]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/kernel/smp-bmips.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / mips / kernel / smp-bmips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28
29 #include <asm/time.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/pmon.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41
42 static int __maybe_unused max_cpus = 1;
43
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49
50 #define RESET_FROM_KSEG0 0x80080800
51 #define RESET_FROM_KSEG1 0xa0080800
52
53 static void bmips_set_reset_vec(int cpu, u32 val);
54
55 #ifdef CONFIG_SMP
56
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
69
70 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
74
75 static void __init bmips_smp_setup(void)
76 {
77 int i, cpu = 1, boot_cpu = 0;
78 int cpu_hw_intr;
79
80 switch (current_cpu_type()) {
81 case CPU_BMIPS4350:
82 case CPU_BMIPS4380:
83 /* arbitration priority */
84 clear_c0_brcm_cmt_ctrl(0x30);
85
86 /* NBK and weak order flags */
87 set_c0_brcm_config_0(0x30000);
88
89 /* Find out if we are running on TP0 or TP1 */
90 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91
92 /*
93 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94 * thread
95 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97 */
98 if (boot_cpu == 0)
99 cpu_hw_intr = 0x02;
100 else
101 cpu_hw_intr = 0x1d;
102
103 change_c0_brcm_cmt_intr(0xf8018000,
104 (cpu_hw_intr << 27) | (0x03 << 15));
105
106 /* single core, 2 threads (2 pipelines) */
107 max_cpus = 2;
108
109 break;
110 case CPU_BMIPS5000:
111 /* enable raceless SW interrupts */
112 set_c0_brcm_config(0x03 << 22);
113
114 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117 /* N cores, 2 threads per core */
118 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120 /* clear any pending SW interrupts */
121 for (i = 0; i < max_cpus; i++) {
122 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124 }
125
126 break;
127 default:
128 max_cpus = 1;
129 }
130
131 if (!bmips_smp_enabled)
132 max_cpus = 1;
133
134 /* this can be overridden by the BSP */
135 if (!board_ebase_setup)
136 board_ebase_setup = &bmips_ebase_setup;
137
138 __cpu_number_map[boot_cpu] = 0;
139 __cpu_logical_map[0] = boot_cpu;
140
141 for (i = 0; i < max_cpus; i++) {
142 if (i != boot_cpu) {
143 __cpu_number_map[i] = cpu;
144 __cpu_logical_map[cpu] = i;
145 cpu++;
146 }
147 set_cpu_possible(i, 1);
148 set_cpu_present(i, 1);
149 }
150 }
151
152 /*
153 * IPI IRQ setup - runs on CPU0
154 */
155 static void bmips_prepare_cpus(unsigned int max_cpus)
156 {
157 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159 switch (current_cpu_type()) {
160 case CPU_BMIPS4350:
161 case CPU_BMIPS4380:
162 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163 break;
164 case CPU_BMIPS5000:
165 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166 break;
167 default:
168 return;
169 }
170
171 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
172 "smp_ipi0", NULL))
173 panic("Can't request IPI0 interrupt");
174 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
175 "smp_ipi1", NULL))
176 panic("Can't request IPI1 interrupt");
177 }
178
179 /*
180 * Tell the hardware to boot CPUx - runs on CPU0
181 */
182 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
183 {
184 bmips_smp_boot_sp = __KSTK_TOS(idle);
185 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186 mb();
187
188 /*
189 * Initial boot sequence for secondary CPU:
190 * bmips_reset_nmi_vec @ a000_0000 ->
191 * bmips_smp_entry ->
192 * plat_wired_tlb_setup (cached function call; optional) ->
193 * start_secondary (cached jump)
194 *
195 * Warm restart sequence:
196 * play_dead WAIT loop ->
197 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198 * eret to play_dead ->
199 * bmips_secondary_reentry ->
200 * start_secondary
201 */
202
203 pr_info("SMP: Booting CPU%d...\n", cpu);
204
205 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206 /* kseg1 might not exist if this CPU enabled XKS01 */
207 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209 switch (current_cpu_type()) {
210 case CPU_BMIPS4350:
211 case CPU_BMIPS4380:
212 bmips43xx_send_ipi_single(cpu, 0);
213 break;
214 case CPU_BMIPS5000:
215 bmips5000_send_ipi_single(cpu, 0);
216 break;
217 }
218 } else {
219 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221 switch (current_cpu_type()) {
222 case CPU_BMIPS4350:
223 case CPU_BMIPS4380:
224 /* Reset slave TP1 if booting from TP0 */
225 if (cpu_logical_map(cpu) == 1)
226 set_c0_brcm_cmt_ctrl(0x01);
227 break;
228 case CPU_BMIPS5000:
229 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230 break;
231 }
232 cpumask_set_cpu(cpu, &bmips_booted_mask);
233 }
234 }
235
236 /*
237 * Early setup - runs on secondary CPU after cache probe
238 */
239 static void bmips_init_secondary(void)
240 {
241 switch (current_cpu_type()) {
242 case CPU_BMIPS4350:
243 case CPU_BMIPS4380:
244 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
245 break;
246 case CPU_BMIPS5000:
247 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
248 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
249 break;
250 }
251 }
252
253 /*
254 * Late setup - runs on secondary CPU before entering the idle loop
255 */
256 static void bmips_smp_finish(void)
257 {
258 pr_info("SMP: CPU%d is running\n", smp_processor_id());
259
260 /* make sure there won't be a timer interrupt for a little while */
261 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
262
263 irq_enable_hazard();
264 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
265 irq_enable_hazard();
266 }
267
268 /*
269 * BMIPS5000 raceless IPIs
270 *
271 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
272 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
273 * IPI1 is used for SMP_CALL_FUNCTION
274 */
275
276 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
277 {
278 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
279 }
280
281 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
282 {
283 int action = irq - IPI0_IRQ;
284
285 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
286
287 if (action == 0)
288 scheduler_ipi();
289 else
290 generic_smp_call_function_interrupt();
291
292 return IRQ_HANDLED;
293 }
294
295 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
296 unsigned int action)
297 {
298 unsigned int i;
299
300 for_each_cpu(i, mask)
301 bmips5000_send_ipi_single(i, action);
302 }
303
304 /*
305 * BMIPS43xx racey IPIs
306 *
307 * We use one inbound SW IRQ for each CPU.
308 *
309 * A spinlock must be held in order to keep CPUx from accidentally clearing
310 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
311 * same spinlock is used to protect the action masks.
312 */
313
314 static DEFINE_SPINLOCK(ipi_lock);
315 static DEFINE_PER_CPU(int, ipi_action_mask);
316
317 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
318 {
319 unsigned long flags;
320
321 spin_lock_irqsave(&ipi_lock, flags);
322 set_c0_cause(cpu ? C_SW1 : C_SW0);
323 per_cpu(ipi_action_mask, cpu) |= action;
324 irq_enable_hazard();
325 spin_unlock_irqrestore(&ipi_lock, flags);
326 }
327
328 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
329 {
330 unsigned long flags;
331 int action, cpu = irq - IPI0_IRQ;
332
333 spin_lock_irqsave(&ipi_lock, flags);
334 action = __this_cpu_read(ipi_action_mask);
335 per_cpu(ipi_action_mask, cpu) = 0;
336 clear_c0_cause(cpu ? C_SW1 : C_SW0);
337 spin_unlock_irqrestore(&ipi_lock, flags);
338
339 if (action & SMP_RESCHEDULE_YOURSELF)
340 scheduler_ipi();
341 if (action & SMP_CALL_FUNCTION)
342 generic_smp_call_function_interrupt();
343
344 return IRQ_HANDLED;
345 }
346
347 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
348 unsigned int action)
349 {
350 unsigned int i;
351
352 for_each_cpu(i, mask)
353 bmips43xx_send_ipi_single(i, action);
354 }
355
356 #ifdef CONFIG_HOTPLUG_CPU
357
358 static int bmips_cpu_disable(void)
359 {
360 unsigned int cpu = smp_processor_id();
361
362 if (cpu == 0)
363 return -EBUSY;
364
365 pr_info("SMP: CPU%d is offline\n", cpu);
366
367 set_cpu_online(cpu, false);
368 calculate_cpu_foreign_map();
369 irq_cpu_offline();
370 clear_c0_status(IE_IRQ5);
371
372 local_flush_tlb_all();
373 local_flush_icache_range(0, ~0);
374
375 return 0;
376 }
377
378 static void bmips_cpu_die(unsigned int cpu)
379 {
380 }
381
382 void __ref play_dead(void)
383 {
384 idle_task_exit();
385
386 /* flush data cache */
387 _dma_cache_wback_inv(0, ~0);
388
389 /*
390 * Wakeup is on SW0 or SW1; disable everything else
391 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392 * IRQ handlers; this clears ST0_IE and returns immediately.
393 */
394 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395 change_c0_status(
396 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398 irq_disable_hazard();
399
400 /*
401 * wait for SW interrupt from bmips_boot_secondary(), then jump
402 * back to start_secondary()
403 */
404 __asm__ __volatile__(
405 " wait\n"
406 " j bmips_secondary_reentry\n"
407 : : : "memory");
408 }
409
410 #endif /* CONFIG_HOTPLUG_CPU */
411
412 struct plat_smp_ops bmips43xx_smp_ops = {
413 .smp_setup = bmips_smp_setup,
414 .prepare_cpus = bmips_prepare_cpus,
415 .boot_secondary = bmips_boot_secondary,
416 .smp_finish = bmips_smp_finish,
417 .init_secondary = bmips_init_secondary,
418 .send_ipi_single = bmips43xx_send_ipi_single,
419 .send_ipi_mask = bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421 .cpu_disable = bmips_cpu_disable,
422 .cpu_die = bmips_cpu_die,
423 #endif
424 };
425
426 struct plat_smp_ops bmips5000_smp_ops = {
427 .smp_setup = bmips_smp_setup,
428 .prepare_cpus = bmips_prepare_cpus,
429 .boot_secondary = bmips_boot_secondary,
430 .smp_finish = bmips_smp_finish,
431 .init_secondary = bmips_init_secondary,
432 .send_ipi_single = bmips5000_send_ipi_single,
433 .send_ipi_mask = bmips5000_send_ipi_mask,
434 #ifdef CONFIG_HOTPLUG_CPU
435 .cpu_disable = bmips_cpu_disable,
436 .cpu_die = bmips_cpu_die,
437 #endif
438 };
439
440 #endif /* CONFIG_SMP */
441
442 /***********************************************************************
443 * BMIPS vector relocation
444 * This is primarily used for SMP boot, but it is applicable to some
445 * UP BMIPS systems as well.
446 ***********************************************************************/
447
448 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
449 {
450 memcpy((void *)dst, start, end - start);
451 dma_cache_wback(dst, end - start);
452 local_flush_icache_range(dst, dst + (end - start));
453 instruction_hazard();
454 }
455
456 static inline void bmips_nmi_handler_setup(void)
457 {
458 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
459 &bmips_reset_nmi_vec_end);
460 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
461 &bmips_smp_int_vec_end);
462 }
463
464 struct reset_vec_info {
465 int cpu;
466 u32 val;
467 };
468
469 static void bmips_set_reset_vec_remote(void *vinfo)
470 {
471 struct reset_vec_info *info = vinfo;
472 int shift = info->cpu & 0x01 ? 16 : 0;
473 u32 mask = ~(0xffff << shift), val = info->val >> 16;
474
475 preempt_disable();
476 if (smp_processor_id() > 0) {
477 smp_call_function_single(0, &bmips_set_reset_vec_remote,
478 info, 1);
479 } else {
480 if (info->cpu & 0x02) {
481 /* BMIPS5200 "should" use mask/shift, but it's buggy */
482 bmips_write_zscm_reg(0xa0, (val << 16) | val);
483 bmips_read_zscm_reg(0xa0);
484 } else {
485 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
486 (val << shift));
487 }
488 }
489 preempt_enable();
490 }
491
492 static void bmips_set_reset_vec(int cpu, u32 val)
493 {
494 struct reset_vec_info info;
495
496 if (current_cpu_type() == CPU_BMIPS5000) {
497 /* this needs to run from CPU0 (which is always online) */
498 info.cpu = cpu;
499 info.val = val;
500 bmips_set_reset_vec_remote(&info);
501 } else {
502 void __iomem *cbr = BMIPS_GET_CBR();
503
504 if (cpu == 0)
505 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
506 else {
507 if (current_cpu_type() != CPU_BMIPS4380)
508 return;
509 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
510 }
511 }
512 __sync();
513 back_to_back_c0_hazard();
514 }
515
516 void bmips_ebase_setup(void)
517 {
518 unsigned long new_ebase = ebase;
519
520 BUG_ON(ebase != CKSEG0);
521
522 switch (current_cpu_type()) {
523 case CPU_BMIPS4350:
524 /*
525 * BMIPS4350 cannot relocate the normal vectors, but it
526 * can relocate the BEV=1 vectors. So CPU1 starts up at
527 * the relocated BEV=1, IV=0 general exception vector @
528 * 0xa000_0380.
529 *
530 * set_uncached_handler() is used here because:
531 * - CPU1 will run this from uncached space
532 * - None of the cacheflush functions are set up yet
533 */
534 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
535 &bmips_smp_int_vec, 0x80);
536 __sync();
537 return;
538 case CPU_BMIPS3300:
539 case CPU_BMIPS4380:
540 /*
541 * 0x8000_0000: reset/NMI (initially in kseg1)
542 * 0x8000_0400: normal vectors
543 */
544 new_ebase = 0x80000400;
545 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
546 break;
547 case CPU_BMIPS5000:
548 /*
549 * 0x8000_0000: reset/NMI (initially in kseg1)
550 * 0x8000_1000: normal vectors
551 */
552 new_ebase = 0x80001000;
553 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
554 write_c0_ebase(new_ebase);
555 break;
556 default:
557 return;
558 }
559
560 board_nmi_handler_setup = &bmips_nmi_handler_setup;
561 ebase = new_ebase;
562 }
563
564 asmlinkage void __weak plat_wired_tlb_setup(void)
565 {
566 /*
567 * Called when starting/restarting a secondary CPU.
568 * Kernel stacks and other important data might only be accessible
569 * once the wired entries are present.
570 */
571 }
572
573 void __init bmips_cpu_setup(void)
574 {
575 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
576 u32 __maybe_unused cfg;
577
578 switch (current_cpu_type()) {
579 case CPU_BMIPS3300:
580 /* Set BIU to async mode */
581 set_c0_brcm_bus_pll(BIT(22));
582 __sync();
583
584 /* put the BIU back in sync mode */
585 clear_c0_brcm_bus_pll(BIT(22));
586
587 /* clear BHTD to enable branch history table */
588 clear_c0_brcm_reset(BIT(16));
589
590 /* Flush and enable RAC */
591 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
592 __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
593 __raw_readl(cbr + BMIPS_RAC_CONFIG);
594
595 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
596 __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
597 __raw_readl(cbr + BMIPS_RAC_CONFIG);
598
599 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
601 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602 break;
603
604 case CPU_BMIPS4380:
605 /* CBG workaround for early BMIPS4380 CPUs */
606 switch (read_c0_prid()) {
607 case 0x2a040:
608 case 0x2a042:
609 case 0x2a044:
610 case 0x2a060:
611 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
612 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
613 __raw_readl(cbr + BMIPS_L2_CONFIG);
614 }
615
616 /* clear BHTD to enable branch history table */
617 clear_c0_brcm_config_0(BIT(21));
618
619 /* XI/ROTR enable */
620 set_c0_brcm_config_0(BIT(23));
621 set_c0_brcm_cmt_ctrl(BIT(15));
622 break;
623
624 case CPU_BMIPS5000:
625 /* enable RDHWR, BRDHWR */
626 set_c0_brcm_config(BIT(17) | BIT(21));
627
628 /* Disable JTB */
629 __asm__ __volatile__(
630 " .set noreorder\n"
631 " li $8, 0x5a455048\n"
632 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
633 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
634 " li $9, 0x00008000\n"
635 " or $8, $8, $9\n"
636 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
637 " sync\n"
638 " li $8, 0x0\n"
639 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
640 " .set reorder\n"
641 : : : "$8", "$9");
642
643 /* XI enable */
644 set_c0_brcm_config(BIT(27));
645
646 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
647 __asm__ __volatile__(
648 " li $8, 0x5a455048\n"
649 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
650 " nop; nop; nop\n"
651 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
652 " lui $9, 0x0100\n"
653 " or $8, $9\n"
654 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
655 : : : "$8", "$9");
656 break;
657 }
658 }