]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/perf_event_mipsxx.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34 struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53 };
54
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73 #else
74 #define T
75 #define V
76 #define P
77 #endif
78 };
79
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 struct mips_pmu {
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
89 const char *name;
90 int irq;
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100 };
101
102 static struct mips_pmu mipspmu;
103
104 #define M_PERFCTL_EXL (1 << 0)
105 #define M_PERFCTL_KERNEL (1 << 1)
106 #define M_PERFCTL_SUPERVISOR (1 << 2)
107 #define M_PERFCTL_USER (1 << 3)
108 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
109 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
110 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
111
112 #ifdef CONFIG_CPU_BMIPS5000
113 #define M_PERFCTL_MT_EN(filter) 0
114 #else /* !CONFIG_CPU_BMIPS5000 */
115 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
116 #endif /* CONFIG_CPU_BMIPS5000 */
117
118 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
119 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
120 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
121 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
122 #define M_PERFCTL_WIDE (1 << 30)
123 #define M_PERFCTL_MORE (1 << 31)
124 #define M_PERFCTL_TC (1 << 30)
125
126 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
127 M_PERFCTL_KERNEL | \
128 M_PERFCTL_USER | \
129 M_PERFCTL_SUPERVISOR | \
130 M_PERFCTL_INTERRUPT_ENABLE)
131
132 #ifdef CONFIG_MIPS_MT_SMP
133 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
134 #else
135 #define M_PERFCTL_CONFIG_MASK 0x1f
136 #endif
137 #define M_PERFCTL_EVENT_MASK 0xfe0
138
139
140 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
141 static int cpu_has_mipsmt_pertccounters;
142
143 static DEFINE_RWLOCK(pmuint_rwlock);
144
145 #if defined(CONFIG_CPU_BMIPS5000)
146 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
147 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
148 #else
149 /*
150 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
151 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
152 */
153 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
154 0 : smp_processor_id())
155 #endif
156
157 /* Copied from op_model_mipsxx.c */
158 static unsigned int vpe_shift(void)
159 {
160 if (num_possible_cpus() > 1)
161 return 1;
162
163 return 0;
164 }
165
166 static unsigned int counters_total_to_per_cpu(unsigned int counters)
167 {
168 return counters >> vpe_shift();
169 }
170
171 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
172 #define vpe_id() 0
173
174 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
175
176 static void resume_local_counters(void);
177 static void pause_local_counters(void);
178 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
179 static int mipsxx_pmu_handle_shared_irq(void);
180
181 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
182 {
183 if (vpe_id() == 1)
184 idx = (idx + 2) & 3;
185 return idx;
186 }
187
188 static u64 mipsxx_pmu_read_counter(unsigned int idx)
189 {
190 idx = mipsxx_pmu_swizzle_perf_idx(idx);
191
192 switch (idx) {
193 case 0:
194 /*
195 * The counters are unsigned, we must cast to truncate
196 * off the high bits.
197 */
198 return (u32)read_c0_perfcntr0();
199 case 1:
200 return (u32)read_c0_perfcntr1();
201 case 2:
202 return (u32)read_c0_perfcntr2();
203 case 3:
204 return (u32)read_c0_perfcntr3();
205 default:
206 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
207 return 0;
208 }
209 }
210
211 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
212 {
213 idx = mipsxx_pmu_swizzle_perf_idx(idx);
214
215 switch (idx) {
216 case 0:
217 return read_c0_perfcntr0_64();
218 case 1:
219 return read_c0_perfcntr1_64();
220 case 2:
221 return read_c0_perfcntr2_64();
222 case 3:
223 return read_c0_perfcntr3_64();
224 default:
225 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
226 return 0;
227 }
228 }
229
230 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
231 {
232 idx = mipsxx_pmu_swizzle_perf_idx(idx);
233
234 switch (idx) {
235 case 0:
236 write_c0_perfcntr0(val);
237 return;
238 case 1:
239 write_c0_perfcntr1(val);
240 return;
241 case 2:
242 write_c0_perfcntr2(val);
243 return;
244 case 3:
245 write_c0_perfcntr3(val);
246 return;
247 }
248 }
249
250 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
251 {
252 idx = mipsxx_pmu_swizzle_perf_idx(idx);
253
254 switch (idx) {
255 case 0:
256 write_c0_perfcntr0_64(val);
257 return;
258 case 1:
259 write_c0_perfcntr1_64(val);
260 return;
261 case 2:
262 write_c0_perfcntr2_64(val);
263 return;
264 case 3:
265 write_c0_perfcntr3_64(val);
266 return;
267 }
268 }
269
270 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
271 {
272 idx = mipsxx_pmu_swizzle_perf_idx(idx);
273
274 switch (idx) {
275 case 0:
276 return read_c0_perfctrl0();
277 case 1:
278 return read_c0_perfctrl1();
279 case 2:
280 return read_c0_perfctrl2();
281 case 3:
282 return read_c0_perfctrl3();
283 default:
284 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
285 return 0;
286 }
287 }
288
289 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
290 {
291 idx = mipsxx_pmu_swizzle_perf_idx(idx);
292
293 switch (idx) {
294 case 0:
295 write_c0_perfctrl0(val);
296 return;
297 case 1:
298 write_c0_perfctrl1(val);
299 return;
300 case 2:
301 write_c0_perfctrl2(val);
302 return;
303 case 3:
304 write_c0_perfctrl3(val);
305 return;
306 }
307 }
308
309 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
310 struct hw_perf_event *hwc)
311 {
312 int i;
313
314 /*
315 * We only need to care the counter mask. The range has been
316 * checked definitely.
317 */
318 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
319
320 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
321 /*
322 * Note that some MIPS perf events can be counted by both
323 * even and odd counters, wheresas many other are only by
324 * even _or_ odd counters. This introduces an issue that
325 * when the former kind of event takes the counter the
326 * latter kind of event wants to use, then the "counter
327 * allocation" for the latter event will fail. In fact if
328 * they can be dynamically swapped, they both feel happy.
329 * But here we leave this issue alone for now.
330 */
331 if (test_bit(i, &cntr_mask) &&
332 !test_and_set_bit(i, cpuc->used_mask))
333 return i;
334 }
335
336 return -EAGAIN;
337 }
338
339 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
340 {
341 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
342
343 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
344
345 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
346 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
347 /* Make sure interrupt enabled. */
348 M_PERFCTL_INTERRUPT_ENABLE;
349 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
350 /* enable the counter for the calling thread */
351 cpuc->saved_ctrl[idx] |=
352 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
353
354 /*
355 * We do not actually let the counter run. Leave it until start().
356 */
357 }
358
359 static void mipsxx_pmu_disable_event(int idx)
360 {
361 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362 unsigned long flags;
363
364 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
365
366 local_irq_save(flags);
367 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
368 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
369 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
370 local_irq_restore(flags);
371 }
372
373 static int mipspmu_event_set_period(struct perf_event *event,
374 struct hw_perf_event *hwc,
375 int idx)
376 {
377 u64 left = local64_read(&hwc->period_left);
378 u64 period = hwc->sample_period;
379 int ret = 0;
380
381 if (unlikely((left + period) & (1ULL << 63))) {
382 /* left underflowed by more than period. */
383 left = period;
384 local64_set(&hwc->period_left, left);
385 hwc->last_period = period;
386 ret = 1;
387 } else if (unlikely((left + period) <= period)) {
388 /* left underflowed by less than period. */
389 left += period;
390 local64_set(&hwc->period_left, left);
391 hwc->last_period = period;
392 ret = 1;
393 }
394
395 if (left > mipspmu.max_period) {
396 left = mipspmu.max_period;
397 local64_set(&hwc->period_left, left);
398 }
399
400 local64_set(&hwc->prev_count, mipspmu.overflow - left);
401
402 mipspmu.write_counter(idx, mipspmu.overflow - left);
403
404 perf_event_update_userpage(event);
405
406 return ret;
407 }
408
409 static void mipspmu_event_update(struct perf_event *event,
410 struct hw_perf_event *hwc,
411 int idx)
412 {
413 u64 prev_raw_count, new_raw_count;
414 u64 delta;
415
416 again:
417 prev_raw_count = local64_read(&hwc->prev_count);
418 new_raw_count = mipspmu.read_counter(idx);
419
420 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
421 new_raw_count) != prev_raw_count)
422 goto again;
423
424 delta = new_raw_count - prev_raw_count;
425
426 local64_add(delta, &event->count);
427 local64_sub(delta, &hwc->period_left);
428 }
429
430 static void mipspmu_start(struct perf_event *event, int flags)
431 {
432 struct hw_perf_event *hwc = &event->hw;
433
434 if (flags & PERF_EF_RELOAD)
435 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
436
437 hwc->state = 0;
438
439 /* Set the period for the event. */
440 mipspmu_event_set_period(event, hwc, hwc->idx);
441
442 /* Enable the event. */
443 mipsxx_pmu_enable_event(hwc, hwc->idx);
444 }
445
446 static void mipspmu_stop(struct perf_event *event, int flags)
447 {
448 struct hw_perf_event *hwc = &event->hw;
449
450 if (!(hwc->state & PERF_HES_STOPPED)) {
451 /* We are working on a local event. */
452 mipsxx_pmu_disable_event(hwc->idx);
453 barrier();
454 mipspmu_event_update(event, hwc, hwc->idx);
455 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
456 }
457 }
458
459 static int mipspmu_add(struct perf_event *event, int flags)
460 {
461 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
462 struct hw_perf_event *hwc = &event->hw;
463 int idx;
464 int err = 0;
465
466 perf_pmu_disable(event->pmu);
467
468 /* To look for a free counter for this event. */
469 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
470 if (idx < 0) {
471 err = idx;
472 goto out;
473 }
474
475 /*
476 * If there is an event in the counter we are going to use then
477 * make sure it is disabled.
478 */
479 event->hw.idx = idx;
480 mipsxx_pmu_disable_event(idx);
481 cpuc->events[idx] = event;
482
483 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
484 if (flags & PERF_EF_START)
485 mipspmu_start(event, PERF_EF_RELOAD);
486
487 /* Propagate our changes to the userspace mapping. */
488 perf_event_update_userpage(event);
489
490 out:
491 perf_pmu_enable(event->pmu);
492 return err;
493 }
494
495 static void mipspmu_del(struct perf_event *event, int flags)
496 {
497 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
498 struct hw_perf_event *hwc = &event->hw;
499 int idx = hwc->idx;
500
501 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
502
503 mipspmu_stop(event, PERF_EF_UPDATE);
504 cpuc->events[idx] = NULL;
505 clear_bit(idx, cpuc->used_mask);
506
507 perf_event_update_userpage(event);
508 }
509
510 static void mipspmu_read(struct perf_event *event)
511 {
512 struct hw_perf_event *hwc = &event->hw;
513
514 /* Don't read disabled counters! */
515 if (hwc->idx < 0)
516 return;
517
518 mipspmu_event_update(event, hwc, hwc->idx);
519 }
520
521 static void mipspmu_enable(struct pmu *pmu)
522 {
523 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
524 write_unlock(&pmuint_rwlock);
525 #endif
526 resume_local_counters();
527 }
528
529 /*
530 * MIPS performance counters can be per-TC. The control registers can
531 * not be directly accessed across CPUs. Hence if we want to do global
532 * control, we need cross CPU calls. on_each_cpu() can help us, but we
533 * can not make sure this function is called with interrupts enabled. So
534 * here we pause local counters and then grab a rwlock and leave the
535 * counters on other CPUs alone. If any counter interrupt raises while
536 * we own the write lock, simply pause local counters on that CPU and
537 * spin in the handler. Also we know we won't be switched to another
538 * CPU after pausing local counters and before grabbing the lock.
539 */
540 static void mipspmu_disable(struct pmu *pmu)
541 {
542 pause_local_counters();
543 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
544 write_lock(&pmuint_rwlock);
545 #endif
546 }
547
548 static atomic_t active_events = ATOMIC_INIT(0);
549 static DEFINE_MUTEX(pmu_reserve_mutex);
550 static int (*save_perf_irq)(void);
551
552 static int mipspmu_get_irq(void)
553 {
554 int err;
555
556 if (mipspmu.irq >= 0) {
557 /* Request my own irq handler. */
558 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
559 IRQF_PERCPU | IRQF_NOBALANCING |
560 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
561 IRQF_SHARED,
562 "mips_perf_pmu", &mipspmu);
563 if (err) {
564 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
565 mipspmu.irq);
566 }
567 } else if (cp0_perfcount_irq < 0) {
568 /*
569 * We are sharing the irq number with the timer interrupt.
570 */
571 save_perf_irq = perf_irq;
572 perf_irq = mipsxx_pmu_handle_shared_irq;
573 err = 0;
574 } else {
575 pr_warn("The platform hasn't properly defined its interrupt controller\n");
576 err = -ENOENT;
577 }
578
579 return err;
580 }
581
582 static void mipspmu_free_irq(void)
583 {
584 if (mipspmu.irq >= 0)
585 free_irq(mipspmu.irq, &mipspmu);
586 else if (cp0_perfcount_irq < 0)
587 perf_irq = save_perf_irq;
588 }
589
590 /*
591 * mipsxx/rm9000/loongson2 have different performance counters, they have
592 * specific low-level init routines.
593 */
594 static void reset_counters(void *arg);
595 static int __hw_perf_event_init(struct perf_event *event);
596
597 static void hw_perf_event_destroy(struct perf_event *event)
598 {
599 if (atomic_dec_and_mutex_lock(&active_events,
600 &pmu_reserve_mutex)) {
601 /*
602 * We must not call the destroy function with interrupts
603 * disabled.
604 */
605 on_each_cpu(reset_counters,
606 (void *)(long)mipspmu.num_counters, 1);
607 mipspmu_free_irq();
608 mutex_unlock(&pmu_reserve_mutex);
609 }
610 }
611
612 static int mipspmu_event_init(struct perf_event *event)
613 {
614 int err = 0;
615
616 /* does not support taken branch sampling */
617 if (has_branch_stack(event))
618 return -EOPNOTSUPP;
619
620 switch (event->attr.type) {
621 case PERF_TYPE_RAW:
622 case PERF_TYPE_HARDWARE:
623 case PERF_TYPE_HW_CACHE:
624 break;
625
626 default:
627 return -ENOENT;
628 }
629
630 if (event->cpu >= nr_cpumask_bits ||
631 (event->cpu >= 0 && !cpu_online(event->cpu)))
632 return -ENODEV;
633
634 if (!atomic_inc_not_zero(&active_events)) {
635 mutex_lock(&pmu_reserve_mutex);
636 if (atomic_read(&active_events) == 0)
637 err = mipspmu_get_irq();
638
639 if (!err)
640 atomic_inc(&active_events);
641 mutex_unlock(&pmu_reserve_mutex);
642 }
643
644 if (err)
645 return err;
646
647 return __hw_perf_event_init(event);
648 }
649
650 static struct pmu pmu = {
651 .pmu_enable = mipspmu_enable,
652 .pmu_disable = mipspmu_disable,
653 .event_init = mipspmu_event_init,
654 .add = mipspmu_add,
655 .del = mipspmu_del,
656 .start = mipspmu_start,
657 .stop = mipspmu_stop,
658 .read = mipspmu_read,
659 };
660
661 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
662 {
663 /*
664 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
665 * event_id.
666 */
667 #ifdef CONFIG_MIPS_MT_SMP
668 return ((unsigned int)pev->range << 24) |
669 (pev->cntr_mask & 0xffff00) |
670 (pev->event_id & 0xff);
671 #else
672 return (pev->cntr_mask & 0xffff00) |
673 (pev->event_id & 0xff);
674 #endif
675 }
676
677 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
678 {
679
680 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
681 return ERR_PTR(-EOPNOTSUPP);
682 return &(*mipspmu.general_event_map)[idx];
683 }
684
685 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
686 {
687 unsigned int cache_type, cache_op, cache_result;
688 const struct mips_perf_event *pev;
689
690 cache_type = (config >> 0) & 0xff;
691 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
692 return ERR_PTR(-EINVAL);
693
694 cache_op = (config >> 8) & 0xff;
695 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
696 return ERR_PTR(-EINVAL);
697
698 cache_result = (config >> 16) & 0xff;
699 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
700 return ERR_PTR(-EINVAL);
701
702 pev = &((*mipspmu.cache_event_map)
703 [cache_type]
704 [cache_op]
705 [cache_result]);
706
707 if (pev->cntr_mask == 0)
708 return ERR_PTR(-EOPNOTSUPP);
709
710 return pev;
711
712 }
713
714 static int validate_group(struct perf_event *event)
715 {
716 struct perf_event *sibling, *leader = event->group_leader;
717 struct cpu_hw_events fake_cpuc;
718
719 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
720
721 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
722 return -EINVAL;
723
724 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
725 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
726 return -EINVAL;
727 }
728
729 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
730 return -EINVAL;
731
732 return 0;
733 }
734
735 /* This is needed by specific irq handlers in perf_event_*.c */
736 static void handle_associated_event(struct cpu_hw_events *cpuc,
737 int idx, struct perf_sample_data *data,
738 struct pt_regs *regs)
739 {
740 struct perf_event *event = cpuc->events[idx];
741 struct hw_perf_event *hwc = &event->hw;
742
743 mipspmu_event_update(event, hwc, idx);
744 data->period = event->hw.last_period;
745 if (!mipspmu_event_set_period(event, hwc, idx))
746 return;
747
748 if (perf_event_overflow(event, data, regs))
749 mipsxx_pmu_disable_event(idx);
750 }
751
752
753 static int __n_counters(void)
754 {
755 if (!cpu_has_perf)
756 return 0;
757 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
758 return 1;
759 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
760 return 2;
761 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
762 return 3;
763
764 return 4;
765 }
766
767 static int n_counters(void)
768 {
769 int counters;
770
771 switch (current_cpu_type()) {
772 case CPU_R10000:
773 counters = 2;
774 break;
775
776 case CPU_R12000:
777 case CPU_R14000:
778 case CPU_R16000:
779 counters = 4;
780 break;
781
782 default:
783 counters = __n_counters();
784 }
785
786 return counters;
787 }
788
789 static void reset_counters(void *arg)
790 {
791 int counters = (int)(long)arg;
792 switch (counters) {
793 case 4:
794 mipsxx_pmu_write_control(3, 0);
795 mipspmu.write_counter(3, 0);
796 case 3:
797 mipsxx_pmu_write_control(2, 0);
798 mipspmu.write_counter(2, 0);
799 case 2:
800 mipsxx_pmu_write_control(1, 0);
801 mipspmu.write_counter(1, 0);
802 case 1:
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu.write_counter(0, 0);
805 }
806 }
807
808 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810 [PERF_COUNT_HW_MAX] = {
811 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815 };
816
817 /* 74K/proAptiv core has different branch event code. */
818 static const struct mips_perf_event mipsxxcore_event_map2
819 [PERF_COUNT_HW_MAX] = {
820 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 };
825
826 static const struct mips_perf_event i6400_event_map[PERF_COUNT_HW_MAX] = {
827 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
828 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
829 /* These only count dcache, not icache */
830 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
831 [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
832 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
833 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
834 };
835
836 static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
837 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
838 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
839 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
840 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
841 };
842
843 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
844 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
846 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
847 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
848 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
849 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
850 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
851 };
852
853 static const struct mips_perf_event bmips5000_event_map
854 [PERF_COUNT_HW_MAX] = {
855 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
856 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
857 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
858 };
859
860 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
861 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
862 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
863 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
864 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
865 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
866 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
867 };
868
869 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
870 static const struct mips_perf_event mipsxxcore_cache_map
871 [PERF_COUNT_HW_CACHE_MAX]
872 [PERF_COUNT_HW_CACHE_OP_MAX]
873 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
874 [C(L1D)] = {
875 /*
876 * Like some other architectures (e.g. ARM), the performance
877 * counters don't differentiate between read and write
878 * accesses/misses, so this isn't strictly correct, but it's the
879 * best we can do. Writes and reads get combined.
880 */
881 [C(OP_READ)] = {
882 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
883 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
884 },
885 [C(OP_WRITE)] = {
886 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
887 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
888 },
889 },
890 [C(L1I)] = {
891 [C(OP_READ)] = {
892 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
893 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
894 },
895 [C(OP_WRITE)] = {
896 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
897 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
898 },
899 [C(OP_PREFETCH)] = {
900 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
901 /*
902 * Note that MIPS has only "hit" events countable for
903 * the prefetch operation.
904 */
905 },
906 },
907 [C(LL)] = {
908 [C(OP_READ)] = {
909 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
910 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
911 },
912 [C(OP_WRITE)] = {
913 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
914 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
915 },
916 },
917 [C(DTLB)] = {
918 [C(OP_READ)] = {
919 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
920 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
921 },
922 [C(OP_WRITE)] = {
923 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
924 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
925 },
926 },
927 [C(ITLB)] = {
928 [C(OP_READ)] = {
929 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
930 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
931 },
932 [C(OP_WRITE)] = {
933 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
934 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
935 },
936 },
937 [C(BPU)] = {
938 /* Using the same code for *HW_BRANCH* */
939 [C(OP_READ)] = {
940 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
941 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
942 },
943 [C(OP_WRITE)] = {
944 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
945 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
946 },
947 },
948 };
949
950 /* 74K/proAptiv core has completely different cache event map. */
951 static const struct mips_perf_event mipsxxcore_cache_map2
952 [PERF_COUNT_HW_CACHE_MAX]
953 [PERF_COUNT_HW_CACHE_OP_MAX]
954 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
955 [C(L1D)] = {
956 /*
957 * Like some other architectures (e.g. ARM), the performance
958 * counters don't differentiate between read and write
959 * accesses/misses, so this isn't strictly correct, but it's the
960 * best we can do. Writes and reads get combined.
961 */
962 [C(OP_READ)] = {
963 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
964 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
965 },
966 [C(OP_WRITE)] = {
967 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
968 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
969 },
970 },
971 [C(L1I)] = {
972 [C(OP_READ)] = {
973 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
974 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
975 },
976 [C(OP_WRITE)] = {
977 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
978 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
979 },
980 [C(OP_PREFETCH)] = {
981 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
982 /*
983 * Note that MIPS has only "hit" events countable for
984 * the prefetch operation.
985 */
986 },
987 },
988 [C(LL)] = {
989 [C(OP_READ)] = {
990 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
991 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
992 },
993 [C(OP_WRITE)] = {
994 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
995 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
996 },
997 },
998 /*
999 * 74K core does not have specific DTLB events. proAptiv core has
1000 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1001 * not included here. One can use raw events if really needed.
1002 */
1003 [C(ITLB)] = {
1004 [C(OP_READ)] = {
1005 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1006 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1007 },
1008 [C(OP_WRITE)] = {
1009 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1010 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1011 },
1012 },
1013 [C(BPU)] = {
1014 /* Using the same code for *HW_BRANCH* */
1015 [C(OP_READ)] = {
1016 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1017 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1018 },
1019 [C(OP_WRITE)] = {
1020 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1021 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1022 },
1023 },
1024 };
1025
1026 static const struct mips_perf_event i6400_cache_map
1027 [PERF_COUNT_HW_CACHE_MAX]
1028 [PERF_COUNT_HW_CACHE_OP_MAX]
1029 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1030 [C(L1D)] = {
1031 [C(OP_READ)] = {
1032 [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
1033 [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
1034 },
1035 [C(OP_WRITE)] = {
1036 [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
1037 [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
1038 },
1039 },
1040 [C(L1I)] = {
1041 [C(OP_READ)] = {
1042 [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
1043 [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
1044 },
1045 },
1046 [C(DTLB)] = {
1047 /* Can't distinguish read & write */
1048 [C(OP_READ)] = {
1049 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1050 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1051 },
1052 [C(OP_WRITE)] = {
1053 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1054 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1055 },
1056 },
1057 [C(BPU)] = {
1058 /* Conditional branches / mispredicted */
1059 [C(OP_READ)] = {
1060 [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
1061 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
1062 },
1063 },
1064 };
1065
1066 static const struct mips_perf_event loongson3_cache_map
1067 [PERF_COUNT_HW_CACHE_MAX]
1068 [PERF_COUNT_HW_CACHE_OP_MAX]
1069 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070 [C(L1D)] = {
1071 /*
1072 * Like some other architectures (e.g. ARM), the performance
1073 * counters don't differentiate between read and write
1074 * accesses/misses, so this isn't strictly correct, but it's the
1075 * best we can do. Writes and reads get combined.
1076 */
1077 [C(OP_READ)] = {
1078 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1079 },
1080 [C(OP_WRITE)] = {
1081 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1082 },
1083 },
1084 [C(L1I)] = {
1085 [C(OP_READ)] = {
1086 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1087 },
1088 [C(OP_WRITE)] = {
1089 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1090 },
1091 },
1092 [C(DTLB)] = {
1093 [C(OP_READ)] = {
1094 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1095 },
1096 [C(OP_WRITE)] = {
1097 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1098 },
1099 },
1100 [C(ITLB)] = {
1101 [C(OP_READ)] = {
1102 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1103 },
1104 [C(OP_WRITE)] = {
1105 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1106 },
1107 },
1108 [C(BPU)] = {
1109 /* Using the same code for *HW_BRANCH* */
1110 [C(OP_READ)] = {
1111 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1112 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1113 },
1114 [C(OP_WRITE)] = {
1115 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1116 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1117 },
1118 },
1119 };
1120
1121 /* BMIPS5000 */
1122 static const struct mips_perf_event bmips5000_cache_map
1123 [PERF_COUNT_HW_CACHE_MAX]
1124 [PERF_COUNT_HW_CACHE_OP_MAX]
1125 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1126 [C(L1D)] = {
1127 /*
1128 * Like some other architectures (e.g. ARM), the performance
1129 * counters don't differentiate between read and write
1130 * accesses/misses, so this isn't strictly correct, but it's the
1131 * best we can do. Writes and reads get combined.
1132 */
1133 [C(OP_READ)] = {
1134 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1135 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1136 },
1137 [C(OP_WRITE)] = {
1138 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1139 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1140 },
1141 },
1142 [C(L1I)] = {
1143 [C(OP_READ)] = {
1144 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1145 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1146 },
1147 [C(OP_WRITE)] = {
1148 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1149 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1150 },
1151 [C(OP_PREFETCH)] = {
1152 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1153 /*
1154 * Note that MIPS has only "hit" events countable for
1155 * the prefetch operation.
1156 */
1157 },
1158 },
1159 [C(LL)] = {
1160 [C(OP_READ)] = {
1161 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1162 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1163 },
1164 [C(OP_WRITE)] = {
1165 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1166 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1167 },
1168 },
1169 [C(BPU)] = {
1170 /* Using the same code for *HW_BRANCH* */
1171 [C(OP_READ)] = {
1172 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1173 },
1174 [C(OP_WRITE)] = {
1175 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1176 },
1177 },
1178 };
1179
1180
1181 static const struct mips_perf_event octeon_cache_map
1182 [PERF_COUNT_HW_CACHE_MAX]
1183 [PERF_COUNT_HW_CACHE_OP_MAX]
1184 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1185 [C(L1D)] = {
1186 [C(OP_READ)] = {
1187 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1188 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1189 },
1190 [C(OP_WRITE)] = {
1191 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1192 },
1193 },
1194 [C(L1I)] = {
1195 [C(OP_READ)] = {
1196 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1197 },
1198 [C(OP_PREFETCH)] = {
1199 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1200 },
1201 },
1202 [C(DTLB)] = {
1203 /*
1204 * Only general DTLB misses are counted use the same event for
1205 * read and write.
1206 */
1207 [C(OP_READ)] = {
1208 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1209 },
1210 [C(OP_WRITE)] = {
1211 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1212 },
1213 },
1214 [C(ITLB)] = {
1215 [C(OP_READ)] = {
1216 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1217 },
1218 },
1219 };
1220
1221 static const struct mips_perf_event xlp_cache_map
1222 [PERF_COUNT_HW_CACHE_MAX]
1223 [PERF_COUNT_HW_CACHE_OP_MAX]
1224 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1225 [C(L1D)] = {
1226 [C(OP_READ)] = {
1227 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1228 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1229 },
1230 [C(OP_WRITE)] = {
1231 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1232 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1233 },
1234 },
1235 [C(L1I)] = {
1236 [C(OP_READ)] = {
1237 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1238 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1239 },
1240 },
1241 [C(LL)] = {
1242 [C(OP_READ)] = {
1243 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1244 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1245 },
1246 [C(OP_WRITE)] = {
1247 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1248 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1249 },
1250 },
1251 [C(DTLB)] = {
1252 /*
1253 * Only general DTLB misses are counted use the same event for
1254 * read and write.
1255 */
1256 [C(OP_READ)] = {
1257 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1258 },
1259 [C(OP_WRITE)] = {
1260 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1261 },
1262 },
1263 [C(ITLB)] = {
1264 [C(OP_READ)] = {
1265 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1266 },
1267 [C(OP_WRITE)] = {
1268 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1269 },
1270 },
1271 [C(BPU)] = {
1272 [C(OP_READ)] = {
1273 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1274 },
1275 },
1276 };
1277
1278 #ifdef CONFIG_MIPS_MT_SMP
1279 static void check_and_calc_range(struct perf_event *event,
1280 const struct mips_perf_event *pev)
1281 {
1282 struct hw_perf_event *hwc = &event->hw;
1283
1284 if (event->cpu >= 0) {
1285 if (pev->range > V) {
1286 /*
1287 * The user selected an event that is processor
1288 * wide, while expecting it to be VPE wide.
1289 */
1290 hwc->config_base |= M_TC_EN_ALL;
1291 } else {
1292 /*
1293 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1294 * for both CPUs.
1295 */
1296 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1297 hwc->config_base |= M_TC_EN_VPE;
1298 }
1299 } else
1300 hwc->config_base |= M_TC_EN_ALL;
1301 }
1302 #else
1303 static void check_and_calc_range(struct perf_event *event,
1304 const struct mips_perf_event *pev)
1305 {
1306 }
1307 #endif
1308
1309 static int __hw_perf_event_init(struct perf_event *event)
1310 {
1311 struct perf_event_attr *attr = &event->attr;
1312 struct hw_perf_event *hwc = &event->hw;
1313 const struct mips_perf_event *pev;
1314 int err;
1315
1316 /* Returning MIPS event descriptor for generic perf event. */
1317 if (PERF_TYPE_HARDWARE == event->attr.type) {
1318 if (event->attr.config >= PERF_COUNT_HW_MAX)
1319 return -EINVAL;
1320 pev = mipspmu_map_general_event(event->attr.config);
1321 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1322 pev = mipspmu_map_cache_event(event->attr.config);
1323 } else if (PERF_TYPE_RAW == event->attr.type) {
1324 /* We are working on the global raw event. */
1325 mutex_lock(&raw_event_mutex);
1326 pev = mipspmu.map_raw_event(event->attr.config);
1327 } else {
1328 /* The event type is not (yet) supported. */
1329 return -EOPNOTSUPP;
1330 }
1331
1332 if (IS_ERR(pev)) {
1333 if (PERF_TYPE_RAW == event->attr.type)
1334 mutex_unlock(&raw_event_mutex);
1335 return PTR_ERR(pev);
1336 }
1337
1338 /*
1339 * We allow max flexibility on how each individual counter shared
1340 * by the single CPU operates (the mode exclusion and the range).
1341 */
1342 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1343
1344 /* Calculate range bits and validate it. */
1345 if (num_possible_cpus() > 1)
1346 check_and_calc_range(event, pev);
1347
1348 hwc->event_base = mipspmu_perf_event_encode(pev);
1349 if (PERF_TYPE_RAW == event->attr.type)
1350 mutex_unlock(&raw_event_mutex);
1351
1352 if (!attr->exclude_user)
1353 hwc->config_base |= M_PERFCTL_USER;
1354 if (!attr->exclude_kernel) {
1355 hwc->config_base |= M_PERFCTL_KERNEL;
1356 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1357 hwc->config_base |= M_PERFCTL_EXL;
1358 }
1359 if (!attr->exclude_hv)
1360 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1361
1362 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1363 /*
1364 * The event can belong to another cpu. We do not assign a local
1365 * counter for it for now.
1366 */
1367 hwc->idx = -1;
1368 hwc->config = 0;
1369
1370 if (!hwc->sample_period) {
1371 hwc->sample_period = mipspmu.max_period;
1372 hwc->last_period = hwc->sample_period;
1373 local64_set(&hwc->period_left, hwc->sample_period);
1374 }
1375
1376 err = 0;
1377 if (event->group_leader != event)
1378 err = validate_group(event);
1379
1380 event->destroy = hw_perf_event_destroy;
1381
1382 if (err)
1383 event->destroy(event);
1384
1385 return err;
1386 }
1387
1388 static void pause_local_counters(void)
1389 {
1390 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1391 int ctr = mipspmu.num_counters;
1392 unsigned long flags;
1393
1394 local_irq_save(flags);
1395 do {
1396 ctr--;
1397 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1398 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1399 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1400 } while (ctr > 0);
1401 local_irq_restore(flags);
1402 }
1403
1404 static void resume_local_counters(void)
1405 {
1406 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407 int ctr = mipspmu.num_counters;
1408
1409 do {
1410 ctr--;
1411 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1412 } while (ctr > 0);
1413 }
1414
1415 static int mipsxx_pmu_handle_shared_irq(void)
1416 {
1417 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1418 struct perf_sample_data data;
1419 unsigned int counters = mipspmu.num_counters;
1420 u64 counter;
1421 int handled = IRQ_NONE;
1422 struct pt_regs *regs;
1423
1424 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1425 return handled;
1426 /*
1427 * First we pause the local counters, so that when we are locked
1428 * here, the counters are all paused. When it gets locked due to
1429 * perf_disable(), the timer interrupt handler will be delayed.
1430 *
1431 * See also mipsxx_pmu_start().
1432 */
1433 pause_local_counters();
1434 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1435 read_lock(&pmuint_rwlock);
1436 #endif
1437
1438 regs = get_irq_regs();
1439
1440 perf_sample_data_init(&data, 0, 0);
1441
1442 switch (counters) {
1443 #define HANDLE_COUNTER(n) \
1444 case n + 1: \
1445 if (test_bit(n, cpuc->used_mask)) { \
1446 counter = mipspmu.read_counter(n); \
1447 if (counter & mipspmu.overflow) { \
1448 handle_associated_event(cpuc, n, &data, regs); \
1449 handled = IRQ_HANDLED; \
1450 } \
1451 }
1452 HANDLE_COUNTER(3)
1453 HANDLE_COUNTER(2)
1454 HANDLE_COUNTER(1)
1455 HANDLE_COUNTER(0)
1456 }
1457
1458 /*
1459 * Do all the work for the pending perf events. We can do this
1460 * in here because the performance counter interrupt is a regular
1461 * interrupt, not NMI.
1462 */
1463 if (handled == IRQ_HANDLED)
1464 irq_work_run();
1465
1466 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1467 read_unlock(&pmuint_rwlock);
1468 #endif
1469 resume_local_counters();
1470 return handled;
1471 }
1472
1473 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1474 {
1475 return mipsxx_pmu_handle_shared_irq();
1476 }
1477
1478 /* 24K */
1479 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1480 ((b) == 0 || (b) == 1 || (b) == 11)
1481
1482 /* 34K */
1483 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1484 ((b) == 0 || (b) == 1 || (b) == 11)
1485 #ifdef CONFIG_MIPS_MT_SMP
1486 #define IS_RANGE_P_34K_EVENT(r, b) \
1487 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1488 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1489 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1490 ((b) >= 64 && (b) <= 67))
1491 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1492 #endif
1493
1494 /* 74K */
1495 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1496 ((b) == 0 || (b) == 1)
1497
1498 /* proAptiv */
1499 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1500 ((b) == 0 || (b) == 1)
1501 /* P5600 */
1502 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1503 ((b) == 0 || (b) == 1)
1504
1505 /* 1004K */
1506 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1507 ((b) == 0 || (b) == 1 || (b) == 11)
1508 #ifdef CONFIG_MIPS_MT_SMP
1509 #define IS_RANGE_P_1004K_EVENT(r, b) \
1510 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1511 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1512 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1513 (r) == 188 || (b) == 61 || (b) == 62 || \
1514 ((b) >= 64 && (b) <= 67))
1515 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1516 #endif
1517
1518 /* interAptiv */
1519 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1520 ((b) == 0 || (b) == 1 || (b) == 11)
1521 #ifdef CONFIG_MIPS_MT_SMP
1522 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1523 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1524 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1525 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1526 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1527 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1528 ((b) >= 64 && (b) <= 67))
1529 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1530 #endif
1531
1532 /* BMIPS5000 */
1533 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1534 ((b) == 0 || (b) == 1)
1535
1536
1537 /*
1538 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1539 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1540 * indicate the even/odd bank selector. So, for example, when user wants to take
1541 * the Event Num of 15 for odd counters (by referring to the user manual), then
1542 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1543 * to be used.
1544 *
1545 * Some newer cores have even more events, in which case the user can use raw
1546 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1547 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1548 */
1549 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1550 {
1551 /* currently most cores have 7-bit event numbers */
1552 unsigned int raw_id = config & 0xff;
1553 unsigned int base_id = raw_id & 0x7f;
1554
1555 switch (current_cpu_type()) {
1556 case CPU_24K:
1557 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1558 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1559 else
1560 raw_event.cntr_mask =
1561 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1562 #ifdef CONFIG_MIPS_MT_SMP
1563 /*
1564 * This is actually doing nothing. Non-multithreading
1565 * CPUs will not check and calculate the range.
1566 */
1567 raw_event.range = P;
1568 #endif
1569 break;
1570 case CPU_34K:
1571 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1572 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1573 else
1574 raw_event.cntr_mask =
1575 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1576 #ifdef CONFIG_MIPS_MT_SMP
1577 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1578 raw_event.range = P;
1579 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1580 raw_event.range = V;
1581 else
1582 raw_event.range = T;
1583 #endif
1584 break;
1585 case CPU_74K:
1586 case CPU_1074K:
1587 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1588 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1589 else
1590 raw_event.cntr_mask =
1591 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1592 #ifdef CONFIG_MIPS_MT_SMP
1593 raw_event.range = P;
1594 #endif
1595 break;
1596 case CPU_PROAPTIV:
1597 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1598 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1599 else
1600 raw_event.cntr_mask =
1601 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1602 #ifdef CONFIG_MIPS_MT_SMP
1603 raw_event.range = P;
1604 #endif
1605 break;
1606 case CPU_P5600:
1607 case CPU_P6600:
1608 case CPU_I6400:
1609 /* 8-bit event numbers */
1610 raw_id = config & 0x1ff;
1611 base_id = raw_id & 0xff;
1612 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1613 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1614 else
1615 raw_event.cntr_mask =
1616 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1617 #ifdef CONFIG_MIPS_MT_SMP
1618 raw_event.range = P;
1619 #endif
1620 break;
1621 case CPU_1004K:
1622 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1623 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1624 else
1625 raw_event.cntr_mask =
1626 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1627 #ifdef CONFIG_MIPS_MT_SMP
1628 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1629 raw_event.range = P;
1630 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1631 raw_event.range = V;
1632 else
1633 raw_event.range = T;
1634 #endif
1635 break;
1636 case CPU_INTERAPTIV:
1637 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1638 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1639 else
1640 raw_event.cntr_mask =
1641 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1642 #ifdef CONFIG_MIPS_MT_SMP
1643 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1644 raw_event.range = P;
1645 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1646 raw_event.range = V;
1647 else
1648 raw_event.range = T;
1649 #endif
1650 break;
1651 case CPU_BMIPS5000:
1652 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1653 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1654 else
1655 raw_event.cntr_mask =
1656 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1657 break;
1658 case CPU_LOONGSON3:
1659 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1660 break;
1661 }
1662
1663 raw_event.event_id = base_id;
1664
1665 return &raw_event;
1666 }
1667
1668 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1669 {
1670 unsigned int raw_id = config & 0xff;
1671 unsigned int base_id = raw_id & 0x7f;
1672
1673
1674 raw_event.cntr_mask = CNTR_ALL;
1675 raw_event.event_id = base_id;
1676
1677 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1678 if (base_id > 0x42)
1679 return ERR_PTR(-EOPNOTSUPP);
1680 } else {
1681 if (base_id > 0x3a)
1682 return ERR_PTR(-EOPNOTSUPP);
1683 }
1684
1685 switch (base_id) {
1686 case 0x00:
1687 case 0x0f:
1688 case 0x1e:
1689 case 0x1f:
1690 case 0x2f:
1691 case 0x34:
1692 case 0x3b ... 0x3f:
1693 return ERR_PTR(-EOPNOTSUPP);
1694 default:
1695 break;
1696 }
1697
1698 return &raw_event;
1699 }
1700
1701 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1702 {
1703 unsigned int raw_id = config & 0xff;
1704
1705 /* Only 1-63 are defined */
1706 if ((raw_id < 0x01) || (raw_id > 0x3f))
1707 return ERR_PTR(-EOPNOTSUPP);
1708
1709 raw_event.cntr_mask = CNTR_ALL;
1710 raw_event.event_id = raw_id;
1711
1712 return &raw_event;
1713 }
1714
1715 static int __init
1716 init_hw_perf_events(void)
1717 {
1718 int counters, irq;
1719 int counter_bits;
1720
1721 pr_info("Performance counters: ");
1722
1723 counters = n_counters();
1724 if (counters == 0) {
1725 pr_cont("No available PMU.\n");
1726 return -ENODEV;
1727 }
1728
1729 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1730 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1731 if (!cpu_has_mipsmt_pertccounters)
1732 counters = counters_total_to_per_cpu(counters);
1733 #endif
1734
1735 if (get_c0_perfcount_int)
1736 irq = get_c0_perfcount_int();
1737 else if (cp0_perfcount_irq >= 0)
1738 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1739 else
1740 irq = -1;
1741
1742 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1743
1744 switch (current_cpu_type()) {
1745 case CPU_24K:
1746 mipspmu.name = "mips/24K";
1747 mipspmu.general_event_map = &mipsxxcore_event_map;
1748 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1749 break;
1750 case CPU_34K:
1751 mipspmu.name = "mips/34K";
1752 mipspmu.general_event_map = &mipsxxcore_event_map;
1753 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1754 break;
1755 case CPU_74K:
1756 mipspmu.name = "mips/74K";
1757 mipspmu.general_event_map = &mipsxxcore_event_map2;
1758 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1759 break;
1760 case CPU_PROAPTIV:
1761 mipspmu.name = "mips/proAptiv";
1762 mipspmu.general_event_map = &mipsxxcore_event_map2;
1763 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1764 break;
1765 case CPU_P5600:
1766 mipspmu.name = "mips/P5600";
1767 mipspmu.general_event_map = &mipsxxcore_event_map2;
1768 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1769 break;
1770 case CPU_P6600:
1771 mipspmu.name = "mips/P6600";
1772 mipspmu.general_event_map = &mipsxxcore_event_map2;
1773 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1774 break;
1775 case CPU_I6400:
1776 mipspmu.name = "mips/I6400";
1777 mipspmu.general_event_map = &i6400_event_map;
1778 mipspmu.cache_event_map = &i6400_cache_map;
1779 break;
1780 case CPU_1004K:
1781 mipspmu.name = "mips/1004K";
1782 mipspmu.general_event_map = &mipsxxcore_event_map;
1783 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1784 break;
1785 case CPU_1074K:
1786 mipspmu.name = "mips/1074K";
1787 mipspmu.general_event_map = &mipsxxcore_event_map;
1788 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1789 break;
1790 case CPU_INTERAPTIV:
1791 mipspmu.name = "mips/interAptiv";
1792 mipspmu.general_event_map = &mipsxxcore_event_map;
1793 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1794 break;
1795 case CPU_LOONGSON1:
1796 mipspmu.name = "mips/loongson1";
1797 mipspmu.general_event_map = &mipsxxcore_event_map;
1798 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1799 break;
1800 case CPU_LOONGSON3:
1801 mipspmu.name = "mips/loongson3";
1802 mipspmu.general_event_map = &loongson3_event_map;
1803 mipspmu.cache_event_map = &loongson3_cache_map;
1804 break;
1805 case CPU_CAVIUM_OCTEON:
1806 case CPU_CAVIUM_OCTEON_PLUS:
1807 case CPU_CAVIUM_OCTEON2:
1808 mipspmu.name = "octeon";
1809 mipspmu.general_event_map = &octeon_event_map;
1810 mipspmu.cache_event_map = &octeon_cache_map;
1811 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1812 break;
1813 case CPU_BMIPS5000:
1814 mipspmu.name = "BMIPS5000";
1815 mipspmu.general_event_map = &bmips5000_event_map;
1816 mipspmu.cache_event_map = &bmips5000_cache_map;
1817 break;
1818 case CPU_XLP:
1819 mipspmu.name = "xlp";
1820 mipspmu.general_event_map = &xlp_event_map;
1821 mipspmu.cache_event_map = &xlp_cache_map;
1822 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1823 break;
1824 default:
1825 pr_cont("Either hardware does not support performance "
1826 "counters, or not yet implemented.\n");
1827 return -ENODEV;
1828 }
1829
1830 mipspmu.num_counters = counters;
1831 mipspmu.irq = irq;
1832
1833 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1834 mipspmu.max_period = (1ULL << 63) - 1;
1835 mipspmu.valid_count = (1ULL << 63) - 1;
1836 mipspmu.overflow = 1ULL << 63;
1837 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1838 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1839 counter_bits = 64;
1840 } else {
1841 mipspmu.max_period = (1ULL << 31) - 1;
1842 mipspmu.valid_count = (1ULL << 31) - 1;
1843 mipspmu.overflow = 1ULL << 31;
1844 mipspmu.read_counter = mipsxx_pmu_read_counter;
1845 mipspmu.write_counter = mipsxx_pmu_write_counter;
1846 counter_bits = 32;
1847 }
1848
1849 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1850
1851 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1852 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1853 irq < 0 ? " (share with timer interrupt)" : "");
1854
1855 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1856
1857 return 0;
1858 }
1859 early_initcall(init_hw_perf_events);