]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/kernel/smp-bmips.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / arch / mips / kernel / smp-bmips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/reboot.h>
22 #include <linux/io.h>
23 #include <linux/compiler.h>
24 #include <linux/linkage.h>
25 #include <linux/bug.h>
26 #include <linux/kernel.h>
27
28 #include <asm/time.h>
29 #include <asm/pgtable.h>
30 #include <asm/processor.h>
31 #include <asm/bootinfo.h>
32 #include <asm/pmon.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40
41 static int __maybe_unused max_cpus = 1;
42
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48
49 #define RESET_FROM_KSEG0 0x80080800
50 #define RESET_FROM_KSEG1 0xa0080800
51
52 static void bmips_set_reset_vec(int cpu, u32 val);
53
54 #ifdef CONFIG_SMP
55
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
68
69 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
73
74 static void __init bmips_smp_setup(void)
75 {
76 int i, cpu = 1, boot_cpu = 0;
77 int cpu_hw_intr;
78
79 switch (current_cpu_type()) {
80 case CPU_BMIPS4350:
81 case CPU_BMIPS4380:
82 /* arbitration priority */
83 clear_c0_brcm_cmt_ctrl(0x30);
84
85 /* NBK and weak order flags */
86 set_c0_brcm_config_0(0x30000);
87
88 /* Find out if we are running on TP0 or TP1 */
89 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91 /*
92 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 * thread
94 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 */
97 if (boot_cpu == 0)
98 cpu_hw_intr = 0x02;
99 else
100 cpu_hw_intr = 0x1d;
101
102 change_c0_brcm_cmt_intr(0xf8018000,
103 (cpu_hw_intr << 27) | (0x03 << 15));
104
105 /* single core, 2 threads (2 pipelines) */
106 max_cpus = 2;
107
108 break;
109 case CPU_BMIPS5000:
110 /* enable raceless SW interrupts */
111 set_c0_brcm_config(0x03 << 22);
112
113 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116 /* N cores, 2 threads per core */
117 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119 /* clear any pending SW interrupts */
120 for (i = 0; i < max_cpus; i++) {
121 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 }
124
125 break;
126 default:
127 max_cpus = 1;
128 }
129
130 if (!bmips_smp_enabled)
131 max_cpus = 1;
132
133 /* this can be overridden by the BSP */
134 if (!board_ebase_setup)
135 board_ebase_setup = &bmips_ebase_setup;
136
137 __cpu_number_map[boot_cpu] = 0;
138 __cpu_logical_map[0] = boot_cpu;
139
140 for (i = 0; i < max_cpus; i++) {
141 if (i != boot_cpu) {
142 __cpu_number_map[i] = cpu;
143 __cpu_logical_map[cpu] = i;
144 cpu++;
145 }
146 set_cpu_possible(i, 1);
147 set_cpu_present(i, 1);
148 }
149 }
150
151 /*
152 * IPI IRQ setup - runs on CPU0
153 */
154 static void bmips_prepare_cpus(unsigned int max_cpus)
155 {
156 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157
158 switch (current_cpu_type()) {
159 case CPU_BMIPS4350:
160 case CPU_BMIPS4380:
161 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162 break;
163 case CPU_BMIPS5000:
164 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165 break;
166 default:
167 return;
168 }
169
170 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
171 "smp_ipi0", NULL))
172 panic("Can't request IPI0 interrupt");
173 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
174 "smp_ipi1", NULL))
175 panic("Can't request IPI1 interrupt");
176 }
177
178 /*
179 * Tell the hardware to boot CPUx - runs on CPU0
180 */
181 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
182 {
183 bmips_smp_boot_sp = __KSTK_TOS(idle);
184 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185 mb();
186
187 /*
188 * Initial boot sequence for secondary CPU:
189 * bmips_reset_nmi_vec @ a000_0000 ->
190 * bmips_smp_entry ->
191 * plat_wired_tlb_setup (cached function call; optional) ->
192 * start_secondary (cached jump)
193 *
194 * Warm restart sequence:
195 * play_dead WAIT loop ->
196 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197 * eret to play_dead ->
198 * bmips_secondary_reentry ->
199 * start_secondary
200 */
201
202 pr_info("SMP: Booting CPU%d...\n", cpu);
203
204 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205 /* kseg1 might not exist if this CPU enabled XKS01 */
206 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207
208 switch (current_cpu_type()) {
209 case CPU_BMIPS4350:
210 case CPU_BMIPS4380:
211 bmips43xx_send_ipi_single(cpu, 0);
212 break;
213 case CPU_BMIPS5000:
214 bmips5000_send_ipi_single(cpu, 0);
215 break;
216 }
217 } else {
218 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219
220 switch (current_cpu_type()) {
221 case CPU_BMIPS4350:
222 case CPU_BMIPS4380:
223 /* Reset slave TP1 if booting from TP0 */
224 if (cpu_logical_map(cpu) == 1)
225 set_c0_brcm_cmt_ctrl(0x01);
226 break;
227 case CPU_BMIPS5000:
228 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229 break;
230 }
231 cpumask_set_cpu(cpu, &bmips_booted_mask);
232 }
233 }
234
235 /*
236 * Early setup - runs on secondary CPU after cache probe
237 */
238 static void bmips_init_secondary(void)
239 {
240 switch (current_cpu_type()) {
241 case CPU_BMIPS4350:
242 case CPU_BMIPS4380:
243 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
244 break;
245 case CPU_BMIPS5000:
246 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
247 current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
248 break;
249 }
250 }
251
252 /*
253 * Late setup - runs on secondary CPU before entering the idle loop
254 */
255 static void bmips_smp_finish(void)
256 {
257 pr_info("SMP: CPU%d is running\n", smp_processor_id());
258
259 /* make sure there won't be a timer interrupt for a little while */
260 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
261
262 irq_enable_hazard();
263 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
264 irq_enable_hazard();
265 }
266
267 /*
268 * BMIPS5000 raceless IPIs
269 *
270 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
271 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
272 * IPI1 is used for SMP_CALL_FUNCTION
273 */
274
275 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
276 {
277 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
278 }
279
280 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
281 {
282 int action = irq - IPI0_IRQ;
283
284 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
285
286 if (action == 0)
287 scheduler_ipi();
288 else
289 generic_smp_call_function_interrupt();
290
291 return IRQ_HANDLED;
292 }
293
294 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
295 unsigned int action)
296 {
297 unsigned int i;
298
299 for_each_cpu(i, mask)
300 bmips5000_send_ipi_single(i, action);
301 }
302
303 /*
304 * BMIPS43xx racey IPIs
305 *
306 * We use one inbound SW IRQ for each CPU.
307 *
308 * A spinlock must be held in order to keep CPUx from accidentally clearing
309 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
310 * same spinlock is used to protect the action masks.
311 */
312
313 static DEFINE_SPINLOCK(ipi_lock);
314 static DEFINE_PER_CPU(int, ipi_action_mask);
315
316 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
317 {
318 unsigned long flags;
319
320 spin_lock_irqsave(&ipi_lock, flags);
321 set_c0_cause(cpu ? C_SW1 : C_SW0);
322 per_cpu(ipi_action_mask, cpu) |= action;
323 irq_enable_hazard();
324 spin_unlock_irqrestore(&ipi_lock, flags);
325 }
326
327 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
328 {
329 unsigned long flags;
330 int action, cpu = irq - IPI0_IRQ;
331
332 spin_lock_irqsave(&ipi_lock, flags);
333 action = __this_cpu_read(ipi_action_mask);
334 per_cpu(ipi_action_mask, cpu) = 0;
335 clear_c0_cause(cpu ? C_SW1 : C_SW0);
336 spin_unlock_irqrestore(&ipi_lock, flags);
337
338 if (action & SMP_RESCHEDULE_YOURSELF)
339 scheduler_ipi();
340 if (action & SMP_CALL_FUNCTION)
341 generic_smp_call_function_interrupt();
342
343 return IRQ_HANDLED;
344 }
345
346 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
347 unsigned int action)
348 {
349 unsigned int i;
350
351 for_each_cpu(i, mask)
352 bmips43xx_send_ipi_single(i, action);
353 }
354
355 #ifdef CONFIG_HOTPLUG_CPU
356
357 static int bmips_cpu_disable(void)
358 {
359 unsigned int cpu = smp_processor_id();
360
361 if (cpu == 0)
362 return -EBUSY;
363
364 pr_info("SMP: CPU%d is offline\n", cpu);
365
366 set_cpu_online(cpu, false);
367 calculate_cpu_foreign_map();
368 irq_cpu_offline();
369 clear_c0_status(IE_IRQ5);
370
371 local_flush_tlb_all();
372 local_flush_icache_range(0, ~0);
373
374 return 0;
375 }
376
377 static void bmips_cpu_die(unsigned int cpu)
378 {
379 }
380
381 void __ref play_dead(void)
382 {
383 idle_task_exit();
384
385 /* flush data cache */
386 _dma_cache_wback_inv(0, ~0);
387
388 /*
389 * Wakeup is on SW0 or SW1; disable everything else
390 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
391 * IRQ handlers; this clears ST0_IE and returns immediately.
392 */
393 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
394 change_c0_status(
395 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
396 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
397 irq_disable_hazard();
398
399 /*
400 * wait for SW interrupt from bmips_boot_secondary(), then jump
401 * back to start_secondary()
402 */
403 __asm__ __volatile__(
404 " wait\n"
405 " j bmips_secondary_reentry\n"
406 : : : "memory");
407 }
408
409 #endif /* CONFIG_HOTPLUG_CPU */
410
411 struct plat_smp_ops bmips43xx_smp_ops = {
412 .smp_setup = bmips_smp_setup,
413 .prepare_cpus = bmips_prepare_cpus,
414 .boot_secondary = bmips_boot_secondary,
415 .smp_finish = bmips_smp_finish,
416 .init_secondary = bmips_init_secondary,
417 .send_ipi_single = bmips43xx_send_ipi_single,
418 .send_ipi_mask = bmips43xx_send_ipi_mask,
419 #ifdef CONFIG_HOTPLUG_CPU
420 .cpu_disable = bmips_cpu_disable,
421 .cpu_die = bmips_cpu_die,
422 #endif
423 };
424
425 struct plat_smp_ops bmips5000_smp_ops = {
426 .smp_setup = bmips_smp_setup,
427 .prepare_cpus = bmips_prepare_cpus,
428 .boot_secondary = bmips_boot_secondary,
429 .smp_finish = bmips_smp_finish,
430 .init_secondary = bmips_init_secondary,
431 .send_ipi_single = bmips5000_send_ipi_single,
432 .send_ipi_mask = bmips5000_send_ipi_mask,
433 #ifdef CONFIG_HOTPLUG_CPU
434 .cpu_disable = bmips_cpu_disable,
435 .cpu_die = bmips_cpu_die,
436 #endif
437 };
438
439 #endif /* CONFIG_SMP */
440
441 /***********************************************************************
442 * BMIPS vector relocation
443 * This is primarily used for SMP boot, but it is applicable to some
444 * UP BMIPS systems as well.
445 ***********************************************************************/
446
447 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
448 {
449 memcpy((void *)dst, start, end - start);
450 dma_cache_wback(dst, end - start);
451 local_flush_icache_range(dst, dst + (end - start));
452 instruction_hazard();
453 }
454
455 static inline void bmips_nmi_handler_setup(void)
456 {
457 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
458 &bmips_reset_nmi_vec_end);
459 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
460 &bmips_smp_int_vec_end);
461 }
462
463 struct reset_vec_info {
464 int cpu;
465 u32 val;
466 };
467
468 static void bmips_set_reset_vec_remote(void *vinfo)
469 {
470 struct reset_vec_info *info = vinfo;
471 int shift = info->cpu & 0x01 ? 16 : 0;
472 u32 mask = ~(0xffff << shift), val = info->val >> 16;
473
474 preempt_disable();
475 if (smp_processor_id() > 0) {
476 smp_call_function_single(0, &bmips_set_reset_vec_remote,
477 info, 1);
478 } else {
479 if (info->cpu & 0x02) {
480 /* BMIPS5200 "should" use mask/shift, but it's buggy */
481 bmips_write_zscm_reg(0xa0, (val << 16) | val);
482 bmips_read_zscm_reg(0xa0);
483 } else {
484 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
485 (val << shift));
486 }
487 }
488 preempt_enable();
489 }
490
491 static void bmips_set_reset_vec(int cpu, u32 val)
492 {
493 struct reset_vec_info info;
494
495 if (current_cpu_type() == CPU_BMIPS5000) {
496 /* this needs to run from CPU0 (which is always online) */
497 info.cpu = cpu;
498 info.val = val;
499 bmips_set_reset_vec_remote(&info);
500 } else {
501 void __iomem *cbr = BMIPS_GET_CBR();
502
503 if (cpu == 0)
504 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
505 else {
506 if (current_cpu_type() != CPU_BMIPS4380)
507 return;
508 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
509 }
510 }
511 __sync();
512 back_to_back_c0_hazard();
513 }
514
515 void bmips_ebase_setup(void)
516 {
517 unsigned long new_ebase = ebase;
518
519 BUG_ON(ebase != CKSEG0);
520
521 switch (current_cpu_type()) {
522 case CPU_BMIPS4350:
523 /*
524 * BMIPS4350 cannot relocate the normal vectors, but it
525 * can relocate the BEV=1 vectors. So CPU1 starts up at
526 * the relocated BEV=1, IV=0 general exception vector @
527 * 0xa000_0380.
528 *
529 * set_uncached_handler() is used here because:
530 * - CPU1 will run this from uncached space
531 * - None of the cacheflush functions are set up yet
532 */
533 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
534 &bmips_smp_int_vec, 0x80);
535 __sync();
536 return;
537 case CPU_BMIPS3300:
538 case CPU_BMIPS4380:
539 /*
540 * 0x8000_0000: reset/NMI (initially in kseg1)
541 * 0x8000_0400: normal vectors
542 */
543 new_ebase = 0x80000400;
544 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
545 break;
546 case CPU_BMIPS5000:
547 /*
548 * 0x8000_0000: reset/NMI (initially in kseg1)
549 * 0x8000_1000: normal vectors
550 */
551 new_ebase = 0x80001000;
552 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
553 write_c0_ebase(new_ebase);
554 break;
555 default:
556 return;
557 }
558
559 board_nmi_handler_setup = &bmips_nmi_handler_setup;
560 ebase = new_ebase;
561 }
562
563 asmlinkage void __weak plat_wired_tlb_setup(void)
564 {
565 /*
566 * Called when starting/restarting a secondary CPU.
567 * Kernel stacks and other important data might only be accessible
568 * once the wired entries are present.
569 */
570 }
571
572 void __init bmips_cpu_setup(void)
573 {
574 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
575 u32 __maybe_unused cfg;
576
577 switch (current_cpu_type()) {
578 case CPU_BMIPS3300:
579 /* Set BIU to async mode */
580 set_c0_brcm_bus_pll(BIT(22));
581 __sync();
582
583 /* put the BIU back in sync mode */
584 clear_c0_brcm_bus_pll(BIT(22));
585
586 /* clear BHTD to enable branch history table */
587 clear_c0_brcm_reset(BIT(16));
588
589 /* Flush and enable RAC */
590 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
591 __raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
592 __raw_readl(cbr + BMIPS_RAC_CONFIG);
593
594 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
595 __raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
596 __raw_readl(cbr + BMIPS_RAC_CONFIG);
597
598 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
599 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
600 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
601 break;
602
603 case CPU_BMIPS4380:
604 /* CBG workaround for early BMIPS4380 CPUs */
605 switch (read_c0_prid()) {
606 case 0x2a040:
607 case 0x2a042:
608 case 0x2a044:
609 case 0x2a060:
610 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
611 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
612 __raw_readl(cbr + BMIPS_L2_CONFIG);
613 }
614
615 /* clear BHTD to enable branch history table */
616 clear_c0_brcm_config_0(BIT(21));
617
618 /* XI/ROTR enable */
619 set_c0_brcm_config_0(BIT(23));
620 set_c0_brcm_cmt_ctrl(BIT(15));
621 break;
622
623 case CPU_BMIPS5000:
624 /* enable RDHWR, BRDHWR */
625 set_c0_brcm_config(BIT(17) | BIT(21));
626
627 /* Disable JTB */
628 __asm__ __volatile__(
629 " .set noreorder\n"
630 " li $8, 0x5a455048\n"
631 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
632 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
633 " li $9, 0x00008000\n"
634 " or $8, $8, $9\n"
635 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
636 " sync\n"
637 " li $8, 0x0\n"
638 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
639 " .set reorder\n"
640 : : : "$8", "$9");
641
642 /* XI enable */
643 set_c0_brcm_config(BIT(27));
644
645 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
646 __asm__ __volatile__(
647 " li $8, 0x5a455048\n"
648 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
649 " nop; nop; nop\n"
650 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
651 " lui $9, 0x0100\n"
652 " or $8, $9\n"
653 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
654 : : : "$8", "$9");
655 break;
656 }
657 }