c->cputype = CPU_VR4121;
1248 __cpu_name[cpu] = "NEC VR4121";
1249 break;
1250 case PRID_REV_VR4122:
1251 if ((c->processor_id & 0xf) < 0x3) {
1252 c->cputype = CPU_VR4122;
1253 __cpu_name[cpu] = "NEC VR4122";
1254 } else {
1255 c->cputype = CPU_VR4181A;
1256 __cpu_name[cpu] = "NEC VR4181A";
1257 }
1258 break;
1259 case PRID_REV_VR4130:
1260 if ((c->processor_id & 0xf) < 0x4) {
1261 c->cputype = CPU_VR4131;
1262 __cpu_name[cpu] = "NEC VR4131";
1263 } else {
1264 c->cputype = CPU_VR4133;
1265 c->options |= MIPS_CPU_LLSC;
1266 __cpu_name[cpu] = "NEC VR4133";
1267 }
1268 break;
1269 default:
1270 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1271 c->cputype = CPU_VR41XX;
1272 __cpu_name[cpu] = "NEC Vr41xx";
1273 break;
1274 }
1275 break;
1276 case PRID_IMP_R4300:
1277 c->cputype = CPU_R4300;
1278 __cpu_name[cpu] = "R4300";
1279 set_isa(c, MIPS_CPU_ISA_III);
1280 c->fpu_msk31 |= FPU_CSR_CONDX;
1281 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1282 MIPS_CPU_LLSC;
1283 c->tlbsize = 32;
1284 break;
1285 case PRID_IMP_R4600:
1286 c->cputype = CPU_R4600;
1287 __cpu_name[cpu] = "R4600";
1288 set_isa(c, MIPS_CPU_ISA_III);
1289 c->fpu_msk31 |= FPU_CSR_CONDX;
1290 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1291 MIPS_CPU_LLSC;
1292 c->tlbsize = 48;
1293 break;
1294 #if 0
1295 case PRID_IMP_R4650:
1296 /*
1297 * This processor doesn't have an MMU, so it's not
1298 * "real easy" to run Linux on it. It is left purely
1299 * for documentation. Commented out because it shares
1300 * it's c0_prid id number with the TX3900.
1301 */
1302 c->cputype = CPU_R4650;
1303 __cpu_name[cpu] = "R4650";
1304 set_isa(c, MIPS_CPU_ISA_III);
1305 c->fpu_msk31 |= FPU_CSR_CONDX;
1306 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1307 c->tlbsize = 48;
1308 break;
1309 #endif
1310 case PRID_IMP_TX39:
1311 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1312 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1313
1314 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1315 c->cputype = CPU_TX3927;
1316 __cpu_name[cpu] = "TX3927";
1317 c->tlbsize = 64;
1318 } else {
1319 switch (c->processor_id & PRID_REV_MASK) {
1320 case PRID_REV_TX3912:
1321 c->cputype = CPU_TX3912;
1322 __cpu_name[cpu] = "TX3912";
1323 c->tlbsize = 32;
1324 break;
1325 case PRID_REV_TX3922:
1326 c->cputype = CPU_TX3922;
1327 __cpu_name[cpu] = "TX3922";
1328 c->tlbsize = 64;
1329 break;
1330 }
1331 }
1332 break;
1333 case PRID_IMP_R4700:
1334 c->cputype = CPU_R4700;
1335 __cpu_name[cpu] = "R4700";
1336 set_isa(c, MIPS_CPU_ISA_III);
1337 c->fpu_msk31 |= FPU_CSR_CONDX;
1338 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1339 MIPS_CPU_LLSC;
1340 c->tlbsize = 48;
1341 break;
1342 case PRID_IMP_TX49:
1343 c->cputype = CPU_TX49XX;
1344 __cpu_name[cpu] = "R49XX";
1345 set_isa(c, MIPS_CPU_ISA_III);
1346 c->fpu_msk31 |= FPU_CSR_CONDX;
1347 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1348 if (!(c->processor_id & 0x08))
1349 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1350 c->tlbsize = 48;
1351 break;
1352 case PRID_IMP_R5000:
1353 c->cputype = CPU_R5000;
1354 __cpu_name[cpu] = "R5000";
1355 set_isa(c, MIPS_CPU_ISA_IV);
1356 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1357 MIPS_CPU_LLSC;
1358 c->tlbsize = 48;
1359 break;
1360 case PRID_IMP_R5432:
1361 c->cputype = CPU_R5432;
1362 __cpu_name[cpu] = "R5432";
1363 set_isa(c, MIPS_CPU_ISA_IV);
1364 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1365 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1366 c->tlbsize = 48;
1367 break;
1368 case PRID_IMP_R5500:
1369 c->cputype = CPU_R5500;
1370 __cpu_name[cpu] = "R5500";
1371 set_isa(c, MIPS_CPU_ISA_IV);
1372 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1373 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1374 c->tlbsize = 48;
1375 break;
1376 case PRID_IMP_NEVADA:
1377 c->cputype = CPU_NEVADA;
1378 __cpu_name[cpu] = "Nevada";
1379 set_isa(c, MIPS_CPU_ISA_IV);
1380 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1381 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1382 c->tlbsize = 48;
1383 break;
1384 case PRID_IMP_R6000:
1385 c->cputype = CPU_R6000;
1386 __cpu_name[cpu] = "R6000";
1387 set_isa(c, MIPS_CPU_ISA_II);
1388 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1389 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1390 MIPS_CPU_LLSC;
1391 c->tlbsize = 32;
1392 break;
1393 case PRID_IMP_R6000A:
1394 c->cputype = CPU_R6000A;
1395 __cpu_name[cpu] = "R6000A";
1396 set_isa(c, MIPS_CPU_ISA_II);
1397 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1398 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1399 MIPS_CPU_LLSC;
1400 c->tlbsize = 32;
1401 break;
1402 case PRID_IMP_RM7000:
1403 c->cputype = CPU_RM7000;
1404 __cpu_name[cpu] = "RM7000";
1405 set_isa(c, MIPS_CPU_ISA_IV);
1406 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1407 MIPS_CPU_LLSC;
1408 /*
1409 * Undocumented RM7000: Bit 29 in the info register of
1410 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1411 * entries.
1412 *
1413 * 29 1 => 64 entry JTLB
1414 * 0 => 48 entry JTLB
1415 */
1416 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1417 break;
1418 case PRID_IMP_R8000:
1419 c->cputype = CPU_R8000;
1420 __cpu_name[cpu] = "RM8000";
1421 set_isa(c, MIPS_CPU_ISA_IV);
1422 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1423 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1424 MIPS_CPU_LLSC;
1425 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
1426 break;
1427 case PRID_IMP_R10000:
1428 c->cputype = CPU_R10000;
1429 __cpu_name[cpu] = "R10000";
1430 set_isa(c, MIPS_CPU_ISA_IV);
1431 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1432 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1433 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1434 MIPS_CPU_LLSC;
1435 c->tlbsize = 64;
1436 break;
1437 case PRID_IMP_R12000:
1438 c->cputype = CPU_R12000;
1439 __cpu_name[cpu] = "R12000";
1440 set_isa(c, MIPS_CPU_ISA_IV);
1441 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1442 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1443 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1444 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1445 c->tlbsize = 64;
1446 break;
1447 case PRID_IMP_R14000:
1448 if (((c->processor_id >> 4) & 0x0f) > 2) {
1449 c->cputype = CPU_R16000;
1450 __cpu_name[cpu] = "R16000";
1451 } else {
1452 c->cputype = CPU_R14000;
1453 __cpu_name[cpu] = "R14000";
1454 }
1455 set_isa(c, MIPS_CPU_ISA_IV);
1456 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1457 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1458 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1459 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1460 c->tlbsize = 64;
1461 break;
1462 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1463 switch (c->processor_id & PRID_REV_MASK) {
1464 case PRID_REV_LOONGSON2E:
1465 c->cputype = CPU_LOONGSON2;
1466 __cpu_name[cpu] = "ICT Loongson-2";
1467 set_elf_platform(cpu, "loongson2e");
1468 set_isa(c, MIPS_CPU_ISA_III);
1469 c->fpu_msk31 |= FPU_CSR_CONDX;
1470 break;
1471 case PRID_REV_LOONGSON2F:
1472 c->cputype = CPU_LOONGSON2;
1473 __cpu_name[cpu] = "ICT Loongson-2";
1474 set_elf_platform(cpu, "loongson2f");
1475 set_isa(c, MIPS_CPU_ISA_III);
1476 c->fpu_msk31 |= FPU_CSR_CONDX;
1477 break;
1478 case PRID_REV_LOONGSON3A_R1:
1479 c->cputype = CPU_LOONGSON3;
1480 __cpu_name[cpu] = "ICT Loongson-3";
1481 set_elf_platform(cpu, "loongson3a");
1482 set_isa(c, MIPS_CPU_ISA_M64R1);
1483 break;
1484 case PRID_REV_LOONGSON3B_R1:
1485 case PRID_REV_LOONGSON3B_R2:
1486 c->cputype = CPU_LOONGSON3;
1487 __cpu_name[cpu] = "ICT Loongson-3";
1488 set_elf_platform(cpu, "loongson3b");
1489 set_isa(c, MIPS_CPU_ISA_M64R1);
1490 break;
1491 }
1492
1493 c->options = R4K_OPTS |
1494 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1495 MIPS_CPU_32FPR;
1496 c->tlbsize = 64;
1497 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1498 break;
1499 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1500 decode_configs(c);
1501
1502 c->cputype = CPU_LOONGSON1;
1503
1504 switch (c->processor_id & PRID_REV_MASK) {
1505 case PRID_REV_LOONGSON1B:
1506 __cpu_name[cpu] = "Loongson 1B";
1507 break;
1508 }
1509
1510 break;
1511 }
1512 }
1513
1514 static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1515 {
1516 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1517 switch (c->processor_id & PRID_IMP_MASK) {
1518 case PRID_IMP_QEMU_GENERIC:
1519 c->writecombine = _CACHE_UNCACHED;
1520 c->cputype = CPU_QEMU_GENERIC;
1521 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1522 break;
1523 case PRID_IMP_4KC:
1524 c->cputype = CPU_4KC;
1525 c->writecombine = _CACHE_UNCACHED;
1526 __cpu_name[cpu] = "MIPS 4Kc";
1527 break;
1528 case PRID_IMP_4KEC:
1529 case PRID_IMP_4KECR2:
1530 c->cputype = CPU_4KEC;
1531 c->writecombine = _CACHE_UNCACHED;
1532 __cpu_name[cpu] = "MIPS 4KEc";
1533 break;
1534 case PRID_IMP_4KSC:
1535 case PRID_IMP_4KSD:
1536 c->cputype = CPU_4KSC;
1537 c->writecombine = _CACHE_UNCACHED;
1538 __cpu_name[cpu] = "MIPS 4KSc";
1539 break;
1540 case PRID_IMP_5KC:
1541 c->cputype = CPU_5KC;
1542 c->writecombine = _CACHE_UNCACHED;
1543 __cpu_name[cpu] = "MIPS 5Kc";
1544 break;
1545 case PRID_IMP_5KE:
1546 c->cputype = CPU_5KE;
1547 c->writecombine = _CACHE_UNCACHED;
1548 __cpu_name[cpu] = "MIPS 5KE";
1549 break;
1550 case PRID_IMP_20KC:
1551 c->cputype = CPU_20KC;
1552 c->writecombine = _CACHE_UNCACHED;
1553 __cpu_name[cpu] = "MIPS 20Kc";
1554 break;
1555 case PRID_IMP_24K:
1556 c->cputype = CPU_24K;
1557 c->writecombine = _CACHE_UNCACHED;
1558 __cpu_name[cpu] = "MIPS 24Kc";
1559 break;
1560 case PRID_IMP_24KE:
1561 c->cputype = CPU_24K;
1562 c->writecombine = _CACHE_UNCACHED;
1563 __cpu_name[cpu] = "MIPS 24KEc";
1564 break;
1565 case PRID_IMP_25KF:
1566 c->cputype = CPU_25KF;
1567 c->writecombine = _CACHE_UNCACHED;
1568 __cpu_name[cpu] = "MIPS 25Kc";
1569 break;
1570 case PRID_IMP_34K:
1571 c->cputype = CPU_34K;
1572 c->writecombine = _CACHE_UNCACHED;
1573 __cpu_name[cpu] = "MIPS 34Kc";
1574 break;
1575 case PRID_IMP_74K:
1576 c->cputype = CPU_74K;
1577 c->writecombine = _CACHE_UNCACHED;
1578 __cpu_name[cpu] = "MIPS 74Kc";
1579 break;
1580 case PRID_IMP_M14KC:
1581 c->cputype = CPU_M14KC;
1582 c->writecombine = _CACHE_UNCACHED;
1583 __cpu_name[cpu] = "MIPS M14Kc";
1584 break;
1585 case PRID_IMP_M14KEC:
1586 c->cputype = CPU_M14KEC;
1587 c->writecombine = _CACHE_UNCACHED;
1588 __cpu_name[cpu] = "MIPS M14KEc";
1589 break;
1590 case PRID_IMP_1004K:
1591 c->cputype = CPU_1004K;
1592 c->writecombine = _CACHE_UNCACHED;
1593 __cpu_name[cpu] = "MIPS 1004Kc";
1594 break;
1595 case PRID_IMP_1074K:
1596 c->cputype = CPU_1074K;
1597 c->writecombine = _CACHE_UNCACHED;
1598 __cpu_name[cpu] = "MIPS 1074Kc";
1599 break;
1600 case PRID_IMP_INTERAPTIV_UP:
1601 c->cputype = CPU_INTERAPTIV;
1602 __cpu_name[cpu] = "MIPS interAptiv";
1603 break;
1604 case PRID_IMP_INTERAPTIV_MP:
1605 c->cputype = CPU_INTERAPTIV;
1606 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1607 break;
1608 case PRID_IMP_PROAPTIV_UP:
1609 c->cputype = CPU_PROAPTIV;
1610 __cpu_name[cpu] = "MIPS proAptiv";
1611 break;
1612 case PRID_IMP_PROAPTIV_MP:
1613 c->cputype = CPU_PROAPTIV;
1614 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1615 break;
1616 case PRID_IMP_P5600:
1617 c->cputype = CPU_P5600;
1618 __cpu_name[cpu] = "MIPS P5600";
1619 break;
1620 case PRID_IMP_P6600:
1621 c->cputype = CPU_P6600;
1622 __cpu_name[cpu] = "MIPS P6600";
1623 break;
1624 case PRID_IMP_I6400:
1625 c->cputype = CPU_I6400;
1626 __cpu_name[cpu] = "MIPS I6400";
1627 break;
1628 case PRID_IMP_M5150:
1629 c->cputype = CPU_M5150;
1630 __cpu_name[cpu] = "MIPS M5150";
1631 break;
1632 case PRID_IMP_M6250:
1633 c->cputype = CPU_M6250;
1634 __cpu_name[cpu] = "MIPS M6250";
1635 break;
1636 }
1637
1638 decode_configs(c);
1639
1640 spram_config();
1641 }
1642
1643 static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1644 {
1645 decode_configs(c);
1646 switch (c->processor_id & PRID_IMP_MASK) {
1647 case PRID_IMP_AU1_REV1:
1648 case PRID_IMP_AU1_REV2:
1649 c->cputype = CPU_ALCHEMY;
1650 switch ((c->processor_id >> 24) & 0xff) {
1651 case 0:
1652 __cpu_name[cpu] = "Au1000";
1653 break;
1654 case 1:
1655 __cpu_name[cpu] = "Au1500";
1656 break;
1657 case 2:
1658 __cpu_name[cpu] = "Au1100";
1659 break;
1660 case 3:
1661 __cpu_name[cpu] = "Au1550";
1662 break;
1663 case 4:
1664 __cpu_name[cpu] = "Au1200";
1665 if ((c->processor_id & PRID_REV_MASK) == 2)
1666 __cpu_name[cpu] = "Au1250";
1667 break;
1668 case 5:
1669 __cpu_name[cpu] = "Au1210";
1670 break;
1671 default:
1672 __cpu_name[cpu] = "Au1xxx";
1673 break;
1674 }
1675 break;
1676 }
1677 }
1678
1679 static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1680 {
1681 decode_configs(c);
1682
1683 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1684 switch (c->processor_id & PRID_IMP_MASK) {
1685 case PRID_IMP_SB1:
1686 c->cputype = CPU_SB1;
1687 __cpu_name[cpu] = "SiByte SB1";
1688 /* FPU in pass1 is known to have issues. */
1689 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1690 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1691 break;
1692 case PRID_IMP_SB1A:
1693 c->cputype = CPU_SB1A;
1694 __cpu_name[cpu] = "SiByte SB1A";
1695 break;
1696 }
1697 }
1698
1699 static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1700 {
1701 decode_configs(c);
1702 switch (c->processor_id & PRID_IMP_MASK) {
1703 case PRID_IMP_SR71000:
1704 c->cputype = CPU_SR71000;
1705 __cpu_name[cpu] = "Sandcraft SR71000";
1706 c->scache.ways = 8;
1707 c->tlbsize = 64;
1708 break;
1709 }
1710 }
1711
1712 static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1713 {
1714 decode_configs(c);
1715 switch (c->processor_id & PRID_IMP_MASK) {
1716 case PRID_IMP_PR4450:
1717 c->cputype = CPU_PR4450;
1718 __cpu_name[cpu] = "Philips PR4450";
1719 set_isa(c, MIPS_CPU_ISA_M32R1);
1720 break;
1721 }
1722 }
1723
1724 static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1725 {
1726 decode_configs(c);
1727 switch (c->processor_id & PRID_IMP_MASK) {
1728 case PRID_IMP_BMIPS32_REV4:
1729 case PRID_IMP_BMIPS32_REV8:
1730 c->cputype = CPU_BMIPS32;
1731 __cpu_name[cpu] = "Broadcom BMIPS32";
1732 set_elf_platform(cpu, "bmips32");
1733 break;
1734 case PRID_IMP_BMIPS3300:
1735 case PRID_IMP_BMIPS3300_ALT:
1736 case PRID_IMP_BMIPS3300_BUG:
1737 c->cputype = CPU_BMIPS3300;
1738 __cpu_name[cpu] = "Broadcom BMIPS3300";
1739 set_elf_platform(cpu, "bmips3300");
1740 break;
1741 case PRID_IMP_BMIPS43XX: {
1742 int rev = c->processor_id & PRID_REV_MASK;
1743
1744 if (rev >= PRID_REV_BMIPS4380_LO &&
1745 rev <= PRID_REV_BMIPS4380_HI) {
1746 c->cputype = CPU_BMIPS4380;
1747 __cpu_name[cpu] = "Broadcom BMIPS4380";
1748 set_elf_platform(cpu, "bmips4380");
1749 c->options |= MIPS_CPU_RIXI;
1750 } else {
1751 c->cputype = CPU_BMIPS4350;
1752 __cpu_name[cpu] = "Broadcom BMIPS4350";
1753 set_elf_platform(cpu, "bmips4350");
1754 }
1755 break;
1756 }
1757 case PRID_IMP_BMIPS5000:
1758 case PRID_IMP_BMIPS5200:
1759 c->cputype = CPU_BMIPS5000;
1760 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1761 __cpu_name[cpu] = "Broadcom BMIPS5200";
1762 else
1763 __cpu_name[cpu] = "Broadcom BMIPS5000";
1764 set_elf_platform(cpu, "bmips5000");
1765 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1766 break;
1767 }
1768 }
1769
1770 static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1771 {
1772 decode_configs(c);
1773 switch (c->processor_id & PRID_IMP_MASK) {
1774 case PRID_IMP_CAVIUM_CN38XX:
1775 case PRID_IMP_CAVIUM_CN31XX:
1776 case PRID_IMP_CAVIUM_CN30XX:
1777 c->cputype = CPU_CAVIUM_OCTEON;
1778 __cpu_name[cpu] = "Cavium Octeon";
1779 goto platform;
1780 case PRID_IMP_CAVIUM_CN58XX:
1781 case PRID_IMP_CAVIUM_CN56XX:
1782 case PRID_IMP_CAVIUM_CN50XX:
1783 case PRID_IMP_CAVIUM_CN52XX:
1784 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1785 __cpu_name[cpu] = "Cavium Octeon+";
1786 platform:
1787 set_elf_platform(cpu, "octeon");
1788 break;
1789 case PRID_IMP_CAVIUM_CN61XX:
1790 case PRID_IMP_CAVIUM_CN63XX:
1791 case PRID_IMP_CAVIUM_CN66XX:
1792 case PRID_IMP_CAVIUM_CN68XX:
1793 case PRID_IMP_CAVIUM_CNF71XX:
1794 c->cputype = CPU_CAVIUM_OCTEON2;
1795 __cpu_name[cpu] = "Cavium Octeon II";
1796 set_elf_platform(cpu, "octeon2");
1797 break;
1798 case PRID_IMP_CAVIUM_CN70XX:
1799 case PRID_IMP_CAVIUM_CN73XX:
1800 case PRID_IMP_CAVIUM_CNF75XX:
1801 case PRID_IMP_CAVIUM_CN78XX:
1802 c->cputype = CPU_CAVIUM_OCTEON3;
1803 __cpu_name[cpu] = "Cavium Octeon III";
1804 set_elf_platform(cpu, "octeon3");
1805 break;
1806 default:
1807 printk(KERN_INFO "Unknown Octeon chip!\n");
1808 c->cputype = CPU_UNKNOWN;
1809 break;
1810 }
1811 }
1812
1813 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1814 {
1815 switch (c->processor_id & PRID_IMP_MASK) {
1816 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1817 switch (c->processor_id & PRID_REV_MASK) {
1818 case PRID_REV_LOONGSON3A_R2:
1819 c->cputype = CPU_LOONGSON3;
1820 __cpu_name[cpu] = "ICT Loongson-3";
1821 set_elf_platform(cpu, "loongson3a");
1822 set_isa(c, MIPS_CPU_ISA_M64R2);
1823 break;
1824 }
1825
1826 decode_configs(c);
1827 c->options |= MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1828 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1829 break;
1830 default:
1831 panic("Unknown Loongson Processor ID!");
1832 break;
1833 }
1834 }
1835
1836 static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1837 {
1838 decode_configs(c);
1839 /* JZRISC does not implement the CP0 counter. */
1840 c->options &= ~MIPS_CPU_COUNTER;
1841 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1842 switch (c->processor_id & PRID_IMP_MASK) {
1843 case PRID_IMP_JZRISC:
1844 c->cputype = CPU_JZRISC;
1845 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1846 __cpu_name[cpu] = "Ingenic JZRISC";
1847 break;
1848 default:
1849 panic("Unknown Ingenic Processor ID!");
1850 break;
1851 }
1852 }
1853
1854 static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1855 {
1856 decode_configs(c);
1857
1858 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1859 c->cputype = CPU_ALCHEMY;
1860 __cpu_name[cpu] = "Au1300";
1861 /* following stuff is not for Alchemy */
1862 return;
1863 }
1864
1865 c->options = (MIPS_CPU_TLB |
1866 MIPS_CPU_4KEX |
1867 MIPS_CPU_COUNTER |
1868 MIPS_CPU_DIVEC |
1869 MIPS_CPU_WATCH |
1870 MIPS_CPU_EJTAG |
1871 MIPS_CPU_LLSC);
1872
1873 switch (c->processor_id & PRID_IMP_MASK) {
1874 case PRID_IMP_NETLOGIC_XLP2XX:
1875 case PRID_IMP_NETLOGIC_XLP9XX:
1876 case PRID_IMP_NETLOGIC_XLP5XX:
1877 c->cputype = CPU_XLP;
1878 __cpu_name[cpu] = "Broadcom XLPII";
1879 break;
1880
1881 case PRID_IMP_NETLOGIC_XLP8XX:
1882 case PRID_IMP_NETLOGIC_XLP3XX:
1883 c->cputype = CPU_XLP;
1884 __cpu_name[cpu] = "Netlogic XLP";
1885 break;
1886
1887 case PRID_IMP_NETLOGIC_XLR732:
1888 case PRID_IMP_NETLOGIC_XLR716:
1889 case PRID_IMP_NETLOGIC_XLR532:
1890 case PRID_IMP_NETLOGIC_XLR308:
1891 case PRID_IMP_NETLOGIC_XLR532C:
1892 case PRID_IMP_NETLOGIC_XLR516C:
1893 case PRID_IMP_NETLOGIC_XLR508C:
1894 case PRID_IMP_NETLOGIC_XLR308C:
1895 c->cputype = CPU_XLR;
1896 __cpu_name[cpu] = "Netlogic XLR";
1897 break;
1898
1899 case PRID_IMP_NETLOGIC_XLS608:
1900 case PRID_IMP_NETLOGIC_XLS408:
1901 case PRID_IMP_NETLOGIC_XLS404:
1902 case PRID_IMP_NETLOGIC_XLS208:
1903 case PRID_IMP_NETLOGIC_XLS204:
1904 case PRID_IMP_NETLOGIC_XLS108:
1905 case PRID_IMP_NETLOGIC_XLS104:
1906 case PRID_IMP_NETLOGIC_XLS616B:
1907 case PRID_IMP_NETLOGIC_XLS608B:
1908 case PRID_IMP_NETLOGIC_XLS416B:
1909 case PRID_IMP_NETLOGIC_XLS412B:
1910 case PRID_IMP_NETLOGIC_XLS408B:
1911 case PRID_IMP_NETLOGIC_XLS404B:
1912 c->cputype = CPU_XLR;
1913 __cpu_name[cpu] = "Netlogic XLS";
1914 break;
1915
1916 default:
1917 pr_info("Unknown Netlogic chip id [%02x]!\n",
1918 c->processor_id);
1919 c->cputype = CPU_XLR;
1920 break;
1921 }
1922
1923 if (c->cputype == CPU_XLP) {
1924 set_isa(c, MIPS_CPU_ISA_M64R2);
1925 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1926 /* This will be updated again after all threads are woken up */
1927 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1928 } else {
1929 set_isa(c, MIPS_CPU_ISA_M64R1);
1930 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1931 }
1932 c->kscratch_mask = 0xf;
1933 }
1934
1935 #ifdef CONFIG_64BIT
1936 /* For use by uaccess.h */
1937 u64 __ua_limit;
1938 EXPORT_SYMBOL(__ua_limit);
1939 #endif
1940
1941 const char *__cpu_name[NR_CPUS];
1942 const char *__elf_platform;
1943
1944 void cpu_probe(void)
1945 {
1946 struct cpuinfo_mips *c = &current_cpu_data;
1947 unsigned int cpu = smp_processor_id();
1948
1949 c->processor_id = PRID_IMP_UNKNOWN;
1950 c->fpu_id = FPIR_IMP_NONE;
1951 c->cputype = CPU_UNKNOWN;
1952 c->writecombine = _CACHE_UNCACHED;
1953
1954 c->fpu_csr31 = FPU_CSR_RN;
1955 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1956
1957 c->processor_id = read_c0_prid();
1958 switch (c->processor_id & PRID_COMP_MASK) {
1959 case PRID_COMP_LEGACY:
1960 cpu_probe_legacy(c, cpu);
1961 break;
1962 case PRID_COMP_MIPS:
1963 cpu_probe_mips(c, cpu);
1964 break;
1965 case PRID_COMP_ALCHEMY:
1966 cpu_probe_alchemy(c, cpu);
1967 break;
1968 case PRID_COMP_SIBYTE:
1969 cpu_probe_sibyte(c, cpu);
1970 break;
1971 case PRID_COMP_BROADCOM:
1972 cpu_probe_broadcom(c, cpu);
1973 break;
1974 case PRID_COMP_SANDCRAFT:
1975 cpu_probe_sandcraft(c, cpu);
1976 break;
1977 case PRID_COMP_NXP:
1978 cpu_probe_nxp(c, cpu);
1979 break;
1980 case PRID_COMP_CAVIUM:
1981 cpu_probe_cavium(c, cpu);
1982 break;
1983 case PRID_COMP_LOONGSON:
1984 cpu_probe_loongson(c, cpu);
1985 break;
1986 case PRID_COMP_INGENIC_D0:
1987 case PRID_COMP_INGENIC_D1:
1988 case PRID_COMP_INGENIC_E1:
1989 cpu_probe_ingenic(c, cpu);
1990 break;
1991 case PRID_COMP_NETLOGIC:
1992 cpu_probe_netlogic(c, cpu);
1993 break;
1994 }
1995
1996 BUG_ON(!__cpu_name[cpu]);
1997 BUG_ON(c->cputype == CPU_UNKNOWN);
1998
1999 /*
2000 * Platform code can force the cpu type to optimize code
2001 * generation. In that case be sure the cpu type is correctly
2002 * manually setup otherwise it could trigger some nasty bugs.
2003 */
2004 BUG_ON(current_cpu_type() != c->cputype);
2005
2006 if (cpu_has_rixi) {
2007 /* Enable the RIXI exceptions */
2008 set_c0_pagegrain(PG_IEC);
2009 back_to_back_c0_hazard();
2010 /* Verify the IEC bit is set */
2011 if (read_c0_pagegrain() & PG_IEC)
2012 c->options |= MIPS_CPU_RIXIEX;
2013 }
2014
2015 if (mips_fpu_disabled)
2016 c->options &= ~MIPS_CPU_FPU;
2017
2018 if (mips_dsp_disabled)
2019 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2020
2021 if (mips_htw_disabled) {
2022 c->options &= ~MIPS_CPU_HTW;
2023 write_c0_pwctl(read_c0_pwctl() &
2024 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2025 }
2026
2027 if (c->options & MIPS_CPU_FPU)
2028 cpu_set_fpu_opts(c);
2029 else
2030 cpu_set_nofpu_opts(c);
2031
2032 if (cpu_has_bp_ghist)
2033 write_c0_r10k_diag(read_c0_r10k_diag() |
2034 R10K_DIAG_E_GHIST);
2035
2036 if (cpu_has_mips_r2_r6) {
2037 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2038 /* R2 has Performance Counter Interrupt indicator */
2039 c->options |= MIPS_CPU_PCI;
2040 }
2041 else
2042 c->srsets = 1;
2043
2044 if (cpu_has_mips_r6)
2045 elf_hwcap |= HWCAP_MIPS_R6;
2046
2047 if (cpu_has_msa) {
2048 c->msa_id = cpu_get_msa_id();
2049 WARN(c->msa_id & MSA_IR_WRPF,
2050 "Vector register partitioning unimplemented!");
2051 elf_hwcap |= HWCAP_MIPS_MSA;
2052 }
2053
2054 if (cpu_has_vz)
2055 cpu_probe_vz(c);
2056
2057 cpu_probe_vmbits(c);
2058
2059 #ifdef CONFIG_64BIT
2060 if (cpu == 0)
2061 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2062 #endif
2063 }
2064
2065 void cpu_report(void)
2066 {
2067 struct cpuinfo_mips *c = &current_cpu_data;
2068
2069 pr_info("CPU%d revision is: %08x (%s)\n",
2070 smp_processor_id(), c->processor_id, cpu_name_string());
2071 if (c->options & MIPS_CPU_FPU)
2072 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2073 if (cpu_has_msa)
2074 pr_info("MSA revision is: %08x\n", c->msa_id);
2075 }