]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/mips/kernel/setup.c
MIPS: Let early memblock_alloc*() allocate memories bottom-up
[mirror_ubuntu-hirsute-kernel.git] / arch / mips / kernel / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 #include <linux/kexec.h>
25 #include <linux/sizes.h>
26 #include <linux/device.h>
27 #include <linux/dma-contiguous.h>
28 #include <linux/decompress/generic.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/addrspace.h>
32 #include <asm/bootinfo.h>
33 #include <asm/bugs.h>
34 #include <asm/cache.h>
35 #include <asm/cdmm.h>
36 #include <asm/cpu.h>
37 #include <asm/debug.h>
38 #include <asm/dma-coherence.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50 EXPORT_SYMBOL(cpu_data);
51
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55
56 /*
57 * Setup information
58 *
59 * These are initialized so they are in the .data section
60 */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63 EXPORT_SYMBOL(mips_machtype);
64
65 struct boot_mem_map boot_mem_map;
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73
74 /*
75 * mips_io_port_base is the begin of the address space to which x86 style
76 * I/O ports are mapped.
77 */
78 const unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84
85 static void *detect_magic __initdata = detect_memory_region;
86
87 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
88 unsigned long ARCH_PFN_OFFSET;
89 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
90 #endif
91
92 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
93 {
94 int x = boot_mem_map.nr_map;
95 int i;
96
97 /*
98 * If the region reaches the top of the physical address space, adjust
99 * the size slightly so that (start + size) doesn't overflow
100 */
101 if (start + size - 1 == PHYS_ADDR_MAX)
102 --size;
103
104 /* Sanity check */
105 if (start + size < start) {
106 pr_warn("Trying to add an invalid memory region, skipped\n");
107 return;
108 }
109
110 /*
111 * Try to merge with existing entry, if any.
112 */
113 for (i = 0; i < boot_mem_map.nr_map; i++) {
114 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
115 unsigned long top;
116
117 if (entry->type != type)
118 continue;
119
120 if (start + size < entry->addr)
121 continue; /* no overlap */
122
123 if (entry->addr + entry->size < start)
124 continue; /* no overlap */
125
126 top = max(entry->addr + entry->size, start + size);
127 entry->addr = min(entry->addr, start);
128 entry->size = top - entry->addr;
129
130 return;
131 }
132
133 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
134 pr_err("Ooops! Too many entries in the memory map!\n");
135 return;
136 }
137
138 boot_mem_map.map[x].addr = start;
139 boot_mem_map.map[x].size = size;
140 boot_mem_map.map[x].type = type;
141 boot_mem_map.nr_map++;
142 }
143
144 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
145 {
146 void *dm = &detect_magic;
147 phys_addr_t size;
148
149 for (size = sz_min; size < sz_max; size <<= 1) {
150 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
151 break;
152 }
153
154 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
155 ((unsigned long long) size) / SZ_1M,
156 (unsigned long long) start,
157 ((unsigned long long) sz_min) / SZ_1M,
158 ((unsigned long long) sz_max) / SZ_1M);
159
160 add_memory_region(start, size, BOOT_MEM_RAM);
161 }
162
163 static bool __init __maybe_unused memory_region_available(phys_addr_t start,
164 phys_addr_t size)
165 {
166 int i;
167 bool in_ram = false, free = true;
168
169 for (i = 0; i < boot_mem_map.nr_map; i++) {
170 phys_addr_t start_, end_;
171
172 start_ = boot_mem_map.map[i].addr;
173 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
174
175 switch (boot_mem_map.map[i].type) {
176 case BOOT_MEM_RAM:
177 if (start >= start_ && start + size <= end_)
178 in_ram = true;
179 break;
180 case BOOT_MEM_RESERVED:
181 if ((start >= start_ && start < end_) ||
182 (start < start_ && start + size >= start_))
183 free = false;
184 break;
185 default:
186 continue;
187 }
188 }
189
190 return in_ram && free;
191 }
192
193 static void __init print_memory_map(void)
194 {
195 int i;
196 const int field = 2 * sizeof(unsigned long);
197
198 for (i = 0; i < boot_mem_map.nr_map; i++) {
199 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
200 field, (unsigned long long) boot_mem_map.map[i].size,
201 field, (unsigned long long) boot_mem_map.map[i].addr);
202
203 switch (boot_mem_map.map[i].type) {
204 case BOOT_MEM_RAM:
205 printk(KERN_CONT "(usable)\n");
206 break;
207 case BOOT_MEM_INIT_RAM:
208 printk(KERN_CONT "(usable after init)\n");
209 break;
210 case BOOT_MEM_ROM_DATA:
211 printk(KERN_CONT "(ROM data)\n");
212 break;
213 case BOOT_MEM_RESERVED:
214 printk(KERN_CONT "(reserved)\n");
215 break;
216 default:
217 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
218 break;
219 }
220 }
221 }
222
223 /*
224 * Manage initrd
225 */
226 #ifdef CONFIG_BLK_DEV_INITRD
227
228 static int __init rd_start_early(char *p)
229 {
230 unsigned long start = memparse(p, &p);
231
232 #ifdef CONFIG_64BIT
233 /* Guess if the sign extension was forgotten by bootloader */
234 if (start < XKPHYS)
235 start = (int)start;
236 #endif
237 initrd_start = start;
238 initrd_end += start;
239 return 0;
240 }
241 early_param("rd_start", rd_start_early);
242
243 static int __init rd_size_early(char *p)
244 {
245 initrd_end += memparse(p, &p);
246 return 0;
247 }
248 early_param("rd_size", rd_size_early);
249
250 /* it returns the next free pfn after initrd */
251 static unsigned long __init init_initrd(void)
252 {
253 unsigned long end;
254
255 /*
256 * Board specific code or command line parser should have
257 * already set up initrd_start and initrd_end. In these cases
258 * perfom sanity checks and use them if all looks good.
259 */
260 if (!initrd_start || initrd_end <= initrd_start)
261 goto disable;
262
263 if (initrd_start & ~PAGE_MASK) {
264 pr_err("initrd start must be page aligned\n");
265 goto disable;
266 }
267 if (initrd_start < PAGE_OFFSET) {
268 pr_err("initrd start < PAGE_OFFSET\n");
269 goto disable;
270 }
271
272 /*
273 * Sanitize initrd addresses. For example firmware
274 * can't guess if they need to pass them through
275 * 64-bits values if the kernel has been built in pure
276 * 32-bit. We need also to switch from KSEG0 to XKPHYS
277 * addresses now, so the code can now safely use __pa().
278 */
279 end = __pa(initrd_end);
280 initrd_end = (unsigned long)__va(end);
281 initrd_start = (unsigned long)__va(__pa(initrd_start));
282
283 ROOT_DEV = Root_RAM0;
284 return PFN_UP(end);
285 disable:
286 initrd_start = 0;
287 initrd_end = 0;
288 return 0;
289 }
290
291 /* In some conditions (e.g. big endian bootloader with a little endian
292 kernel), the initrd might appear byte swapped. Try to detect this and
293 byte swap it if needed. */
294 static void __init maybe_bswap_initrd(void)
295 {
296 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
297 u64 buf;
298
299 /* Check for CPIO signature */
300 if (!memcmp((void *)initrd_start, "070701", 6))
301 return;
302
303 /* Check for compressed initrd */
304 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
305 return;
306
307 /* Try again with a byte swapped header */
308 buf = swab64p((u64 *)initrd_start);
309 if (!memcmp(&buf, "070701", 6) ||
310 decompress_method((unsigned char *)(&buf), 8, NULL)) {
311 unsigned long i;
312
313 pr_info("Byteswapped initrd detected\n");
314 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
315 swab64s((u64 *)i);
316 }
317 #endif
318 }
319
320 static void __init finalize_initrd(void)
321 {
322 unsigned long size = initrd_end - initrd_start;
323
324 if (size == 0) {
325 printk(KERN_INFO "Initrd not found or empty");
326 goto disable;
327 }
328 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
329 printk(KERN_ERR "Initrd extends beyond end of memory");
330 goto disable;
331 }
332
333 maybe_bswap_initrd();
334
335 memblock_reserve(__pa(initrd_start), size);
336 initrd_below_start_ok = 1;
337
338 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
339 initrd_start, size);
340 return;
341 disable:
342 printk(KERN_CONT " - disabling initrd\n");
343 initrd_start = 0;
344 initrd_end = 0;
345 }
346
347 #else /* !CONFIG_BLK_DEV_INITRD */
348
349 static unsigned long __init init_initrd(void)
350 {
351 return 0;
352 }
353
354 #define finalize_initrd() do {} while (0)
355
356 #endif
357
358 /*
359 * Initialize the bootmem allocator. It also setup initrd related data
360 * if needed.
361 */
362 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
363
364 static void __init bootmem_init(void)
365 {
366 init_initrd();
367 finalize_initrd();
368 }
369
370 #else /* !CONFIG_SGI_IP27 */
371
372 static void __init bootmem_init(void)
373 {
374 unsigned long reserved_end;
375 phys_addr_t ramstart = PHYS_ADDR_MAX;
376 int i;
377
378 /*
379 * Sanity check any INITRD first. We don't take it into account
380 * for bootmem setup initially, rely on the end-of-kernel-code
381 * as our memory range starting point. Once bootmem is inited we
382 * will reserve the area used for the initrd.
383 */
384 init_initrd();
385 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
386
387 memblock_reserve(PHYS_OFFSET, reserved_end << PAGE_SHIFT);
388
389 /*
390 * max_low_pfn is not a number of pages. The number of pages
391 * of the system is given by 'max_low_pfn - min_low_pfn'.
392 */
393 min_low_pfn = ~0UL;
394 max_low_pfn = 0;
395
396 /*
397 * Find the highest page frame number we have available
398 * and the lowest used RAM address
399 */
400 for (i = 0; i < boot_mem_map.nr_map; i++) {
401 unsigned long start, end;
402
403 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
404 continue;
405
406 start = PFN_UP(boot_mem_map.map[i].addr);
407 end = PFN_DOWN(boot_mem_map.map[i].addr
408 + boot_mem_map.map[i].size);
409
410 ramstart = min(ramstart, boot_mem_map.map[i].addr);
411
412 #ifndef CONFIG_HIGHMEM
413 /*
414 * Skip highmem here so we get an accurate max_low_pfn if low
415 * memory stops short of high memory.
416 * If the region overlaps HIGHMEM_START, end is clipped so
417 * max_pfn excludes the highmem portion.
418 */
419 if (start >= PFN_DOWN(HIGHMEM_START))
420 continue;
421 if (end > PFN_DOWN(HIGHMEM_START))
422 end = PFN_DOWN(HIGHMEM_START);
423 #endif
424
425 if (end > max_low_pfn)
426 max_low_pfn = end;
427 if (start < min_low_pfn)
428 min_low_pfn = start;
429 if (end <= reserved_end)
430 continue;
431 #ifdef CONFIG_BLK_DEV_INITRD
432 /* Skip zones before initrd and initrd itself */
433 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
434 continue;
435 #endif
436 }
437
438 if (min_low_pfn >= max_low_pfn)
439 panic("Incorrect memory mapping !!!");
440
441 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
442 ARCH_PFN_OFFSET = PFN_UP(ramstart);
443 #else
444 /*
445 * Reserve any memory between the start of RAM and PHYS_OFFSET
446 */
447 if (ramstart > PHYS_OFFSET) {
448 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
449 BOOT_MEM_RESERVED);
450 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
451 }
452
453 if (min_low_pfn > ARCH_PFN_OFFSET) {
454 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
455 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
456 min_low_pfn - ARCH_PFN_OFFSET);
457 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
458 pr_info("%lu free pages won't be used\n",
459 ARCH_PFN_OFFSET - min_low_pfn);
460 }
461 min_low_pfn = ARCH_PFN_OFFSET;
462 #endif
463
464 /*
465 * Determine low and high memory ranges
466 */
467 max_pfn = max_low_pfn;
468 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
469 #ifdef CONFIG_HIGHMEM
470 highstart_pfn = PFN_DOWN(HIGHMEM_START);
471 highend_pfn = max_low_pfn;
472 #endif
473 max_low_pfn = PFN_DOWN(HIGHMEM_START);
474 }
475
476 for (i = 0; i < boot_mem_map.nr_map; i++) {
477 unsigned long start, end;
478
479 start = PFN_UP(boot_mem_map.map[i].addr);
480 end = PFN_DOWN(boot_mem_map.map[i].addr
481 + boot_mem_map.map[i].size);
482
483 if (start <= min_low_pfn)
484 start = min_low_pfn;
485 if (start >= end)
486 continue;
487
488 #ifndef CONFIG_HIGHMEM
489 if (end > max_low_pfn)
490 end = max_low_pfn;
491
492 /*
493 * ... finally, is the area going away?
494 */
495 if (end <= start)
496 continue;
497 #endif
498
499 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
500 }
501
502 /*
503 * Register fully available low RAM pages with the bootmem allocator.
504 */
505 for (i = 0; i < boot_mem_map.nr_map; i++) {
506 unsigned long start, end, size;
507
508 start = PFN_UP(boot_mem_map.map[i].addr);
509 end = PFN_DOWN(boot_mem_map.map[i].addr
510 + boot_mem_map.map[i].size);
511
512 /*
513 * Reserve usable memory.
514 */
515 switch (boot_mem_map.map[i].type) {
516 case BOOT_MEM_RAM:
517 break;
518 case BOOT_MEM_INIT_RAM:
519 memory_present(0, start, end);
520 continue;
521 default:
522 /* Not usable memory */
523 if (start > min_low_pfn && end < max_low_pfn)
524 memblock_reserve(boot_mem_map.map[i].addr,
525 boot_mem_map.map[i].size);
526
527 continue;
528 }
529
530 /*
531 * We are rounding up the start address of usable memory
532 * and at the end of the usable range downwards.
533 */
534 if (start >= max_low_pfn)
535 continue;
536 if (start < reserved_end)
537 start = reserved_end;
538 if (end > max_low_pfn)
539 end = max_low_pfn;
540
541 /*
542 * ... finally, is the area going away?
543 */
544 if (end <= start)
545 continue;
546 size = end - start;
547
548 /* Register lowmem ranges */
549 memory_present(0, start, end);
550 }
551
552 #ifdef CONFIG_RELOCATABLE
553 /*
554 * The kernel reserves all memory below its _end symbol as bootmem,
555 * but the kernel may now be at a much higher address. The memory
556 * between the original and new locations may be returned to the system.
557 */
558 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
559 unsigned long offset;
560 extern void show_kernel_relocation(const char *level);
561
562 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
563 memblock_free(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
564
565 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
566 /*
567 * This information is necessary when debugging the kernel
568 * But is a security vulnerability otherwise!
569 */
570 show_kernel_relocation(KERN_INFO);
571 #endif
572 }
573 #endif
574
575 /*
576 * Reserve initrd memory if needed.
577 */
578 finalize_initrd();
579 }
580
581 #endif /* CONFIG_SGI_IP27 */
582
583 static int usermem __initdata;
584
585 static int __init early_parse_mem(char *p)
586 {
587 phys_addr_t start, size;
588
589 /*
590 * If a user specifies memory size, we
591 * blow away any automatically generated
592 * size.
593 */
594 if (usermem == 0) {
595 boot_mem_map.nr_map = 0;
596 usermem = 1;
597 }
598 start = 0;
599 size = memparse(p, &p);
600 if (*p == '@')
601 start = memparse(p + 1, &p);
602
603 add_memory_region(start, size, BOOT_MEM_RAM);
604
605 return 0;
606 }
607 early_param("mem", early_parse_mem);
608
609 static int __init early_parse_memmap(char *p)
610 {
611 char *oldp;
612 u64 start_at, mem_size;
613
614 if (!p)
615 return -EINVAL;
616
617 if (!strncmp(p, "exactmap", 8)) {
618 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
619 return 0;
620 }
621
622 oldp = p;
623 mem_size = memparse(p, &p);
624 if (p == oldp)
625 return -EINVAL;
626
627 if (*p == '@') {
628 start_at = memparse(p+1, &p);
629 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
630 } else if (*p == '#') {
631 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
632 return -EINVAL;
633 } else if (*p == '$') {
634 start_at = memparse(p+1, &p);
635 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
636 } else {
637 pr_err("\"memmap\" invalid format!\n");
638 return -EINVAL;
639 }
640
641 if (*p == '\0') {
642 usermem = 1;
643 return 0;
644 } else
645 return -EINVAL;
646 }
647 early_param("memmap", early_parse_memmap);
648
649 #ifdef CONFIG_PROC_VMCORE
650 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
651 static int __init early_parse_elfcorehdr(char *p)
652 {
653 int i;
654
655 setup_elfcorehdr = memparse(p, &p);
656
657 for (i = 0; i < boot_mem_map.nr_map; i++) {
658 unsigned long start = boot_mem_map.map[i].addr;
659 unsigned long end = (boot_mem_map.map[i].addr +
660 boot_mem_map.map[i].size);
661 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
662 /*
663 * Reserve from the elf core header to the end of
664 * the memory segment, that should all be kdump
665 * reserved memory.
666 */
667 setup_elfcorehdr_size = end - setup_elfcorehdr;
668 break;
669 }
670 }
671 /*
672 * If we don't find it in the memory map, then we shouldn't
673 * have to worry about it, as the new kernel won't use it.
674 */
675 return 0;
676 }
677 early_param("elfcorehdr", early_parse_elfcorehdr);
678 #endif
679
680 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
681 {
682 phys_addr_t size;
683 int i;
684
685 size = end - mem;
686 if (!size)
687 return;
688
689 /* Make sure it is in the boot_mem_map */
690 for (i = 0; i < boot_mem_map.nr_map; i++) {
691 if (mem >= boot_mem_map.map[i].addr &&
692 mem < (boot_mem_map.map[i].addr +
693 boot_mem_map.map[i].size))
694 return;
695 }
696 add_memory_region(mem, size, type);
697 }
698
699 #ifdef CONFIG_KEXEC
700 static inline unsigned long long get_total_mem(void)
701 {
702 unsigned long long total;
703
704 total = max_pfn - min_low_pfn;
705 return total << PAGE_SHIFT;
706 }
707
708 static void __init mips_parse_crashkernel(void)
709 {
710 unsigned long long total_mem;
711 unsigned long long crash_size, crash_base;
712 int ret;
713
714 total_mem = get_total_mem();
715 ret = parse_crashkernel(boot_command_line, total_mem,
716 &crash_size, &crash_base);
717 if (ret != 0 || crash_size <= 0)
718 return;
719
720 if (!memory_region_available(crash_base, crash_size)) {
721 pr_warn("Invalid memory region reserved for crash kernel\n");
722 return;
723 }
724
725 crashk_res.start = crash_base;
726 crashk_res.end = crash_base + crash_size - 1;
727 }
728
729 static void __init request_crashkernel(struct resource *res)
730 {
731 int ret;
732
733 if (crashk_res.start == crashk_res.end)
734 return;
735
736 ret = request_resource(res, &crashk_res);
737 if (!ret)
738 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
739 (unsigned long)((crashk_res.end -
740 crashk_res.start + 1) >> 20),
741 (unsigned long)(crashk_res.start >> 20));
742 }
743 #else /* !defined(CONFIG_KEXEC) */
744 static void __init mips_parse_crashkernel(void)
745 {
746 }
747
748 static void __init request_crashkernel(struct resource *res)
749 {
750 }
751 #endif /* !defined(CONFIG_KEXEC) */
752
753 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
754 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
755 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
756 #define BUILTIN_EXTEND_WITH_PROM \
757 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
758
759 /*
760 * arch_mem_init - initialize memory management subsystem
761 *
762 * o plat_mem_setup() detects the memory configuration and will record detected
763 * memory areas using add_memory_region.
764 *
765 * At this stage the memory configuration of the system is known to the
766 * kernel but generic memory management system is still entirely uninitialized.
767 *
768 * o bootmem_init()
769 * o sparse_init()
770 * o paging_init()
771 * o dma_contiguous_reserve()
772 *
773 * At this stage the bootmem allocator is ready to use.
774 *
775 * NOTE: historically plat_mem_setup did the entire platform initialization.
776 * This was rather impractical because it meant plat_mem_setup had to
777 * get away without any kind of memory allocator. To keep old code from
778 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
779 * initialization hook for anything else was introduced.
780 */
781 static void __init arch_mem_init(char **cmdline_p)
782 {
783 struct memblock_region *reg;
784 extern void plat_mem_setup(void);
785
786 /*
787 * Initialize boot_command_line to an innocuous but non-empty string in
788 * order to prevent early_init_dt_scan_chosen() from copying
789 * CONFIG_CMDLINE into it without our knowledge. We handle
790 * CONFIG_CMDLINE ourselves below & don't want to duplicate its
791 * content because repeating arguments can be problematic.
792 */
793 strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE);
794
795 /* call board setup routine */
796 plat_mem_setup();
797 memblock_set_bottom_up(true);
798
799 /*
800 * Make sure all kernel memory is in the maps. The "UP" and
801 * "DOWN" are opposite for initdata since if it crosses over
802 * into another memory section you don't want that to be
803 * freed when the initdata is freed.
804 */
805 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
806 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
807 BOOT_MEM_RAM);
808 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
809 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
810 BOOT_MEM_INIT_RAM);
811
812 pr_info("Determined physical RAM map:\n");
813 print_memory_map();
814
815 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
816 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
817 #else
818 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
819 (USE_DTB_CMDLINE && !boot_command_line[0]))
820 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
821
822 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
823 if (boot_command_line[0])
824 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
825 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
826 }
827
828 #if defined(CONFIG_CMDLINE_BOOL)
829 if (builtin_cmdline[0]) {
830 if (boot_command_line[0])
831 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
832 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
833 }
834
835 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
836 if (boot_command_line[0])
837 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
838 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
839 }
840 #endif
841 #endif
842 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
843
844 *cmdline_p = command_line;
845
846 parse_early_param();
847
848 if (usermem) {
849 pr_info("User-defined physical RAM map:\n");
850 print_memory_map();
851 }
852
853 early_init_fdt_reserve_self();
854 early_init_fdt_scan_reserved_mem();
855
856 bootmem_init();
857
858 /*
859 * Prevent memblock from allocating high memory.
860 * This cannot be done before max_low_pfn is detected, so up
861 * to this point is possible to only reserve physical memory
862 * with memblock_reserve; memblock_alloc* can be used
863 * only after this point
864 */
865 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
866
867 #ifdef CONFIG_PROC_VMCORE
868 if (setup_elfcorehdr && setup_elfcorehdr_size) {
869 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
870 setup_elfcorehdr, setup_elfcorehdr_size);
871 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size);
872 }
873 #endif
874
875 mips_parse_crashkernel();
876 #ifdef CONFIG_KEXEC
877 if (crashk_res.start != crashk_res.end)
878 memblock_reserve(crashk_res.start,
879 crashk_res.end - crashk_res.start + 1);
880 #endif
881 device_tree_init();
882 sparse_init();
883 plat_swiotlb_setup();
884
885 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
886 /* Tell bootmem about cma reserved memblock section */
887 for_each_memblock(reserved, reg)
888 if (reg->size != 0)
889 memblock_reserve(reg->base, reg->size);
890
891 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
892 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
893 }
894
895 static void __init resource_init(void)
896 {
897 int i;
898
899 if (UNCAC_BASE != IO_BASE)
900 return;
901
902 code_resource.start = __pa_symbol(&_text);
903 code_resource.end = __pa_symbol(&_etext) - 1;
904 data_resource.start = __pa_symbol(&_etext);
905 data_resource.end = __pa_symbol(&_edata) - 1;
906 bss_resource.start = __pa_symbol(&__bss_start);
907 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
908
909 for (i = 0; i < boot_mem_map.nr_map; i++) {
910 struct resource *res;
911 unsigned long start, end;
912
913 start = boot_mem_map.map[i].addr;
914 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
915 if (start >= HIGHMEM_START)
916 continue;
917 if (end >= HIGHMEM_START)
918 end = HIGHMEM_START - 1;
919
920 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
921
922 res->start = start;
923 res->end = end;
924 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
925
926 switch (boot_mem_map.map[i].type) {
927 case BOOT_MEM_RAM:
928 case BOOT_MEM_INIT_RAM:
929 case BOOT_MEM_ROM_DATA:
930 res->name = "System RAM";
931 res->flags |= IORESOURCE_SYSRAM;
932 break;
933 case BOOT_MEM_RESERVED:
934 default:
935 res->name = "reserved";
936 }
937
938 request_resource(&iomem_resource, res);
939
940 /*
941 * We don't know which RAM region contains kernel data,
942 * so we try it repeatedly and let the resource manager
943 * test it.
944 */
945 request_resource(res, &code_resource);
946 request_resource(res, &data_resource);
947 request_resource(res, &bss_resource);
948 request_crashkernel(res);
949 }
950 }
951
952 #ifdef CONFIG_SMP
953 static void __init prefill_possible_map(void)
954 {
955 int i, possible = num_possible_cpus();
956
957 if (possible > nr_cpu_ids)
958 possible = nr_cpu_ids;
959
960 for (i = 0; i < possible; i++)
961 set_cpu_possible(i, true);
962 for (; i < NR_CPUS; i++)
963 set_cpu_possible(i, false);
964
965 nr_cpu_ids = possible;
966 }
967 #else
968 static inline void prefill_possible_map(void) {}
969 #endif
970
971 void __init setup_arch(char **cmdline_p)
972 {
973 cpu_probe();
974 mips_cm_probe();
975 prom_init();
976
977 setup_early_fdc_console();
978 #ifdef CONFIG_EARLY_PRINTK
979 setup_early_printk();
980 #endif
981 cpu_report();
982 check_bugs_early();
983
984 #if defined(CONFIG_VT)
985 #if defined(CONFIG_VGA_CONSOLE)
986 conswitchp = &vga_con;
987 #elif defined(CONFIG_DUMMY_CONSOLE)
988 conswitchp = &dummy_con;
989 #endif
990 #endif
991
992 arch_mem_init(cmdline_p);
993
994 resource_init();
995 plat_smp_setup();
996 prefill_possible_map();
997
998 cpu_cache_init();
999 paging_init();
1000 }
1001
1002 unsigned long kernelsp[NR_CPUS];
1003 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1004
1005 #ifdef CONFIG_USE_OF
1006 unsigned long fw_passed_dtb;
1007 #endif
1008
1009 #ifdef CONFIG_DEBUG_FS
1010 struct dentry *mips_debugfs_dir;
1011 static int __init debugfs_mips(void)
1012 {
1013 struct dentry *d;
1014
1015 d = debugfs_create_dir("mips", NULL);
1016 if (!d)
1017 return -ENOMEM;
1018 mips_debugfs_dir = d;
1019 return 0;
1020 }
1021 arch_initcall(debugfs_mips);
1022 #endif
1023
1024 #ifdef CONFIG_DMA_MAYBE_COHERENT
1025 /* User defined DMA coherency from command line. */
1026 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
1027 EXPORT_SYMBOL_GPL(coherentio);
1028 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
1029
1030 static int __init setcoherentio(char *str)
1031 {
1032 coherentio = IO_COHERENCE_ENABLED;
1033 pr_info("Hardware DMA cache coherency (command line)\n");
1034 return 0;
1035 }
1036 early_param("coherentio", setcoherentio);
1037
1038 static int __init setnocoherentio(char *str)
1039 {
1040 coherentio = IO_COHERENCE_DISABLED;
1041 pr_info("Software DMA cache coherency (command line)\n");
1042 return 0;
1043 }
1044 early_param("nocoherentio", setnocoherentio);
1045 #endif